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Abstract We propose HyDICE, Hybrid DIscrete Continuous Exploration, a multi-

layered approach for hybrid-system falsification that combines motion planning with

discrete search and discovers safety violations by computing witness trajectories to un-

safe states. The discrete search uses discrete transitions and a state-space decomposi-

tion to guide the motion planner during the search for witness trajectories. Experiments

on a nonlinear hybrid robotic system with over one million modes and experiments with

an aircraft conflict-resolution protocol with high-dimensional continuous state spaces

demonstrate the effectiveness of HyDICE. Comparisons to related work show computa-

tional speedups of up to two orders of magnitude.

Keywords Hybrid system · Safety properties · Robot motion planning · Discrete

search · Sampling-based planning · Decomposition · Nonlinear dynamics

1 Introduction

1.1 Hybrid Systems and Verification of Safety Properties

Hybrid systems play an increasingly important role in transportation networks as part

of sophisticated embedded controllers used in the automotive industry and air-traffic
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management, or in manufacturing processes, robotics, and even medicine and biology

as part of medical devices monitoring health conditions [6, 24, 29, 42, 43, 54]. A hybrid

system is a formal model that combines discrete and continuous dynamics. Continuous

dynamics are associated with each mode, and discrete logic determines how to switch

between modes. A hybrid system may model air traffic control, where the modes cor-

respond to the cruising of the planes and the discrete logic models conflict-resolution

protocols. As another example, a hybrid system may model a vehicle whose underlying

dynamics varies discretely depending on terrain conditions.

As hybrid systems are often part of devices operating in safety-critical situations,

the verification of safety properties becomes increasingly important. A hybrid system

is considered safe if unsafe states cannot be reached starting from initial safe states.

The hybrid-system verification problem has traditionally been formulated as a

reachability analysis on the state space of the hybrid system. In the forward reach-

ability formulation, safety verification is equivalent to showing that the set of states

reachable from the initial states does not intersect the set of unsafe states. In the back-

ward reachability formulation, safety is guaranteed by showing that the set of states

that can reach an unsafe state does not intersect the initial set of states.

Over the years a rich theory has been developed for this problem as well as numerous

methods [1, 25, 26, 36, 39, 48]. Initial approaches included enumeration and symbolic

methods originally developed for discrete systems [14]. Tools such as KRONOS [55] and

UPPAAL [5] have been used for the verification of real-time hardware and software, and

HyTech [27] has been used for the verification of hybrid systems with linear dynamics.

Research has also focused on abstraction methods that make verification more

amenable to analysis by constructing a simplified model that simulates the original

system [2,3,12,23,49]. The simplified model is usually obtained by eliminating variables

that do not influence safety properties, mapping each domain to a smaller domain, or

constructing finite-state models that group states that satisfy the same predicates.

Alternative methods have also been developed that approximate the reachable set

[1, 4, 8, 51–53]. Tools such as d/dt [4], Checkmate [51], VeriSHIFT [8] use polyhedra

or ellipsoids to overapproximate the reachable set, and other tools use level sets to

compute convergent approximations [53].

1.2 From Verification to Falsification

Unfortunately, even for safety properties where verification is equivalent to reachability

checking, decidability holds only for hybrid systems with simple continuous dynamics

(essentially some types of linear dynamics) [1, 26, 40, 53]. In light of these theoretical

results, it is no surprise that the most efficient complete algorithms for hybrid-system

verification have a single- or double-exponential dependency on the dimension of the

state space and are generally limited in practicality to hybrid systems with up to six

dimensions, simple dynamics, and few or no input controls [1, 40,53].

These hardness theoretical results underscore the need for the development of al-

ternative methods that perhaps satisfy weaker forms of completeness, but can han-

dle more complex hybrid systems. In fact, recent computational methods developed

in [7,9,19,30,32,41], even though unable to determine that a hybrid system is safe, are

capable of handling complex hybrid systems and finding unsafe behaviors when such

systems are unsafe.
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In essence, the focus in these recent approaches shifts from verification to falsifi-

cation, which often is the main focus of model checking in industrial applications [15].

Falsification (see [7,32,41]) studies the following problem: Can a hybrid-system witness

trajectory be produced from a safe state to an unsafe state when such trajectories exist?

The main contribution of this work is the development of an efficient computational

method for hybrid-system falsification that offers significant computational speedups of

up to two orders of magnitude over related work. When a hybrid system is safe, it may

not be possible to prove that unsafe states are unreachable. Such an approach trades

completeness for the ability to discover safety violations for complex hybrid systems

with nonlinear dynamics and input controls that current verification methods cannot

handle.

1.3 Combining Motion Planning and Discrete Search for the Falsification of Safety

Properties of Hybrid Systems with Nonlinear Dynamics

This work approaches hybrid-system falsification from a robotics perspective. Initially,

we exploit the insight that hybrid-system falsification is in many respects related to

robot motion planning, which is a search problem for a witness trajectory that satisfies

certain invariants, such as ensuring that the robot motion respects dynamics constraints

and avoids collision with obstacles [11, 37]. While in motion planning the search takes

place in a continuous space, in hybrid-system falsification the search for a witness

trajectory takes place in a space consisting of discrete and continuous components.

The connection between hybrid-system falsification and motion planning becomes

deeper when we consider state-of-the art motion planning as the starting point for

searching the continuous state spaces of a hybrid system. Recent progress in sampling-

based motion planning has made it possible to efficiently find witness trajectories

even for high-dimensional and nonlinear continuous systems (e.g., PRM [31], RRT [38],

EST [28,50], PDST [35], DSLX [45], and others surveyed in [11,37]). These motion planners

typically search the continuous state space by incrementally extending feasible trajec-

tories in a tree-like fashion from initial states toward unsafe states. Recently, RRT-based

methods have also been used for the falsification of safety properties of nonlinear hybrid

systems with few modes [7, 9, 19,32,41].

Departing from traditional robot motion planning, we introduce a discrete-search

component to our work that is responsible for managing the potentially huge number

of modes and discrete transitions of a hybrid system. The contribution of this work is

the development of a multi-layered framework for hybrid-system falsification that effec-

tively combines sampling-based motion planning with discrete search. The motivation

and many of our design decisions come from our earlier work [45–47]. In [47] we use

discrete search to obtain a sequence of discrete transitions that guides the generation

of motions for a hybrid robotic system with 10–30 modes and mostly linear dynam-

ics. In [45] we show that traditional motion-planning problems can be solved more

efficiently by combining sampling-based motion planning with discrete search over an

artificially imposed decomposition of the environment on which the robot moves (which

in general can be regarded as a projection of its state space). In [46] we show that com-

bination of motion planning and discrete search is also promising for hybrid-system

falsification.

The work in this article combines and extends ideas in [45–47] to obtain an effec-

tive falsification method for hybrid systems. As a result, while our previous work [46]
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could handle hybrid systems with up to ten thousand modes, this work can handle

hybrid systems with over a million modes and nonlinear dynamics associated with

each mode. In addition, while our previous work [46] focused on hybrid systems with

low-dimensional continuous spaces, this work shows the effectiveness of the proposed

approach even for hybrid systems with high-dimensional continuous spaces. The pro-

posed method, HyDICE, uses discrete transitions and a decomposition of the contin-

uous state spaces into regions to construct a search graph that provides a simplified

layer to the hybrid-system falsification problem. Vertices of the graph correspond to

decomposition regions, while edges correspond to adjacent decomposition regions or

decomposition regions that are connected by a discrete transition. The discrete-search

component of HyDICE obtains from this graph at each iteration a high-level plan, called

a lead, that guides the motion planner in the search for a witness trajectory. Each

lead corresponds to a sequence of decomposition regions and discrete transitions that

start at a decomposition region associated with an initial safe state and end at a de-

composition region associated with an unsafe state. Fig. 1 provides an illustration1.

Among the combinatorially large number of such sequences, the discrete-search com-

ponent of HyDICE computes at each iteration a lead that is estimated to be a useful

search direction for finding a witness trajectory. The search inside the decomposition

regions associated with the lead is based on a state-of-the-art sampling-based motion

planner [45]. The motion planner sample states inside the decomposition regions, con-

nects states associated with the same mode with simple continuous trajectories, and

connects states associated with different modes by interleaving continuous trajectories

with discrete transitions, as shown in Fig. 2. A witness trajectory is then found when

the motion planner succeeds in connecting a safe state to an unsafe state. Coverage

estimation is fed back from the motion planner to the discrete search in order to im-

prove the lead in the next iteration. This interaction between the motion planner and

discrete search, illustrated in Fig. 2, is crucial for the efficiency of HyDICE.

In contrast to previous work [32, 41], as shown later in this article, HyDICE is well-

suited for systems with many modes. Experimental validation is provided by using

HyDICE for the falsification of safety properties of a hybrid robotic system with over

one million modes, and nonlinear dynamics and input controls associated with each

mode. An additional benchmark, based on aircraft conflict-resolution protocols, demon-

strates the effectiveness of HyDICE in the case of hybrid systems with high-dimensional

continuous state spaces. As indicated by the experiments, the tight integration of dis-

crete search and motion planning enables HyDICE to be up to two orders of magnitude

faster than other related methods.

The rest of the article is as follows. The hybrid-system model, hybrid-system falsi-

fication problem, and the related motion-planning problem are described in Section 2.

Description of HyDICE is given in Section 3. Experiments and results are presented in

Section 4. The article concludes in Section 5 with a discussion.

2 Preliminaries

This section defines hybrid automata, the hybrid-system falsification problem, and the

related motion-planning problem.

1 Figures in this work are better viewed in color.
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q1 q2 q3

Fig. 1 (top) Example of a witness hybrid-system trajectory from a safe state (q1, x1) to an
unsafe state (q3, x3). The witness trajectory consists of continuous trajectories, shown as curved
green arrows, interleaved with discrete transitions, shown as straight blue arrows. (middle) The
dotted red regions show a decomposition of the continuous state spaces associated with the
different modes q1, q2, q3 of the hybrid system. (bottom) The shaded decomposition regions
show a lead, a sequence of decomposition regions from the safe to the unsafe state that is
estimated to be a useful search direction for finding a witness trajectory.

2.1 Hybrid Automata and Hybrid-System Falsification Problem

In this work, hybrid systems are modeled by hybrid automata [1].

Definition 1 A hybrid automaton is a tuple

H = (S, Inv, E, G, J, U, f, I, F ),

where

– S = Q × X is the Cartesian product of the discrete and continuous state spaces;

– Q is a discrete and finite set;

– X maps each mode to the corresponding continuous state space, i.e., q
X
7→ Xq,

where Xq ⊂ R
dim(Xq) is the continuous state space associated with q ∈ Q;

– Inv maps each mode to the corresponding continuous invariant, i.e., q
Inv
7→ Invq,

where Invq ⊆ Xq represents the domain of the continuous variables associated with

q ∈ Q;

– E ⊆ Q × Q is the set of discrete transitions between modes;

– G maps discrete transitions to guard conditions, i.e., (qi, qj)
G
7→ G(qi,qj), where

G(qi,qj) ⊆ Xqi is the guard condition associated with (qi, qj) ∈ E;

– J maps discrete transitions to reset functions, i.e., (qi, qj)
J
7→ J(qi,qj), where J(qi,qj) :

G(qi,qj) → Xqj is the reset function associated with (qi, qj) ∈ E;
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– U maps each mode to the corresponding set of input controls, i.e., q
U
7→ Uq, where

q ∈ Q and Uq ⊆ R
dim(Uq);

– f maps each mode to the function that describes the associated continuous dy-

namics, i.e.,q
f
7→ fq, where fq : Xq ×Uq → Ẋq determines the continuous dynamics

associated with q ∈ Q, and Ẋq is the tangent space of Xq;

– I ⊂ S is the set of initial states; and

– F ⊂ S is the set of unsafe states.

The state of the hybrid automaton is a tuple (q, x) ∈ S that describes both the

discrete and the continuous components. The invariant, Invq ⊆ Xq, associated with

each mode q ∈ Q, represents the domain of the continuous variables x ∈ Xq. The set E

describes which transitions are possible from one mode to another. A discrete transition

(qi, qj) ∈ E occurs when the corresponding guard condition G(qi,qj) is satisfied. The

state of the system is then reset according to the reset function J(qi,qj). The continuous

dynamics of the system in each q ∈ Q is governed by a set of differential equations

fq : Xq ×Uq → Ẋq. In this work, each Xq ∈ X includes derivatives of different orders,

e.g., velocity and acceleration of a vehicle, and thus fq is nonlinear. The function fq has

the form fq(x, u), where the input u ∈ Uq could represent controls, nondeterminism,

uncertainties, disturbances from the environment, or actions of other systems.

A hybrid-system trajectory consists of one or more continuous trajectories inter-

leaved with discrete transitions. A hybrid system is considered unsafe if a trajectory is

found that reaches an unsafe state starting from an initial safe state. More precisely,

the problem statement is as follows.

Definition 2 A state s = (q, x) ∈ S, a time T ≥ 0, and an input control u ∈ Uq,

define a valid continuous trajectory Ψs,u,T : [0, T ] → Xq when

– x = Ψs,u,T (0);

– Ψs,u,T (t) ∈ Invq, for t ∈ [0, T ];

– Ψs,u,T (t) ∈ Invq − {G(q,q′) : (q, q′) ∈ E}, for t ∈ [0, T ); and

– Ψ̇s,u,T (t) = fq(Ψs,u,T (t), u), for t ∈ [0, T ].

For any state s = (q, x) ∈ S, define

χ(q.x) =

8

<

:

χ
“

q′, J(q,q′)(x)
”

, x ∈ G(q,q′) for some (q, q′) ∈ E,

(q, x), otherwise.

The hybrid-system trajectory Υs,u,T : [0, T ] → S, defined as

Υs,u,T (t) =

(

(q, Ψs,u,T (t)), 0 ≤ t < T,

χ(q, Ψs,u,T (t)), t = T,

ensures that discrete transitions at time T , if they occur, are followed.

The continuous trajectory Ψs,u,T is thus obtained by applying the input control

u to the state s for a duration of T units of time. Moreover, Ψs,u,T never reaches a

guard condition during the time interval [0, T ) and each state of Ψs,u,T satisfies the

invariant. The trajectory Υs,u,T is similar to Ψs,u,T , but, unlike Ψs,u,T , Υs,u,T follows

the discrete transitions at time T when they occur.

We note that in the hybrid-system benchmarks used in this work the discrete

transitions are considered urgent, i.e., a discrete transition is immediately taken once
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a guard condition is satisfied. There is however no inherent limitation of HyDICE in

dealing with non-urgent discrete transitions. When discrete transitions are non-urgent,

enabled discrete transitions could be taken nondeterministically with some probability

or taken only when the invariant is invalid or a combination of both. We also note

that when multiple discrete transitions are enabled, all discrete transitions could be

taken, or only the discrete transition with the highest priority is taken, or some other

prioritization scheme as specified by the user can be used to determine which discrete

transitions should be taken.

Definition 3 The extension of a trajectory Φ : [0, T ] → S by applying to Φ(T ) the

input control u′ ∈ U for a duration of time T ′ > 0 is written as

Φ ◦ (u′, T ′),

and it is another trajectory Ξ : [0, T + T ′] → S defined as

Ξ(t) =

(

Φ(t), t ∈ [0, T ],

ΥΦ(T ),u′,T ′(t − T ), t ∈ (T, T + T ′].

The trajectory Φ◦(u′, T ′) thus denotes the hybrid-system trajectory that is obtained

by applying the input control u′ to the last state of Φ for a duration of T ′ units of time

and following all the discrete transitions that may occur at time T + T ′.

Definition 4 (Problem Statement) Given a hybrid automaton H, find a sequence

u1, u2, . . . , uk of input controls and a sequence T1, T2, . . . , Tk of time durations, such

that the trajectory W : [0, T ] → S defined as

W
def
= Υssafe,u1,T1

◦ (u2, T2) ◦ · · · ◦ (uk, Tk),

reaches an unsafe state, i.e., W(T ) ∈ F , where T = T1 + · · · + Tk and ssafe ∈ I.

2.2 Motion-Planning Problem

The motion-planning problem consists of finding a trajectory for a robotic system from

an initial state to a final state, such that the trajectory satisfies kinodynamic and other

constraints on the robot motion, e.g., bounds on velocity and acceleration, collision

avoidance. In an abstract formulation, the motion-planning problem is closely related

to the hybrid-system falsification problem, as evidenced by the following definition:

Definition 5 The motion-planning problem is a tuple

MP = (X, Inv, U, f, I, F ),

where

– X ⊂ R
dim(X) is the continuous state space;

– Inv ⊂ X is the invariant set representing the domain of the continuous variables;

– U ⊆ R
dim(U) is the set of input controls;

– f : X × U → Ẋ determines the continuous dynamics, and Ẋ is the tangent space

of X;

– I ⊂ S is the set of initial states; and
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Algorithm 1 A search-tree framework for finding a witness trajectory

Input: H = (S, Inv, E, G, J, f, U, I, F ): hybrid system
tmax ∈ R: upper bound on overall computation time

Output: A witness trajectory or FAILURE if no witness trajectory is found

1: StartClock

2: T = (VT , ET ); VT ← {ssafe}; ET ← ∅
3: while ElapsedTime < tmax do

4: s← SelectStateFromSearchTree(H, T )
5: snew ← ExtendSearchTree(H, T , s)
6: VT ← VT ∪ {snew}; ET ← ET ∪ {(s, snew)}
7: if snew ∈ F then

8: return WitnessTrajectory(T , snew)
9: return FAILURE

– F ⊂ S is the set of final states.

A solution to the motion-planning problem is a witness trajectory from a state s′ ∈ I

to a state s′′ ∈ F , such that each state in this trajectory satisfies the invariant Inv.

The invariant Inv represents different constraints imposed on the states of the

systems and indicates which states satisfy those constraints. The invariant is usually

specified implicitly as Inv = {x : x ∈ X ∧ val(x) = 1}, where the function val : X →

{0, 1} indicates which state is valid.

A comparison of the hybrid automaton in Definition 1 and the motion-planning

problem in Definition 5 reveals the similarities between them. In fact, the motion-

planning problem corresponds to a hybrid automaton that has only one mode and

no discrete transitions. As it will be explained in Section 3, HyDICE takes advantage

of precisely this similarity to effectively search the continuous state spaces associated

with the modes of a hybrid system.

3 HyDICE

A preliminary version of HyDICE has appeared in [46]. This section provides a detailed

description of HyDICE and emphasizes the extensions aimed at improving the motion

planner and the interplay between the motion planner and the discrete search. As a

result of these extensions, as shown in Section 4, the overall computational efficiency

of the method improves significantly over [46].

Throughout execution, HyDICE maintains an internal data structure, which is a tree

T = (VT , ET ). A vertex s ∈ VT is a state in S, while an edge (s′, s′′) ∈ ET indicates

that a hybrid-system trajectory connects s′ ∈ S to s′′ ∈ S. Initially T contains a safe

state ssafe ∈ I as its root and has no edges, i.e., VT = {ssafe} and ET = ∅. The

search for a witness trajectory proceeds in an iterative fashion. At each iteration, T is

extended by adding a new vertex to VT and a new edge to ET . The search terminates

successfully when an unsafe state sunsafe ∈ F is added to T . A witness trajectory is

then constructed by concatenating the hybrid-system trajectories associated with the

tree edges that connect ssafe to sunsafe. Otherwise, the search continues until an upper

bound on the computation time is exceeded. Algorithm 1 provides pseudocode for this

general search-tree framework.
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3.1 Extending the Search-Tree Framework

The success of the search-tree framework in Algorithm 1 depends on the ability of the

method to quickly extend T along those directions that can facilitate the construction

of a witness trajectory. HyDICE, as explained next, uses the discrete transitions of the

hybrid system and a state-space decomposition to estimate such directions.

Note that a witness trajectory consists of several continuous trajectories inter-

leaved with discrete transitions, as illustrated in Fig. 1. Each continuous trajectory

corresponds to a local connection, i.e., a trajectory between two continuous states as-

sociated with the same mode, while each discrete transition occurs when some guard

condition is satisfied. In order to construct a witness trajectory, it suffices to identify

states where discrete transitions of a witness trajectory occur and use local connections

to obtain the continuous trajectories associated with a witness trajectory. Assume for

the moment that such computational methods are available, i.e.,

Transitions: Returns a sequence of states ssafe = (q1, x1), (q1, x′
1), (q2, x2), (q2, x′

2),

· · · , (qn, xn) = sunsafe, where (qi, x
′
i) ∈ G(qi,qi+1) and xi+1 = J(qi,qi+1)(x

′
i).

ConnectSameQ: Given q ∈ Q and x′, x′′ ∈ Invq, the local connection method returns

a continuous trajectory that connects (q, x′) to (q, x′′).

A witness trajectory can then be constructed by first invoking Transitions and

then using ConnectSameQ to connect each (qi, xi) to (qi, x
′
i) with a continuous tra-

jectory. Observe that in each case ConnectSameQ is solving the motion-planning

problem defined in Section 2. HyDICE takes advantage of this observation and bases

ConnectSameQ on a state-of-the-art motion planner, as described in Section 3.3.

Note that it is in general challenging for the Transitions method to identify states

where discrete transitions occur, since witness trajectories are not known a priori. It is

however possible to identify sequences of discrete transitions q1, q2, . . . , qn, (qi, qi+1) ∈

E, from a mode q1 = qsafe associated with a safe state to a mode qn = qunsafe associated

with an unsafe state. In fact, these sequences of discrete transitions correspond to paths

in the graph (Q, E) of the discrete transitions of the hybrid system.

The objective of HyDICE is then to focus the search inside the continuous state

spaces associated with these discrete transitions. In particular, the motion-planning

component of HyDICE attempts to extend T from states associated with (qi, Xqi) to

states associated with (qi, G(qi,qi+1
)), thus enabling discrete transitions to states as-

sociated with (qi+1, Xqi+1). In this way, a sequence of discrete transitions from qsafe

to qunsafe provides a general direction for extending T that could potentially facilitate

the construction of witness trajectories.

Taking this approach a step further, HyDICE also introduces a decomposition of

each continuous state space Xq, q ∈ Q, into different regions. Such decomposition has

been shown quite effective in increasing the computational efficiency for searching a

continuous state space [45]. Moreover, similar to the observation made earlier, when

imposing such decomposition, each witness trajectory now passes through a sequence

of decomposition regions that starts at a decomposition region associated with ssafe ∈ I

and ends at a decomposition region associated with sunsafe ∈ F , as illustrated in Fig. 1.

Therefore, such a sequence of decomposition regions, which is referred to as a lead and

described in detail in Section 3.2, provides a potentially useful direction for extending

T during the search for a witness trajectory, as illustrated in Fig. 2.
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(a) (b)

(c) (d)

Fig. 2 Illustration of the interplay between the discrete-search and motion-planning compo-
nents of HyDICE. (a) The discrete search computes a lead. (b) The motion planner extends
the search tree along the decomposition regions specified by the lead by adding new vertices
and edges to the search tree from these or neighboring decomposition regions. (c) A new lead
is computed by the discrete search to reflect the current growth of the search tree. (d) The
motion planner again extends the search tree using the current lead as a guide. This time, the
search tree reaches an unsafe state and thus a witness trajectory is found.

Interplay of Discrete Search and Motion Planning: Since the number of possible leads

could be combinatorially large, HyDICE employs a discrete-search component to ob-

tain at each iteration a general direction that is estimated to be useful for extending

the search tree T in order to facilitate the construction of a witness trajectory. The

motion-planning component of HyDICE extends the search tree T along the decom-

position regions specified by the lead. Information collected by the motion planner

such as coverage and time is fed back to the discrete-search component to improve the

lead computed in the next iteration. Fig. 2 illustrates the interplay of discrete-search

and motion-planning components of HyDICE and Algorithm 2 provides pseudocode for

HyDICE. The discrete-search and motion-planning components correspond to line 6 and

lines 7–14 of Algorithm 2 and are described in sections 3.2 and 3.3, respectively.

3.2 Discrete-Search Component of HyDICE

3.2.1 Decomposition

The decomposition D of the continuous state spaces associated with the modes of the

hybrid system (Algorithm 2:3) is obtained by decomposing each Xq ∈ X into a number
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Algorithm 2 Pseudocode for HyDICE

Input: H = (S, Inv, E, G, J, f, U, I, F ): hybrid system
tmax ∈ R: upper bound on overall computation time
tσ ∈ R: short time allocated to each motion planning step

Output: A witness trajectory or FAILURE if no witness trajectory is found

1: StartClock

2: T = (VT , ET ); VT ← {ssafe}; ET ← ∅ ♦initialize search tree

3: D ← Decomposition(H)
4: GD = (VD, ED)← DiscreteSearchGraph(H, D)
5: while ElapsedTime < tmax do

6: σ ← DiscreteSearch(GD) ♦compute current lead σ
7: StartClock2 ♦extend T along regions specified by σ
8: while ElapsedTime2 < tσ do ♦begin motion-planning step

9: Di(q)← SelectDecompositionRegion(T , σ)
10: s← SelectStateFromDecompositionRegion(Di(q))
11: snew ← PropagateForward(H,T , s, σ)
12: VT ← VT ∪ {snew}; ET ← ET ∪ {(s, snew)}
13: if snew ∈ F then

14: return WitnessTrajectory(T , snew) ♦end motion-planning step

15: return FAILURE

of different regions, i.e., D = {D(q) : q ∈ Q} and D(q) = {D1(q), . . . , Dnq (q)}. HyDICE

does not impose any strict requirements on the decomposition and each D(q) is usually

computed as a set of nonoverlapping regions in some low-dimensional projection of Xq.

The objective of the projection is to reduce the dimensionality, while at the same time

preserve the underlying structure of the original set. As such, the projection is state-

space dependent, and it is generally suggested by the user. For many systems, simple

projections that consider only some of the state components have been shown to work

well in practice [34,45].

For the hybrid system used in this work, HyDICE projects each Xq onto R
2 and

constructs a grid decomposition with nr(q) rows and nc(q) columns. More specifically,

let projq : Xq → R
2 compute the projection of each x ∈ Xq onto [amin(q), amax(q)] ×

[bmin(q), bmax(q)] ⊂ R
2. Then, nq = nc(q) × nr(q), and for each i = {1, . . . , nq},

Di(q) = {x ∈ Xq : projq(x) ∈ [ai(q), ai(q) + α(q)) × [bi(q), bi(q) + β(q))},

where ai(q) = amin(q) + cα(q); bi(q) = bmin(q) + rβ(q); c = (i − 1) mod nc(q); r =

(i−1)÷nc(q); α(q) = (amax(q)−amin(q))/nc(q); and β(q) = (bmax(q)−bmin(q))/nr(q).

Other types of decompositions are also possible and are discussed in Section 5.

3.2.2 Discrete-search graph

HyDICE uses the decomposition D and the discrete transitions of the hybrid system to

construct a search graph GD = (VD, ED), as illustrated in Algorithm 2:4. A vertex

vi(q) is added to VD for each Di(q). In addition, VD contains two special vertices

vsafe and vunsafe. An edge (vsafe, vi(q)) is added to ED for every Di(q) such that

Di(q) ∩ I 6= ∅. Similarly, an edge (vi(q), vunsafe) is added to ED for every Di(q) such

that Di(q)∩F 6= ∅. Furthermore, an edge (vi(q), vj(q)) is added to ED if the projections

of Di(q) and Dj(q) are adjacent, i.e., ||(ai(q), bi(q)), (aj(q), bj(q))||2 ≤
p

α2(q) + β2(q).

Finally, an edge (vi(q
′), vj(q

′′)) is added to ED if there is a discrete transition from

some state (q′, x′), x′ ∈ Di(q
′), to some state (q′′, x′′), x′′ ∈ Dj(q

′′). HyDICE uses a
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function RegionTrans(Di(q
′), Dj(q

′′)) to determine if there is the possibility of a

discrete transition from Di(q
′) to Dj(q

′′).

Note that the computation of RegionTrans(Di(q
′), Dj(q

′′)) depends on the def-

inition of the guard G(q′,q′′) and reset function J(q′,q′′) : G(q′,q′′) → Xq′′ . When it

is computationally infeasible or expensive to determine if there is a discrete transi-

tion from Di(q
′) to Dj(q

′′), the definition of RegionTrans(Di(q
′), Dj(q

′′)) can be

relaxed. In fact, it is only required that RegionTrans(Di(q
′), Dj(q

′′)) does not re-

turn any false negatives, i.e., RegionTrans(Di(q
′), Dj(q

′′)) returns false when there

is a discrete transition from Di(q
′) to Dj(q

′′). A false negative would cause HyDICE

to miss an edge in the search graph GD = (VD, ED), and as a result, not be able to

compute any feasible leads. False positives, i.e., RegionTrans(Di(q
′), Dj(q

′′)) returns

true when there is in no discrete transition from Di(q
′) to Dj(q

′′), are however allowed.

A false positive would add a spurious edge to the search graph GD = (VD, ED), which

could lead to the computation of an infeasible lead. However, as the search progresses,

the weight estimates associated with the spurious edge would indicate that such edge

should not be included in future leads as it is not helping HyDICE to extend the search

tree T . By allowing false positives, the computation of RegionTrans(Di(q
′), Dj(q

′′))

can be greatly simplified. In particular, it can be computed in any of the following

ways:

– RegionTrans(Di(q
′), Dj(q

′′)) = ⊤ ⇐⇒ Di(q
′) ∩ G(q′,q′′) 6= ∅

– RegionTrans(Di(q
′), Dj(q

′′)) = ⊤ ⇐⇒ (q′, q′′) ∈ E

3.2.3 Computation of leads

The current lead σ is computed at each iteration (Algorithm 2:6) by searching the graph

GD = (VD, ED) for a sequence of edges that connects vsafe to vunsafe. A central issue

is which lead σ to select from the set Γ of all possible leads. Assume for the moment

that w(σ) > 0 reflects a running estimate on the likelihood σ is useful to HyDICE for

constructing a witness trajectory. An effective strategy that balances greedy search

with methodical search can be obtained by selecting each lead σ with probability

w(σ)/
P

σ′∈Γ w(σ′). This selection process is biased towards the most useful leads,

since the objective of HyDICE is to quickly construct a witness trajectory. At the same

time, since it is not known a priori which σ actually leads to the construction of

a witness trajectory, the selection process guarantees that each σ ∈ Γ has a non-

zero probability of being selected. Computationally however such selection strategy is

feasible only when it is practical to enumerate all leads. Due to the decomposition and

the potentially huge complexity of discrete transitions, there is usually a combinatorial

number of leads, which makes enumeration impractical.

The approach followed in this work addresses this issue by maintaining instead a

running estimate wi(q) on the priority of including the decomposition region Di(q) in

the current lead σ. The weight is computed as

wi(q) =
volν(Di(q))cov

ζ(Di(q))

tτ (Di(q))
,

where t(Di(q)) is the time the motion planner has spent extending the search tree

T from states associated with Di(q), i.e., time spent by PropagateForward in Al-

gorithm 2:11; vol(Di(q)) is the volume of the projection of Di(q), i.e., vol(Di(q)) =
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α(q)β(q); cov(Di(q)) measures the coverage of Di(q) by T , which is computed by im-

posing an implicit fine-grained uniform grid on the projection of Di(q) and measuring

the number of cells that contain at least one state from T ; and τ , ν, ζ are normal-

ization constants. Note that a new cell c is added to the implicit uniform grid only

when a state snew = (q, x) ∈ S is added to VT such that projq(x) ∈ c. A hash-set data

structure is used by HyDICE to keep track of which cells have currently been added to

the implicit uniform grid and update the coverage estimate in roughly constant time.

A high weight wi(q) indicates priority. When the coverage estimate cov(Di(q)) of

a decomposition region Di(q) is high, then there are many vertices and edges which

HyDICE can use to extend T from Di(q) to the next decomposition region in the lead.

Preference is also given to Di(q) when it has a large volume, since it allows HyDICE

to extend T in different directions. The time factor t(Di(q)) ensures that HyDICE does

not spend all the computation time re-exploring one particular decomposition region.

In fact, as t(Di(q)) increases, the likelihood that Di(q) is included in the current lead

decreases rapidly, allowing HyDICE to spend time searching inside other decomposition

regions. The weighting function wi(q) is thus biased towards decomposition regions

that have large volume and are quickly covered by the search tree.

The current lead σ is then obtained as the shortest path from vsafe to vunsafe

in the graph GD = (VD, ED), where the path length is determined by the weights

w(vi(q
′), vj(q

′′)) = 1/(w(Di(q
′))∗w(Dj(q

′′))) associated with each edge (vi(q
′), vj(q

′′)) ∈

ED. The shortest path can be efficiently computed using A* or Dijkstra’s algorithm.

For considerably larger problems, more advanced graph-search techniques [56] or ap-

proaches from model checking, such as bounded model checking [13] or directed model

checking [17], could be used (see also discussion in Section 5). The current lead σ, with

a small probability, is also computed as a random path from vsafe to vunsafe as a way

to correct for errors inherent with the weight estimates and to ensure that each lead

has a non-zero probability of being selected. In this way, the discrete-search component

is able to lead the search for a witness trajectory toward promising directions, while

allowing the motion planner to extend the search tree along new directions.

We note that in the experiments in this work, the graph GD = (VD, ED) is explic-

itly constructed. In cases where it is infeasible to explicitly store GD = (VD, ED) in

memory, HyDICE can be used with implicit representations of GD. A function Edges :

VD → 2VD can be used to compute on-the-fly the outgoing edges from each vertex.

3.3 Motion-Planning Component of HyDICE

The objective of the motion planner is to extend the search tree T along the decom-

position regions associated with the current lead σ so that T can reach F as quickly

as possible. This is achieved by selecting states from the decomposition regions speci-

fied by σ and generating hybrid-system trajectories by propagating forward from those

states. As described in Section 3.2.3, since σ is computed by searching the graph

GD = (VD, ED), not all the decomposition regions in σ have been reached by T . A

decomposition region Di(q) is reached by T when a state s = (q, x) is added to VT and

x ∈ Di(q). The motion planner then selects states from those decomposition regions in

σ that have already been reached by T . As a result of extending T with hybrid-system

trajectories from the selected states, T may reach new decomposition regions, allowing

HyDICE to explore parts of the state space that were previously unexplored.
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Conceptually, forward propagation provides the necessary mechanism for the mo-

tion planner to extend T and search the state space of the hybrid system. The forward

propagation from a state s = (q, x) ∈ S entails applying a control u to s and simulat-

ing the continuous and discrete dynamics of the hybrid system for a certain duration

of time T to obtain a new state snew ∈ S. The state snew thus corresponds to the

last state of the trajectory Υs,u,T , as described in Definition 2. The control u ∈ Uq is

usually selected pseudo-uniformly at random from the set of all possible controls or

according to some specific control law that selects controls depending on state values

and other criteria, as illustrated in Section 4. The new state snew and the edge (s, snew)

are added to the vertices and edges of T , respectively.

As indicated in Algorithm 2:7–14, the motion planner repeats the above select-

and-propagate step until an upper bound tσ on the time dedicated to σ is exceeded.

It is important that the motion planner commits to the current lead σ only for a

short period of time tσ to allow for an effective interplay with the discrete-search

component, since leads are continually refined based on information collected during

the search and potentially new leads are computed at the beginning of each iteration

step (Algorithm 2:6). The rest of this section describes in more detail the selection

of a decomposition region Di(q) from the decomposition regions associated with σ

(Algorithm 2:9), selection of a state s ∈ VT from the states associated with Di(q)

(Algorithm 2:10), and the forward propagation from s to a new state snew.

3.3.1 Selection of a Decomposition Region

Since the objective of the motion planner is to extend T toward F , the function

SelectDecompositionRegion (Algorithm 2:9) gives preferences to those decompo-

sition regions of σ that have been reached by T and are closer to F . Recall that Di(q)

is reached by T when a state s = (q, x) is added to VT and x ∈ Di(q). Furthermore,

the order in which vi(q) appears in σ is an indication of how close Di(q) is to F .

More specifically, the motion planner maintains a set Davail of decomposition re-

gions that are available for the selection process. Initially, Davail = ∅. The lead σ is

scanned backwards starting at position i = |σ| down to i = 1. If the i-th decomposi-

tion region Di(q) of σ is reached by T , then Di(q) is added to Davail with probability

1/(1+ |Davail|). Thus, decomposition regions that have been reached by T and appear

toward the end of σ are estimated to be closer to F and are thus given a higher priority

by the motion planner. Each Di(q) ∈ Davail is then selected with probability

wsel(Di(q))
P

Dj(q′)∈Davail
wsel(Dj(q′))

,

where

wsel(Di(q)) =
volν(Di(q))

tτ (Di(q))covζ(Di(q))
.

This selection strategy allows the motion planner to spend more time extending the

search tree T along those decomposition regions that are close to F , have large volume,

and have not been adequately covered in the past.

When snew = (qnew, xnew) ∈ S is added to T (Algorithm 2:12), snew is also added

to the appropriate decomposition region Dj(qnew), such that xnew ∈ Dj(qnew). If

Dj(qnew) is not already in Davail, then Dj(qnew) is added to Davail. Thus, when the

motion planner extends T along new decomposition regions, they become available for
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selection during the next iteration of the motion-planning step in Algorithm 2:9. In

this way, the motion planner extends T along decomposition regions associated with

σ and along new decomposition regions that T reaches while the search for a witness

trajectory progresses from one decomposition region to another.

3.3.2 Selection of a State from a Decomposition Region

As illustrated in Algorithm 2:10, among all the states in VT associated with Di(q), the

function SelectStateFromDecompositionRegion selects one state s from which it

extends T . The state-selection strategy follows well-established techniques developed

in motion planning research, similar to the work in [50]. Recall that an implicit uniform

grid was used to estimate the coverage of Di(q) by the states in VT , as discussed in

Section 3.2. The i-th cell from this implicit uniform grid is selected with probability

(1/nsel2i )/
P

j(1/nsel2j ), where nseli is the number of times the i-th cell has been se-

lected in the past. A state s is then selected pseudo-uniformly at random from all the

states associated with the i-th cell. This state-selection strategy gives priority to new

states that have not been frequently selected in the past and allows the motion planner

to extend T along new directions.

3.3.3 Extending the Tree from the Selected State by Forward Propagation

As mentioned earlier, the actual extension of T from s = (q, x) is computed by the

PropagateForward function in Algorithm 2:11. An input control u ∈ Uq, which

could be selected pseudo-uniformly at random or according to some other strategy

(see Section 4.1.2), is applied to s for a short duration of time T > 0. The function

PropagateForward simulates the continuous and discrete dynamics of the hybrid

system to obtain the resulting hybrid-system trajectory Υs,u,T , as in Definition 2.

Pseudocode is given in Algorithm 3.

Algorithm 3 PropagateForward

Input: H = (S, Inv, E, G, J, f, U, I, F ): hybrid system
s = (q, x) ∈ S: starting state
ǫ ∈ R

>0: integration step
nsteps ∈ N: number of integration steps

Output: The new state obtained at the end of propagation

1: u← sample control from Uq

2: x0 ← x
3: for i = 1, 2, . . . , nsteps do

4: xi ←
R ǫ

0 fq(xi−1, u)
5: if xi 6∈ Invq then

6: return (q, xi−1)
7: if (q, xi) ∈ G(q,qnew) for some qnew ∈ Q then

8: (xloc, T )← localize discrete event in time interval ((i− 1) ∗ ǫ, i ∗ ǫ]
9: return J(q,qnew)(q, xloc)

10: return (q, xi)

The forward propagation follows the continuous dynamics fq associated with q ∈ Q

and is usually computed based on numerical integration of the ordinary differential

equations associated with fq. This work uses 8-th order Prince-Dormand Runge-Kutta
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numerical integration with adaptive step-size control as implemented in GSL [21]. The

forward propagation is an iterative procedure. Let nsteps denote the number of propaga-

tion steps and let ǫ > 0 denote the integration step. Initially, x0 = x (Algorithm 3:2).

During the i-th iteration, the continuous state xi ∈ Xq is obtained by numerically

integrating the differential equations fq(xi−1, u) for ǫ units of time (Algorithm 3:4).

If xi 6∈ Invq, then the forward propagation is terminated, since xi is not valid

(Algorithm 3:5–6). The previous valid state (q, xi−1) is returned as the new state snew

obtained at the end of the forward propagation. The valid hybrid-system trajectory

corresponds then to Ψs,u,T (see Definition 2), where T = (i − 1) ∗ ǫ.

If xi ∈ Invq, the simulation checks whether the state (q, xi) satisfies any guard

condition, i.e., (q, xi) ∈ G(q,qnew) for some qnew ∈ Q. If a guard condition is satisfied,

then a discrete event has occurred in the time interval (i − 1 ∗ ǫ, i ∗ ǫ] (Algorithm 3:7).

This stage, commonly known as event detection, is followed by the event localization

stage, which localizes the earliest time T ∈ ((i−1)∗ǫ, i∗ǫ] the guard condition is satisfied

(Algorithm 3:8). Variants of bisection or bracketing algorithms, as those found in the

classical numerical literature, are commonly employed for the event detection [18]. Once

the event is localized, the propagation stops and the corresponding discrete transition

is applied to obtain the new state snew (Algorithm 3:9). The valid hybrid-system

trajectory corresponds then to Υs,u,T (see Definition 2).

At the end of the forward propagation, the new state snew = Υs,u,T (T ) and the

edge (s, snew) are added to the vertices and edges of T , respectively (Algorithm 2:12).

A witness trajectory is found if snew ∈ F . The witness trajectory is computed by

reconstructing the evolution of the hybrid system from ssafe to snew following the

appropriate edges of T (Algorithm 2:14).

We note that, due to limitations of floating-point arithmetic, as with any other

numerical method in computational mathematics, including symbolic techniques for

linear hybrid systems, there will be round-off errors in the simulation of the continuous

dynamics and the event detection and localization of discrete transitions. The approach

followed by HyDICE to deal with such numerical errors is similar to the approach followed

by other numerical methods for hybrid-system falsification [7,32,41], which choose the

integration step ǫ > 0 to be small in order to minimize such errors. For certain hybrid

systems with linear guard descriptions, it is also possible to use more accurate event

detection and localization algorithms, such as those surveyed and developed in [18],

which come asymptotically close to the boundary of the guard set without overshooting

it.

4 Experiments and Results

Experimental validation is provided by using HyDICE for the falsification of safety

properties of a hybrid robotic system navigation benchmark and an aircraft conflict-

resolution protocol. The navigation benchmark, which is based on a scalable benchmark

proposed in [20], tests the scalability of HyDICE with respect to the number of modes.

The aircraft conflict-resolution protocol, which has been widely used in [7, 32, 41, 53],

tests the computational efficiency of HyDICE when also dealing with high-dimensional

continuous states spaces.

Methods used for the Comparisons An important part of experiments is the comparison

with previous related work. The closest work we can compare to is the application of
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RRT to hybrid systems [19, 32]. We also compare our work to a more recent version

of RRT developed in [41] as a hybrid-system falsification method that is guided by the

star discrepancy coverage measure. To distinguish between RRT and its variant, we will

use the acronym RRT[D∗] to refer to the star-discrepancy version of RRT [41]. We also

provide experiments that indicate the impact of the discrete-search component on the

computational efficiency of HyDICE. We refer to the version of HyDICE that does not use

the discrete-search component as HyDICE[NoLeads]. From an algorithmic perspective,

HyDICE[NoLeads] is the sampling-based motion planner of HyDICE. More precisely,

HyDICE[NoLeads] is obtained from Algorithm 2 by commenting out the outer while

loop in line 5 and setting tσ = tmax.

Hardware Experiments were run on the Rice Cray XD1 ADA and PBC clusters, where

each processor is at 2.2GHz and has up to 8GB RAM. Each run uses a single processor,

i.e., no parallelism. An upper bound of 3600s is set for each run. In the case of HyDICE,

the current lead σ is computed as the shortest path in the search graph with probability

0.9 and as a random path with probability 0.1 (see Section 3).

4.1 A Hybrid Robotic System Navigation Benchmark

The first hybrid-system benchmark used in the experiments consists of an autonomous

robotic vehicle, whose underlying dynamics change discretely depending on terrain con-

ditions. The choice of this specific system is to provide a concrete, scalable benchmark

in which the competitiveness of HyDICE can be tested. This hybrid-system benchmark,

which is motivated by robotics applications, is constructed based on a scalable navi-

gation benchmark proposed in [20]. A given environment is divided into n× n equally

sized terrains. The hybrid robotic system associates one mode qi ∈ Q with each terrain

Ri. For each mode, the associated dynamics is specified by a set of ordinary differential

equations, as described in Section 4.1.1. A discrete transition (qi, qj) ∈ E occurs when

the hybrid robotic system moves from Ri to Rj . When the discrete transition occurs,

velocity components of the current continuous state of the hybrid robotic vehicle are

set to zero.

4.1.1 Second-order models

While the navigation benchmark proposed in [20] used linear dynamics, this work uses

second-order dynamics that are commonly used for modeling cars, differential drives,

and unicycles. Detailed descriptions of these models can be found in [11,37].

Smooth car (SCar): A second-order car is controlled by setting the acceleration and the

rotational velocity of the steering wheel. The dynamics is specified as ẋ = v cos(θ); ẏ =

v sin(θ); θ̇ = v tan(φ)/L; v̇ = u0; φ̇ = u1, where (x, y, θ) is the configuration; L = 0.8m

is the distance between the front and rear axles; |v| ≤ vmax = 3m/s is the velocity;

|φ| ≤ φmax = 40◦ is the steering angle; |u0| ≤ max0 = 0.8m/s2 is the acceleration

control; and |u1| ≤ max1 = 25◦/s is the control for the steering wheel.
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Smooth unicycle (SUni): A second-order unicycle is controlled by translational and

rotational accelerations. The dynamics is given by ẋ = v cos(θ); ẏ = v sin(θ); θ̇ =

ω; v̇ = u0; ω̇ = u1, where (x, y, θ) is the configuration; |v| ≤ vmax = 3m/s and |ω| ≤

ωmax = 20◦/s are the translational and rotational velocities; |u0| ≤ max0 = 0.3m/s2

and |u1| ≤ max1 = 10◦/s2 are the translational and rotational acceleration controls.

Smooth differential drive (SDDrive): A second-order differential drive is controlled by

setting the left and right wheel rotational accelerations. The dynamics is given by

ẋ = 0.5r(ωℓ +ωr) cos(θ); ẏ = 0.5r(ωℓ +ωr) sin(θ); θ̇ = r(ωr−ωℓ)/L; ω̇ℓ = u0; ω̇r = u1,

where (x, y, θ) is the configuration; |ωℓ| ≤ ωmax = 5◦/s and |ωr| ≤ ωmax are the

rotational velocities of the left and right wheels; r = 0.2m is the wheel radius; L = 0.8m

is the length of the axis connecting the centers of the two wheels; |u0| ≤ max0 = 10◦/s2

and |u1| ≤ max1 = 10◦/s2 are the left and right wheel acceleration controls.

4.1.2 Autonomous driver models

The controls u0 and u1 could be thought of as playing the role of the automatic driver.

The objective of hybrid-system falsification is then to test the safety of the automatic

driver, i.e., the driver is unsafe if a witness trajectory is produced that indicates that

it is possible for the robotic vehicle to enter an unsafe state. The driver models used

in this work consist of simple if-then-else statements that depend on the state values

and the underlying dynamics associated with each mode of the hybrid robotic system.

In the first model, RandomDriver, u0 and u1 are selected pseudo-uniformly at

random from [−max0, max0] and [−max1, max1], respectively. In the second model,

StudentDriver, the driver follows an approach similar to stop-and-go. When the speed

is close to zero, StudentDriver selects u0 and u1 as in RandomDriver. Otherwise,

StudentDriver selects controls that reduce the speed. The third model, HighwayDriver

attempts to maintain the speed within acceptable low and upper bounds. When the

speed is too low, HighwayDriver selects controls that increase the speed. When the

speed is too high, HighwayDriver selects controls that slow down the robotic vehicle.

Otherwise, HighwayDriver selects controls that do not change the speed considerably.

For completeness, we provide below a succinct description of the selection strategy for

the input controls u0 and u1 for each driver model and each second-order dynamics:

RandomDriver f(a, i, c, L, R): return rnd(−maxi, maxi)
StudentDriver f(a, i, c, L, R):
if a ∈ (0.2, 1] then return rnd(−Lmaxi, R(c− 1)maxi)
elif a ∈ [−1,−0.2) then return rnd(R(1− c)maxi, Lmaxi)
else return rnd(−maxi, maxi)

HighwayDriver f(a, i, c, L, R): B={0.4, 0.6, 0.8, 1.0}
if ∃b ∈ B ∧ a ∈ (b− 0.2, b] then return rnd(−Lbmaxi, R(c− b)maxi)
elif ∃b ∈ B ∧ a ∈ [−b, 0.2− b) then return rnd(R(b− c)maxi, Lbmaxi)
else return rnd(−maxi, maxi)

SCar: u0 = f(v/vmax, 0, 0.2, 1, 1); u1 = rnd(−max1, max1)
SUni: u0 = f(v/vmax, 0, 0.2, 1, 1); u1 = f(ω/ωmax, 1, 0.2, 1, 1)

SDDrive: u0 = f(a, 0, 1.2, 0, 0.25); u1 = −f(a, 1, 1.2, 0, 0.25); a = ωℓ+ωr

2ωmax
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RandomDriver |Q|
12 22 42 82 162 322 642 1282 5122 10242

RRT 0.1 0.1 0.3 1.5 16.8 195.3 X X X X
RRT[D∗] 0.1 0.9 0.5 4.7 5.1 24.8 411.3 X X X
HyDICE[NoLeads] 0.1 0.1 0.3 3.6 5.7 10.0 147.1 564.8 X X
HyDICE 0.4 0.4 0.6 1.2 1.5 2.4 11.1 66.1 352.7 1198.4

StudentDriver |Q|
12 22 42 82 162 322 642 1282 5122 10242

RRT 0.1 0.2 0.7 2.4 25.4 210.5 X X X X
RRT[D∗] 0.1 1.4 0.3 1.0 4.6 23.2 605.8 X X X
HyDICE[NoLeads] 0.1 0.1 0.4 3.4 5.6 10.3 189.2 576.8 X X
HyDICE 0.4 0.4 0.7 1.3 1.8 3.4 12.4 64.6 294.5 1289.9

HighwayDriver |Q|
12 22 42 82 162 322 642 1282 5122 10242

RRT 0.1 0.2 0.3 2.9 25.5 219.3 X X X X
RRT[D∗] 0.2 0.7 0.2 0.9 3.9 23.7 515.5 X X X
HyDICE[NoLeads] 0.1 0.1 0.4 4.0 5.9 8.8 151.6 514.9 X X
HyDICE 0.4 0.4 0.6 1.3 1.8 2.9 10.9 70.4 288.9 954.8

Table 1 Computational efficiency of HyDICE compared to other methods as a function of the
number of modes |Q| and the driver model. Times are in seconds. Entries marked with X
indicate a timeout, which was set to 3600s.

4.1.3 Modes and discrete transitions

The continuous dynamics associated with each mode q ∈ Q is selected pseudo-uniformly

at random from SCar, SUni, and SDDrive. The set of discrete transitions E is created

using a strategy similar to maze generation based on Kruskal’s algorithm [33]. Initially,

E is empty and walls are placed between each pair of neighboring terrains Ri and Rj .

Then, walls are visited in some random order. If the terrains divided by the current

wall belong to distinct sets, then the wall is removed and the two sets are joined. At

the end, each remaining wall is kept with probability p = 0.9 to allow for more than

one passage from one terrain to another. Each time a wall that separates some terrain

Ri from Rj is removed, discrete transitions (qi, qj) and (qj , qi) are added to E.

4.1.4 Experiments

Experiments are performed using the hybrid robotic system described in Section 4.1.

A problem instance is obtained by fixing the number of modes |Q| = n × n and the

driver model to RandomDriver, StudentDriver, or HighwayDriver. For each problem

instance, we create 40 safety properties. Each safety property is created by selecting

pseudo-uniformly at random one terrain as the initial place where the search for a

witness trajectory should start and another terrain as unsafe. A violation of the safety

property then occurs when the hybrid robotic vehicle enters the unsafe terrain. For

each experiment, we report the average computational time in seconds. Recall that an

upper bound of 3600s was set for each run.
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4.1.5 Results

A summary of the results is shown in Table 1. Table 1 indicates that HyDICE is con-

sistently more efficient than RRT. As an example, when RandomDriver is used and

|Q| = 322, RRT requires on average 195.3s, while HyDICE requires only 2.4s. Similarly,

when StudentDriver or HighwayDriver are used and |Q| = 322, RRT requires on aver-

age 210.5s and 219.3s, while HyDICE requires only 3.4s and 2.9s, respectively. Moreover,

as the number of modes is increased HyDICE remains efficient, while RRT times out. As

Table 1 shows, RRT times out in all instances with |Q| ≥ 642, while HyDICE requires

on average less than 15s for problem instances with |Q| = 642 and less than 75s for

problem instances with |Q| = 1282.

Table 1 also indicates that HyDICE is consistently more efficient than RRT[D∗]. The

computational advantages of HyDICE become more pronounced as |Q| is increased. For

example, when RandomDriver is used and |Q| = 642, RRT[D∗] requires on average

411.3s. Similarly, when StudentDriver or HighwayDriver are used, RRT[D∗] requires

605.8s and 515.5s, respectively. On the other hand, as mentioned earlier, HyDICE re-

quires on average less than 15s. Furthermore, RRT[D∗] times out as the number of

modes is increased to |Q| = 1282, while HyDICE requires only a short time (less than

75s) to handle such problem instances.

The second set of experiments provides insight on the observed computational ef-

ficiency of HyDICE. In particular, we investigate the importance of the discrete-search

component on HyDICE. As noted earlier, HyDICE[NoLeads] is the version of HyDICE

that does not use leads to guide the motion planner during the search for a witness

trajectory. Table 1 shows that although HyDICE[NoLeads] is still faster than RRT and

RRT[D∗], it is considerably slower than HyDICE. (For a discussion on issues related to

the computational efficiency of RRT and sampling-based motion planners similar to

HyDICE[NoLeads] see [11,37,44,45].) For example, HyDICE[NoLeads] is capable of han-

dling problem instances even with |Q| = 1282, while both RRT and RRT[D∗] timed out

on these problem instances. However, HyDICE[NoLeads] requires on the average 564.8s,

576.8s, and 514.9s when RandomDriver, StudentDriver, and HighwayDriver are used,

respectively, while HyDICE requires only 66.1s, 64.6s, and 70.4s. These results highlight

the importance of the discrete-search component, which, by guiding the motion plan-

ner during the search for a witness trajectory, significantly improves the computational

efficiency of HyDICE.

Table 1 also shows that HyDICE scales up reasonably well and can handle nonlinear

problem instances with over a million modes. While other methods failed to handle

large problem instances beyond |Q| = 1282, HyDICE even when |Q| = 10242 remains

computationally efficient. Overall, results in Table 1 show the competitiveness of HyDICE

as a hybrid-system falsification method.

4.2 Aircraft Conflict-Resolution Protocol

The aircraft conflict-resolution protocol, which has been widely used in [7, 32, 41, 53],

tests the computational efficiency of HyDICE when also dealing with high-dimensional

continuous states spaces.

The continuous state space is X = X1×X2×· · ·×XN , where Xi is the continuous

state space associated with the i-th aircraft. Each aircraft i has three continuous state

variables (xi, yi, θi), where (xi, yi) denotes the position and θi denotes the orientation.
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This work presents experiments with up to 20 aircraft (60 continuous dimensions),

which is considerably larger than instances considered in related work (5 aircraft in [32]

and 8 aircraft in [41]). The continuous dynamics of the i-th aircraft are given by

ẋi = v cos(θi) + (−u1 sin(θi) + d2 cos(θi))(− sin(θi))

ẏi = v cos(θi) + (−u1 sin(θi) + d2 cos(θi))(cos(θi))

θ̇i = Protocol(i)

where v is a constant forward velocity; u1, u2 ∈ [−w, w] is the wind disturbance; and

Protocol(i) determines the yaw rate. The discrete dynamics, which makes this bench-

mark a hybrid system, are incorporated in the computation of Protocol(i), which

is based on a conflict-resolution protocol that aims to safely bring all aircrafts from

their initial positions (xinit
i , yinit

i ) to their goal positions (xgoal
i , ygoal

i ) while avoiding

collisions with each other.

As in [19, 32, 41], the function Protocol(i) switches depending on the modes

associated with the aircrafts. At the initial position, the i-th aircraft is in heading

mode, q = 1, and rotates with an angular velocity θ̇i = Protocol(i) = θgoal − θi

until it points toward the goal position, where θgoal ∈ [−π, π) is computed as the

directed angle between the x-axis and (xgoal
i , ygoal

i ). Once reaching the desired goal

heading, the i-th aircraft switches to cruising mode, q = 2, and cruises toward the

goal with angular velocity θ̇i = Protocol(i) = 0. If two aircrafts i and j get close

to each-other, i.e., within p distance, then both aircrafts enter an avoid mode, q = 2.

During the avoid mode, both aircrafts i and j make an instantaneous turn by −90◦

and then follow a half-circle with constant angular velocity θ̇i = Protocol(i) = c and

θ̇j = Protocol(j) = c. At the end of the half circle, each aircraft makes instantaneous

turns until pointing toward their own goal positions, and then the aircrafts return to

cruise mode. It is also possible that during the avoid mode between aircrafts i and j,

another aircraft k comes within p distance to i. In this case, aircrafts i and k make

instantaneous turn by −90◦ and execute the same avoid procedure as above. When

an aircraft reaches the goal position, it stays there and it is no longer involved in the

collision-avoidance protocol.

A violation of the safety property occurs if at any point two aircraft come within

d (d < p) distance from each other.

We initially experimented with the benchmark in [19], which has 5 aircraft (15

continuous dimensions). As in [19], the avoidance distance was set to p = 5.25km and

the collision distance was set to d = 1km. The translational velocity was set to 0.3km/s

and the angular velocity was set to c = 0.03rad/s. The maximum wind disturbance

was set to w = 0.1. For the benchmark used in [19], all computational methods tested

in the experiments, RRT, RRT[D∗], HyDICE[NoLeads], HyDICE, were able to compute

witness trajectories in a matter of a few seconds (less than 10s). The methods would

quickly find collisions that resulted from the aircrafts making instantaneous −90◦ turns

during the avoid mode and bumping into each other as they followed the respective

half-circles. Fig. 3 provides an illustration.

4.2.1 Safer Aircraft Conflict-Resolution Protocol

In order to make the protocol safer, when two aircrafts i and j enter an avoid mode, each

aircraft determines whether it would be best to make a −90◦ or a 90◦ instantaneous

turn. Let halfcirclei(ai) denote the half-circle made by the i-th aircraft following an
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Fig. 3 A collision between two aircraft is quickly found after a few seconds (less than 10s) of
exploration. The exploration is shown in red. Goal positions are shown as blue circles.

ai-degree instantaneous turn, where ai ∈ {−90◦, 90◦}. The half-circle halfcirclei(ai)

is defined similarly. The decision which half-circle to take is based on maximizing the

minimum distance between the two aircraft when they follow the half circles with

constant angular velocity θ̇i = Protocol(i) = (−sign(ai))c and θ̇j = Protocol(j) =

(−sign(aj))c. This safer protocol eliminates those collisions which could be avoided by

making the appropriate −90◦ or 90◦ instantaneous turn instead of always turning by

−90◦, as it is the case in [19, 32, 41]. This safer protocol makes it more challenging to

compute witness trajectories.

4.2.2 Experimental Settings

A problem instance is obtained by specifying the number N of the aircrafts, the initial

(xinit
i , yinit

i ), and the goal (xgoal
i , ygoal

i ) positions for each aircraft i. The experiments

carried out in related work [7, 32, 41, 53] relied on one problem instance, where the

initial and goal positions were set by hand. In order to test the computational effi-

ciency of HyDICE across different problem instances, we use an automatic procedure

to generate random problem instances. This allows a more comprehensive testing that

better characterizes the computational efficiency of each method. As noted earlier, in

the hand-designed problem instance, all the computational methods (RRT, RRT[D∗],

HyDICE[NoLeads], and HyDICE) solved the problem in less than 10s.

Randomized Problem Instance Generation In the automatic procedure for generating

a random benchmark instance, half of the aircrafts are placed from left to right at the

top and the other half are placed at the bottom at a safe distance from each other. The

aircrafts placed at the top have goal positions at the bottom, and the aircrafts placed

at the bottom have goal positions placed at the top. More precisely, let h = N/2. The

gap between aircrafts is set to gap = (2.85 + 0.04 ∗ (N − 10)) ∗ p, which corresponds to

2.85p for N = 10; 3.05p for N = 15; and 3.25p for N = 20. Then, for each i = 1, . . . , h,

which corresponds to the first half of the aircrafts, xinit
i is selected pseudo-uniformly

at random from [initi, initi + p], where initi = −500km + (i− 1) ∗ gap; yinit
i is selected

pseudo-uniformly at random from [250, 350]km; xgoal
i is selected pseudo-uniformly at
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random from [goali, goali + p], where goali = −420km + (i − 1) ∗ gap; and ygoal
i is

selected pseudo-uniformly at random from [−350,−250]km. For each i = h, . . . , N ,

which corresponds to the second half of the aircrafts, xinit
i is selected pseudo-uniformly

at random from [initi, initi+p], where initi = −500km+(i−h−1)∗gap; yinit
i is selected

pseudo-uniformly at random from [−350,−250]km; xgoal
i is selected pseudo-uniformly

at random from [goali, goali + p], where goali = −420km + (i− h− 1) ∗ gap; and ygoal
i

is selected pseudo-uniformly at random from [250, 350]km.

4.2.3 Experiments

Experiments were carried out with N = 10, 15, 20 aircrafts, which correspond to con-

tinuous state spaces with 30, 45, 60 dimensions, respectively. For a fixed N , 200 prob-

lem instances were generated using the randomized procedure described above in Sec-

tion 4.2.2. Each method was run on each problem instance. A timeout of 3600s was

imposed on each run. The median computational time is reported for each method.

4.2.4 Results

A summary of the results is provided in Table 2. These results indicate the compu-

tational efficiency of HyDICE. In each case, HyDICE is several times faster than RRT

and RRT[D∗]. As the number of aircrafts is increased, the computational advantages of

HyDICE become more pronounced.

number of aircrafts
method N = 10 N = 15 N = 20
HyDICE 30.35s 42.67s 77.61s
RRT 242.15 394.40s 1973.11s
RRT[D∗] X X X

Table 2 Comparison of the computational efficiency for solving the aircraft conflict-resolution
problem with respect to the number of aircrafts N . For each N , the computational efficiency of
each method is measured as the median computational time obtained on 200 random instances
of the aircraft conflict-resolution problem. Entries marked with X indicate a timeout, which
was set to 3600s.

5 Discussion

We have presented HyDICE, a multi-layered approach for hybrid-system falsification

that combines motion planning with discrete search. Experiments on nonlinear hybrid

systems with numerous modes and high-dimensional continuous state spaces demon-

strate the promise of HyDICE as a falsification method. Comparisons to related work

show computational speedups of up to two orders of magnitude. The combination

of motion planning and discrete search in the framework of HyDICE raises important

computational and theoretical research issues, which are part of ongoing and future

investigations.
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Fig. 4 Example of a witness trajectory that indicates a collision between two aircrafts in a
scenario involving 10 aircrafts. Blue circles indicate goal positions.

Scalability in the Discrete Space Although HyDICE was shown to scale up reasonably

well and handle a system with slightly over one million modes, the scalability issue

remains open to research. As the number of modes becomes significantly large, the

graph search used in this work becomes a bottleneck. Methods developed in the verifi-

cation community, which can handle discrete systems with billions of modes [10], could

provide an efficient alternative.

Scalability in the Continuous Space Complex hybrid systems are characterized not only

by a large number of modes, but also by high-dimensional continuous state spaces. An

important research issue is the improvement of the motion-planning component of

HyDICE in order to effectively explore high-dimensional continuous state spaces with

hundreds of dimensions. The framework of HyDICE, which focuses on the combination

of discrete search and motion planning, opens up the possibility of integrating different

motion planners from the one presented in this work, such as RRT [38], EST [28, 50],

PDST [35], and others [11,37].

Low-Dimensional Projections Another issue that arises when dealing with high-dimensional

continuous state spaces is the effective computation of low-dimensional projections.

The objective of the projection is to reduce the dimensionality, while at the same time

preserve the underlying structure of the original dataset. This work relied on simple

projections based on specific knowledge about the hybrid systems under consideration.
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Toward Increasingly Realistic Hybrid Robotic Systems In robotics applications such

as exploration and navigation, which motivated the hybrid-system benchmark in this

work, it is often the case that the robotic system should avoid collisions with obstacles.

Current work [32, 41, 46] in the context of hybrid-system testing has not considered

obstacles. HyDICE can however naturally handle such scenarios. In particular, collision

avoidance can be incorporated into HyDICE by considering it as an additional constraint

in the invariant that should be satisfied by each state and hybrid-system trajectory that

is added to the search tree. Moreover, the presence of obstacles makes it possible to

consider other types of decompositions besides the grid decompositions used in this

work. In particular, triangular decompositions such as conforming Delaunay triangu-

lations have been widely used in similar settings in computational geometry [16], finite

element analysis [22], and robotics [11, 37]. Preliminary results in the context of mo-

tion planning show considerable computational improvements when using conforming

Delaunay triangulations instead of grid decompositions, and one would expect that

similar benefits can be obtained by HyDICE for the falsification of safety properties of

hybrid robotic systems that must avoid collision with obstacles at all times.
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