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Abstract. This paper presents ABS, an abstract behavioral specification
language for designing executable models of distributed object-oriented
systems. The language combines advanced concurrency and synchroniza-
tion mechanisms for concurrent object groups with a functional language
for modeling data. ABS uses asynchronous method calls, interfaces for
encapsulation, and cooperative scheduling of method activations inside
concurrent objects. This feature combination results in a concurrent
object-oriented model which is inherently compositional. We discuss cen-
tral design issues for ABS and formalize the type system and semantics
of Core ABS, a calculus with the main features of ABS. For Core ABS,
we prove a subject reduction property which shows that well-typedness
is preserved during execution; in particular, “method not understood”
errors do not occur at runtime for well-typed ABS models. Finally, we
briefly discuss the tool support developed for ABS.

1 Introduction

This paper presents ABS, an abstract behavioral specification language for dis-
tributed object-oriented systems. Abstract behavioral specification languages
can be situated between design-oriented and implementation-oriented specifi-
cation languages. ABS addresses the specification of executable formal models
for distributed object-oriented systems: it allows a high-level specification of a
system, including its concurrency and synchronization mechanisms as well as
local state updates. Thus ABS models capture the concurrent control flow of
object-oriented systems, yet abstract away from many implementation details
which may be undesirable at the modeling level, such as the concrete represen-
tation of internal data structures, the scheduling of method activations, and the
properties of the communication environment.

* Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Models (http://www.hats-project.eu).



The target domain of ABS is distributed systems. In a distributed setting,
the implementation details of other objects in the system are not necessarily
known. Instead, ABS uses interfaces as types for objects, abstracting in the type
system from the classes implementing the functionality of these objects. The
strict separation of types and implementations makes concurrent ABS models
compositional. The concurrency model of ABS is similar to that of JCoBox [34],
which generalizes the concurrency model of Creol [24] from single concurrent
objects to concurrent object groups.

The language supports asynchronous method calls, which trigger activities
in other objects without transferring control from the caller, using first-class
futures [13]. Thus, an object may have many method activations competing to
be executed. A distinguishing feature of this concurrency model is the use of
cooperative scheduling of method activations to explicitly control the internal
interleaving of activities inside concurrent object groups. Thus, a clear notion
of quiescent state may be formulated, namely when the active process of each
object in the cog is idle. This allows an approach to system verification in which
local reasoning is based on the maintenance of monitor invariants which must
hold in quiescent states. Because of cooperative scheduling and the interface
encapsulation mechanism, local reasoning about the concurrent object system
can be done by suitable extensions of standard verification systems for sequential
object-oriented programs. This approach is carried out in a number of papers
[3,13,15,18] for both Creol and Core ABS.

The present paper discusses the design decisions behind ABS and defines
Core ABS, a calculus formalizing the main features of ABS. The contributions
of this paper may be summarized as follows:

— We define the functional level of ABS, which is used to abstract computations
on internal data in concurrent objects. ABS supports user-defined parametric
data types and functions with pattern matching. We define a syntax, type
system, and reduction system for functional expressions in Core ABS.

— We define the concurrent object level of ABS, which is used to capture con-
current control flow and communication in ABS models. This part of ABS
integrates functional expressions, imperative object-based programming, and
concurrent object groups with cooperative scheduling. We define a syntax,
type system, and an SOS style operational semantics for the concurrent ob-
ject level of Core ABS.

— We show how type preservation is guaranteed at runtime for well-typed mod-
els in Core ABS, with a particular focus on the creation of concurrent object
groups, objects, and first-class futures.

An extended discussion and further technical details on the ABS language
may be found in [14] while a program logic for Core ABS is in [15, Chap. 2].

2 Abstract Behavioral Specification

Specification languages can be categorized into three categories with partly com-
plementary and partly overlapping purposes:



— Design-oriented languages focus on structural aspects of systems, such as
the relationship between features or classes, and the flow of messages be-
tween objects. Examples of design-oriented languages are UML/OCL [36],
FDL [35], and architectural description languages [11,29].

— Foundational languages focus on foundational aspects of, e.g., concurrency
and interaction, by identifying a small set of primitives and their formal
semantics. Examples of foundational languages are process algebras [31],
automata models [27], and object calculi [1,23].

— Implementation-oriented languages focus on behavioral properties of im-
plemented systems. Examples of implementation-oriented specification lan-
guages are JML [7] and Spec# [6].

Design-oriented languages often provide visual means of displaying a system’s
structure, but typically lack flexible constructs for expressing concurrency and
synchronization aspects of a system. Foundational languages address this con-
cern, but their minimalistic set of language features makes it cumbersome to
develop models of real systems without complicated encodings; the resulting
models typically do not reflect the structure of an object-oriented target pro-
gram. Even the abstractions of object calculi make it difficult to express real
systems; for example, Featherweight Java [23] does not provide fields in ob-
jects. In contrast, implementation-oriented specification languages are restricted
to the particular, often extremely complex, concurrency and synchronization
mechanisms of their target language, and typically enforce particular solutions
which may be undesirable at the design stage.

ABS is situated between these three categories of specification languages. It
has in common with implementation-oriented languages that it is designed to
be close to the way programmers think, by maintaining a Java-like syntax and
a control flow close to an actual implementation. In fact, ABS models may be
automatically compiled into, e.g., Java (see Sect. 7). On the other hand, the lan-
guage has a formally defined semantics, in the style of foundational languages,
and allows the modeler to abstract from undesirable implementation details by
means of user-defined algebraic data types and functions. Consequently, impera-
tive structures may be used to study particular aspects of a system, while other
aspects may be abstracted to ADTs. In addition, the concurrency model of ABS
abstracts from particular assumptions about the communication environment,
such as ordering schemes for message transfer and scheduling policies for the
selection of method activations inside objects.

3 The Design of ABS

3.1 The Overall Structure of ABS

ABS targets distributed object-oriented systems. The concurrency model of ABS
is two-tiered and separates local, synchronous, shared-memory communication
in the lower tier from asynchronous communication with only message passing
in the upper tier. The lower tier is inspired by JCoBox [34] which generalizes



the concurrency model of Creol [13,24] from concurrent objects to concurrent
object groups, so-called cogs. Cogs can be seen as object-based runtime com-
ponents with their own object heaps. A cog’s behavior is based on cooperative
multi-tasking of external requests and synchronous internal method activations.
Cooperative multi-tasking guarantees data-race freedom inside a cog and enables
active and reactive behavior to be safely combined. Only asynchronous method
calls can occur between different cogs, different cogs have no shared heap.

Complementing the concurrent object language, ABS supports user-defined
data types with (first-order) functions and pattern matching. This functional
level of ABS is largely orthogonal to the concurrent object level and is intended
to model data manipulation. Such data is immutable and can safely be exchanged
between cogs. Using functional data types to realize most internal data structures
in the cogs can significantly simplify the specification and verification of models.
The value of functional expressions can be underspecified which is important in
order to realize abstraction from concrete implementations.

ABS contains non-deterministic constructs, notably, the outcome of execut-
ing concurrency primitives is non-deterministic. While underspecification is used
for data abstraction, non-deterministic execution semantics is the prerequisite
for abstracting behavior. As a modeling language, ABS makes no a priori as-
sumptions about, e.g., concrete scheduling mechanisms. Importantly, underspec-
ification and non-determinism do not preclude executability: the outcome of a
non-deterministic transition step is a finite set of possible successor states which
can be systematically inspected in simulation, analysis, and visualization tools.

In the remainder of this section, we briefly describe how to represent and
work with data, and then discuss the concurrent object level of ABS.

3.2 Data Types, Functions, and Pattern Matching

ABS does not have primitive types for basic values. Instead, algebraic data types
may be defined by the user. A library of predefined data types and operators
is provided, including Unit, Bool, Int, and String. Data types and functions in
ABS can be polymorphic; i.e., their definition may have type parameters.

Ezample 1. The following code shows the polymorphic data type List<A> (part
of the ABS Standard Library), as well as a function contains which checks
whether an element e is a member of a given list 1.

data List<A> = Nil | Cons(A, List<A>);
def Bool contains<A>(List<A> 1, A e) =
case L { Nil => False;
Cons(e, _) => True;
Cons(_, x1) => contains(xl, e); };

3.3 Interfaces in ABS

ABS is a class-based language, which uses interfaces for typing. ABS has no
class inheritance, but multiple inheritance is allowed at the interface level. A



class may implement several interfaces, provided that it supports all methods
offered by these interfaces. Subtype polymorphism is permitted at the level of
interfaces: an object supporting an interface I may be replaced by another object
supporting I or a subtype of I in a context where I is expected, although the
classes of the two objects may differ.

Due to the typing of object variables by interfaces, the fields of another
object cannot be accessed directly, only method calls to the object are possible.
The object controls its own state; another object can only manipulate the state
indirectly via the methods exported through an interface. In fact, interfaces are
the only encapsulation mechanism of ABS objects and no access modifiers are
provided. Since the class may support several interfaces, different methods may
be exported to the environment through different interfaces; for example, a super
user interface may export methods not seen through the normal user interface.

Ezample 2. Consider a peer-to-peer system whose participant nodes act both as
servers and clients, and exchange files which are composed of packets. In this
setting, it is important for each node to remain responsive during file transfer,
both to serve concurrent requests and for simultaneous downloads. Files are
transferred packet by packet, with one request per packet.

Client behavior is modeled by a Client interface, declaring a getFile method
which is invoked from the outside, e.g., via a graphical user interface. Server
behavior consists of a method getFilenames for querying the server about its
available files, a method getLength for querying the length in packets for a given
file, and a method getPack which requests the n’th packet of a given file.

type Packet = String; interface Client {
type File = List<Packet>; File getFile(Server sId,
Filename fId);
interface Server { }
List<Filename> getFilenames();
Int getLength(Filename fId); interface Peer
Packet getPack(Filename fId, extends Client, Server {
Int pNbr); }
}

3.4 The Concurrency Model of ABS

Conceptually, each cog has a dedicated processor and lives in a distributed en-
vironment with asynchronous and unordered communication. A set of objects
is located within a cog. On the upper tier of the ABS concurrency model, all
communication is between named objects, typed by interfaces, by means of asyn-
chronous method calls. Calls are asynchronous as the caller may decide at run-
time when to synchronize with the reply from a call. Asynchronous method calls
may be seen as triggers of concurrent activity, spawning new method activations
(so-called processes) in the called object.

Active behavior, triggered by an optional method run, is interleaved with
passive behavior, triggered by asynchronous method calls. Thus, an object has



a set of processes to be executed, which originate from method activations.
Among these, at most one process among the objects of a cog is active and
the other processes are suspended in a process pool. Process scheduling is non-
deterministic, but controlled by processor release points in a cooperative way.
Hence, the amount of concurrency in an ABS model is directly reflected in the
number of cogs introduced in the model. A Creol-like concurrent object model
corresponds to an ABS model in which each object has its own cog.

Ezxample 3. Consider a class Node which implements the peer behavior of Exam-
ple 2, providing both client and server functionality. The getFile method first
obtains the length of the requested file, then fetches the packets one by one.
As it uses asynchronous method calls, the object can interleave the execution
of getFile with answering requests in its server role and other invocations of
getFile. (For brevity the implementation of the fields and remaining methods,
such as getFilenames, is omitted. For a full model in ABS, see [14, App. E].)

class Node implements Peer { while (lth > 0) {
1th = 1th - 1;
// Fields and other methods Fut<Packet> 12
// of Node omitted = sId!getPack(fId, lth);
await 127;
File getFile(Server sId, Packet pack = 12.get;
Filename fId) { file = Cons(pack, file);
File file = Nil; }
Fut<Int> 11 = sId!getLength(fId); return file;
await 117; }
Int 1th = 11.get; }

4 A Formal ABS Calculus

Core ABS is a formal calculus which simplifies the full ABS language by exclud-
ing, e.g., the module system, type synonyms, the predefined data types (except
Bool), and annotations. However, Core ABS captures the central features of ABS.
(A complete formalization of ABS exists in the rewriting logic of Maude [10].)

4.1 The Syntax of Core ABS

An ABS model P defines interfaces, classes, datatypes, functions, and a main
block to configure the initial state (see Fig. 2). Objects are dynamically created
from classes with attributes initialized to type-correct default values (e.g., null
for object references) that may be reassigned in an optional method init.

A Functional Language for User-Defined Parametric Data Types and Functions.
The functional level of Core ABS defines data types and functions, as shown
in Fig. 1. The ground types T consist of basic types B such as Bool and Int,
as well as names D for data types and I for interfaces. In general, a type A



Syntactic categories Definitions

T in Ground Type T :=B|I1|D|D(T)

B in Basic Type B ::=Bool | Int | ---

A in Type A= N|T|D(A)

N in Names Dd ::= data D[(A)] = Cons[| Cons];

z in Variable Cons ::= Co[(A)]

€ ‘in Expression ] F = def A fn[(A)](AT) =¢;

b in Bool Expression e ==b|x|t|this|destiny | Co[(@)] | fn(e) | case e {br}
t in Ground Term t n= Co[()] | nul

br in Branch bro=p=e

p in Pattern pu=_|a|t]| Col(p)

Fig. 1. Core ABS syntax for the functional level. Terms € and T denote possibly empty
lists over corresponding syntactic categories, and square brackets [] optional elements.

may also contain type variables N (i.e., uninterpreted type names [32]). In data
type declarations Dd, a data type D has at least one constructor Cons, which
has a name Co and a list of types A for its arguments. Function declarations F
consist of a return type A, a function name fn, a list of variable declarations T
of types A, and an expression e. Data type declarations Dd and function decla-
rations F' may optionally have type parameters. Ezpressions e include Boolean
expressions b, variables x, (ground) terms ¢, the self-identifier this, the return
address destiny of the method activation, constructor expressions Co(e), func-
tion expressions fn(€), and case expressions case e {br}. Ground terms t are
constructors applied to ground terms Co(t), and null. Case expressions have a
list of branches p = e, where p is a pattern. The branches of case expressions are
evaluated in the listed order. Patterns include wild cards _, variables x, terms t,
and constructor patterns Co(p). Let the function vars(p) return the set of vari-
ables in a pattern p, defined inductively by vars(_) = vars(t) = 0, vars(x) = {z},
and vars(Co(p1, ..., pn) = Ui, vars(p;).

The Concurrent Object Level of Core ABS is given in Fig. 2. An interface IF
has a name I and method signatures Sg. A class CL has a name C, interfaces
I (specifying types for its instances), formal parameters and state variables Z
of types T, and methods M. (The fields of the class are both its parameters
and state variables). A method signature Sg declares the return type T of a
method with name m and formal parameters & of types T. M defines a method
with signature Sg, local variable declarations T of types T, and a statement s.
Statements may access attributes of the current class, locally defined variables,
and the method’s formal parameters. A program’s main block is a method body
{T 7;s}. There are no type variables at the concurrent object level of ABS.
Right-hand side expressions rhs include object creation within the same cog
(written “new C'(€)”) and in a fresh cog (written “new cog C(€)”), method calls,
and (pure) expressions e. Statements are standard for sequential composition,
assignment, skip, if, while, and return constructs. The statement suspend un-
conditionally releases the processor, suspending the active process. In await g,
the guard g controls processor release and consists of Boolean conditions b and



Syntactic categories Definitions

C,I,m in Names P = Dd F IF CL {T %; s}
g in Guard IF ::= interface I { Sg}
s in Statement CL ::= class C [(T z)] [implements I| { T z; M}

Sgu=Tm (T'T)
M:=Sg{T%; s}
gu=ble?|gAg

s 1= 8;8 | x = rhs | suspend | await g | skip
| if b{s}[else{s}] | while b{s} | return e
rhs ::= e | new [cog] C[(€)] | elm(e) | e.m(e) | z.get

Fig. 2. Core ABS syntax for the concurrent object level.

return tests x? (see below). If g evaluates to false, the processor is released and
the process suspended. When the processor is idle, any enabled process from the
object’s pool of suspended processes may be scheduled. Consequently, explicit
signaling is redundant in ABS.

Communication in ABS is based on asynchronous method calls, denoted
o'm(e), and synchronous method calls, denoted 0.m(€), where o is an object ex-
pression (i.e., an expression typed by an interface). Any method may be called ei-
ther synchronously or asynchronously. After asynchronously calling x = olm(€),
the caller may proceed with its execution without blocking on the call. Here x
is a future variable; i.e., a variable which refers to a return value which has yet
to be computed. There are two operations on future variables, which explicitly
control external synchronization in ABS. Let e be an expression denoting a fu-
ture variable. First, a return test e? evaluates to false unless the reply to the call
can be retrieved. (Return tests are used in guards.) Second, the return value is
retrieved by the expression e.get, which blocks all execution in the object until
the return value is available.

When executed between objects in different cogs, then the statement se-
quence z = olm(€); v = x.get amounts to a blocking, synchronous call and is
abbreviated v = o.m(€). In contrast, synchronous calls v = o.m(€) inside a cog
have the reentrant semantics known from, e.g., Java threads. The statement se-
quence z = olm(€); await z7; v = x.get codes a non-blocking, preemptable call,
abbreviated await v = o.m(€). In many cases, these method calls with implicit
futures provide sufficiently flexible concurrency control to the modeler.

4.2 The Type System of Core ABS

A mapping binds names to values. Let I" be a mapping, [N — V] a binding from
name N to value V, and denote lookup by I'(x). Then I'[N — V] denotes the
mapping such that '[N — V](N) =V and '[N — V](z) = I'(xz) if = # N.
Denote the empty mapping by ¢, lists of bindings by [N + V] and [N — V, N
VI], and mapping composition by I'oI"” (where I'o I (z) = I’ (x) if x € dom(I"")
and I'o I''(z) = I'(x) otherwise). We say that I extends I', denoted I" C I, if
dom(I") C dom(I"") and I'(z) = I''(x) for z € dom(T").



(T-ConsDECL) (T-DATADECL) (T-SuB)

I'(Co) = A — D[(B)] '+ Cons: D[(A)] I'te:T T=<T
I't- Co(A) : D|(B)] I' I data D[(A)] = Cons; I'e:T'
(T-BooL) (T-NuLL) (T-CoNSEXPR)

(T-FUuNCEXPR)

I'b: Bool I'Fnull: A —
tmatch(A,C) =0 o# L

I're:C o#L
tmatch(A,C) = o

(T-VAR) .0 - Sl —
ey LEREIMSASE e g o)
- I'z:A ’ I't Co(e) : D{B)]o
(T-FuncDECL) (T-BRANCH) (T-CASE)
I'(fny=B — C I''+p:A I'"'te:B I'kFe: A
'z~ BlFe:C I'" =TI o psubst(p, A, I') I'br:A— B
'+ def C f[(A)](B ) = e; I'tp=>e:A—B 'k case e{br}: B

Fig. 3. The type system for the functional level of ABS.

A typing context I' is a mapping from names to typings which assigns types
A to variables, type constants T to constants, and type signatures A — B to
function symbols. For simplicity, overloading is not considered. A name can only
have one typing, and interface and class names are assumed to be distinct. We
omit the typing of basic types such as Bool and Int, and assume that expressions
of the basic types are type checked directly as in the rule T-Boor in Fig. 3.

The Functional Level of the ABS Type System is shown in Fig. 3. We assume
a typing context I' which maps names to their declared types; i.e., the initial
typing context gives types to variables and to (user-defined) constructors and
functions. The expression null can have any type by T-NuLL. A variable is well-
typed if declared in I" by T-VAR. In T-ConsDEcL, constructor declarations are
treated like variables. (Note that the constructor may be parametric; e.g., for
List(A), the list constructor Cons should have the type A, List(A) — List(A).)
In T-ConsSEXPR, a constructor expression is well-typed if its actual and formal
parameter types are the same when matching the type variables of the formal
parameter type to the actual parameter types by the auxiliary function tmatch. If
there is no match, tmatch(A, C) returns L. (For example, if x is an Int and y is a
List(Int), then Cons(xz,y) should get type List(Int), which happens since tmatch
binds A to Int.) Function definition and application are handled in the same
way by T-FuncDecL and T-FuncExpr. Additionally the function body is type-
checked in I' extended with the typing of formal parameters in T-FuncDECL,
which may again be type variables.

The declaration of a data type is well-typed if its constructors are well-typed,
by T-DataDecL. Case expressions are well-typed by T-Cask if all branches type
check to the same type. The pattern must have the same type A as the case
expression. A branch p = e is well-typed by T-Branch if there is an extension
of I' which adds types for the new variables in the pattern p and which allows the
expression e to be type-checked. The desired mapping can be constructed from A
and p by induction over the structure of p as follows: If A is a type variable, then
p is a variable and psubst(p, A, I") = [p — A]. Otherwise, we proceed by induction



(T-PoLL) (T-GET) (T-SKk1p) (T-AwAIT) (T-SUSPEND)

I'te: fut(T) I'tz: fut(T) I''+ g : Bool
I'+e?: Bool I'xz.get:T I' - skip I' - await g I'" I suspend
e o (T-AND) (T-NEW)
(T-COMPOSITIOI\/I) (T-ASSIGN) I'F g1 : Bool I'Fe: ptypes(C)
I'ts I'ks 't rhs: I'(v) -
s s FalrT—— I' - g2 : Bool T € interfaces(C)
’ I'+ g1 A g2 : Bool I't new [cog] C(e) : T
(T-AsyNCcCALL) (T-CONDITIONAL) (T-WHILE)
I'em(e): T I'b:Bool I'ksy I'tsa I'b:Bool I'Fs
I'telm(e) : fut(T) ' if b{s1}else{s2} I' - while b{s}
(T-RETURN) (T-SyncCALL) (T—l\lETfHOB) L
I'ke:T I'te:N TI'ke:T I'=rz—T,2 — T
I'(destiny) = fut(T) match(m,T — T, N) I'[destiny — fut(T")] s
I' - return e I'em(e): T r=T" m (T 2){T" «';s}
(T-CLAsS) (T-PROGRAM)
VI € T - implements(C, I) I'z—T]Fs vDd € Dd-T'+ Dd
I[this — C, fields(C)] - M VOLeCL-'+CL VYFEF-T'FF
I+ class C implements I {T f; M} I'-DdF IF CL {T =;s}

Fig. 4. The type system for the concurrent object level of ABS.

over p. If p = x, psubst(p, A, I') = if I'(x) = T then e else [p — A] fi. If p =1t
or p=_, psubst(p, A, I") = €. Otherwise p = Co(ps,...,pn) such that I'(Co) =
Aq,..., A, — A, and psubst(p, A, ') = psubst(p1, A1) o ... 0 psubst(pn, An, ).
The type of a variable  in p must be the same as in I'(z), unless it is new.

Subtyping. T < T’ is nominal and reflects the extension relation on interfaces.
For simplicity we extend the subtype relation such that C' < I if class C' imple-
ments interface I; object identifiers are typed by their class and object references
by their interface. We don’t consider subtyping for data types or type variables.

The Concurrent Object Level of the ABS Type System is given in Fig. 4. By
T-PROGRAM, a program is well-typed if its data types, functions, interfaces,
classes, and its main block are well-typed (we ignore the straightforward type
checking of interface declarations). By T-CLass, a class is well-typed if its meth-
ods are well-typed in the typing context extended by the typing of its fields. We
add a fresh name this to the typing context, which is typed by C, allowing in-
ternal methods to be invoked. We omit the definitions of the auxiliary functions
of the type system, which are straightforward; e.g., fields(C') returns the typing
context given by the attributes of C. By T-METHOD, a method declaration is
well-typed if its body is well-typed in the typing context extended by the typing
of formal parameters and local variables. We add a fresh name destiny to the
typing context, which binds to the type of the method’s future. The rules for
skip, suspend, assignment, composition, conditional, and while are standard.
By T-RETURN, a return statement from an asynchronous method call is well-
typed if its expression types to the type of the method’s future. By T-Awarr,



cn == €| fut | object | invoc | cog | cn cn cog ::= cog(c, act)
Sut = fut(f, val) val = v | L
object ::= ob(o, a,p,q) ax:=Tzv|aa
process ::= {a | s} | error p ::= process | idle
q ::= €| process | q q va=ol| flb]t
invoc ::= invoc(o, f, m,v) act :=o|¢e
s u=cont(f) | ...

Fig. 5. Runtime syntax; here, o, f, and c are object, future, and cog identifiers.

await g is well-typed if g is of type Bool, rule T-AND decomposes guards, and by
T-PorL a reply-guard e? is a Bool if e is a future reference. Similarly, by T-GET,
the get operation unwraps the type of a future. By T-NEw, object creation
has a type T if the actual parameters can be typed to the types of the formal
parameters (given by a function ptypes) and T is among the declared interfaces
of the class. By T-AsyncCALL, an asynchronous method call has type fut(T)
if the corresponding synchronous call has type T. By T-SyNcCALL, a call to a
method m has type T if its actual parameters have types T and the signature
T — T matches a signature for m in the known interface of the callee (given by
an auxiliary function match).

5 An Operational Semantics for Core ABS

The operational semantics of ABS is presented as a transition system in an SOS
style [33]. Rules apply to subsets of configurations (the standard context rules
are not listed). For simplicity we assume that configurations can be reordered
to match the left-hand side of the rules (i.e., matching is modulo associativity
and commutativity as in rewriting logic [30]). A run is a possibly nonterminating
sequence of rule applications. When auxiliary functions are used in the semantics,
these are evaluated in between the applications of transition rules in a run.

5.1 Runtime Configurations

The runtime syntax is given in Fig. 5. Configurations cn are sets of objects, in-
vocation messages, concurrent object groups (cogs), and futures. The associative
and commutative union operator on configurations is denoted by whitespace and
the empty configuration by €. Configurations are written inside curly brackets;
in the term {cn}, cn captures the entire configuration. A substitution is a map-
ping from variable names to values (for convenience, we associate the declared
type of the variable with the binding). An object is a term ob(o, a, p, q¢) where o
is the object’s identifier, a a substitution representing the object’s fields, p an
active process, and q a pool of suspended processes. A process p consists of a sub-
stitution [ of local variable bindings and a list s of statements, denoted by {l| s}
when convenient or it is idle. The statement cont(f) is used to control scheduling
when local synchronous calls complete their execution, returning control to the
caller. In an invocation message invoc(o, f,m,v), o is the callee, f the future to



(REDCONS) (REDFUNEXP)

oFe~a'ke 1<i<n oFe~a'kel 1<i<n
ot Co(er,...,ei,...,€n) ot fnler,...,ei,...,en)
~ o' FColer,...,e,... en) ~ o' & fner,..., e}, ..., en)
(REDCASEL) (REDCASE3)
(REDVAR) ockbe~o' € match(o(p),t) = L
ocbxz~ ok o(x) o+ casee {br} ot caset {p=e;br}
~ o' - case e’ {br} ~ ok caset {br}
(REDFUNGROUND) (REDCASE2)
fresh({y1,...,yn}) match(o(p),t) # L
T=1Y1,.-,Yn o’ = oly; — match(o(p),t)(z;)] for 1 <i<n
length(Tp,) = n Y=9Y1,---,Yn fresh({y1,...,yn})
o b fn(t) T=2T1,...,Tn {z1,...,zn} = vars(c(p))
~ oyt Fepm[@m — ) ot caset {p=e;br}~ o' Fe[T 7

Fig. 6. The evaluation of functional expressions.

which the call’s result is returned, m the method name, and ¥ the call’s actual
parameter values. A cog only contains an identifier ¢ and the currently active
object o, or € if no object of the cog is currently active (i.e., all objects have
the idle process as active process). A future fut(f,v) has an identifier f and a
reply value v (which is L when the future’s reply value has not been received).
Values are object and future identifiers, Boolean values, and ground terms from
the functional language. For simplicity, classes are not represented explicitly in
the semantics, as they may be seen as static tables.

5.2 A Reduction System for ABS Functional Expressions

The evaluation of functional expressions is defined by the small-step reduction
relation o + e ~ ¢’ ¢/, given in Fig. 6, which reduces an expression e in the
context of a substitution o to €’ in the context of ¢’. A substitution o is well-typed
in a typing context I', denoted I' b o, if I' - o(x) : I'(x) for all x € dom(o).

Let e[z — 7] denote the expression e in which every occurrence of z; has
been replaced by the corresponding y;. The predicate fresh({z1,...,z;}) asserts
that any variable name x; (for 1 <14 < j) is globally unique. Let the syntactic
category t consist of ground terms, i.e., constructor terms with only ground
terms in argument positions, built-in constants such as null, and object names.

Function evaluation is strict. For a function fn defined by def T fn(T Z) = e,
denote by Zy, the formal parameter list  and by eg, the body e. The evaluation
of a function call fn(€) in a context o reduces to the evaluation of e, [Zsm — ]
in the context o[y + ¢] after the arguments e have successfully been reduced to
ground terms ¢. The change in scope for evaluating a function body is obtained
by replacing the formal parameters Ty, with fresh variables 3 in the function
body, thus avoiding name capture while keeping the full context o.

Case expressions will only be reduced if the pattern in one of the branches
matches. The function match(p,t) returns the unique substitution o such that



o(p) = t and dom(o) = wvars(p) (otherwise, match(p,t) = L). Note how in
REDCASE2, the current substitution o is applied to the pattern before match-
ing, which allows the pattern to first match with the current state. For pattern
matching, variables in the pattern p are bound to ground terms in the term t,
applying a similar variable renaming as for function evaluation. Thus the con-
text for evaluating the right-hand side e of the branch p = e extends the current
substitution o with the bindings that occurred during the pattern matching.

The variable renaming in the rules which change the scope of variables, i.e.,
REDFUNGROUND and REDCASE2, allows small-step reductions in the arguments
to constructors and function application in REpCons and REDFUNEXP, since the
additional variables will not introduce name conflicts.

Lemma 1 (Type preservation). Let I" be a typing context and o a substitu-
tion such that ' = o. If '+ e: A and o+ e ~ o' & €, then there is a typing
context I'' such that T C I, I" o', and I'" €' : A.

Proof. The proof is by induction over the application of reduction rules.

— REDVAR. By assumption, I' + o and I' + x : A. Since o is well-typed,
I'to(z): I'(z),so I'+o(z): A.

— REDCoNs. By the induction hypothesis (IH), I' F ¢; : A;, I F €} : A;,
I' CI'",and I'" F ¢’. By assumption, I' F Co(ey,...,e;,...,e,) : A. Since
rcr,rrcColer,...,e,...,en): A.

— REDFUNEXP. Similar to the case for REDCONS.

— REDFUNGROUND. By assumption, I' b o, I' b fn(t) : A, and I' b ¢; : A;
for all ¢; in . Thus, we may assume a function declaration for fn such that
I(fn) =T — T’ and a type substitution p such that 77p = A and T;p = A;
for all T; in T. Obviously, I'[Zs, + Tp| F [T + T|. By T-FuncDECL,
T[Zp, — T)F ep, : T'. Typing is preserved under type substitutions [32], so

Iz, — Tp - e : T'p, which is the same as I'[Tp, — Al - em © A. After
variable renaming, we let I = I'[y — A;] and get I & e [Tp — ) @ A.
Since {y1,...,yn} are fresh, we have ' C I" and I'" -0, s0 [ - o'.

— REDCASEL. By assumption I' e : T, and by the IH I C I'",]” + ¢', and
I"é€ :T.Since ' C I, I'" - case ¢ {br}.

— REDCASE2. By assumption, I' = o, I' - case t {p = e;br} : A, and
match(o(p),t) # L. Since we match with o(p), vars(c(p)) N dom(c) = 0. By
T-CaSE, there is some type T such that '+¢: T and 'Fp=¢e:T — A.
By T-BRANCH, there is a type substitution p = psubst(o(p),T) # L such that
for " =Top, I'"Fo(p): Tand I' e : A. Since dom(p) N dom(c) = 0,
I'" + o o match(o(p),t). Renaming the variables in o(p), we define I =
I'ly; = I'(z;)] for 1 < i < n. Obviously, I' C I". Since y1,...,y, are
fresh, renaming variables uniformly does not change the derivations, so we
get I"F o' and I' b e[z — 7 : A.

— REDCASE3. Since I' - case t {p = e;br} : A, we have I' - case t {br} : A. O

It follows from Lemma 1 that given a well-typed expression e and a well-typed
context o, then all states in the reduction sequence from o - e will be well-typed,



(REDBOOLGUARD) (REDREPLYGUARD1) (REDREPLYGUARD2) (REDGUARDS)

okb okbe~ok f ckbe~ok f o,enb g1~ o,en - g)
~ o kb fut(f,v) €en v# L Sfut(f,L) € en o,enbgs ~o,en k- gh
o,en b o,en b e? o,cn b e? o,ent g1 Age

~o,en b ~+ o,cn - true ~s o, cn F false ~o,cn b gl Agh

Fig. 7. The evaluation of guard expressions.

independent of the order of reductions. If an expression e in a context o reduces
to a ground term ¢, we denote the resulting value by [e],. This value, however, is
not guaranteed to exist, for two reasons: first, the reduction sequence might not
terminate; second, the normal form may not be a ground term, because branches
in case expressions need not have full coverage. (We assume here that normal
forms are unique, although we do not prove this.) In either case, we know by
Lemma 1 that all states in such a reduction sequence are well-typed.

5.3 The Operational Semantics for Concurrent Objects in ABS

FEvaluating Guards. Given a substitution ¢ and a configuration cn, we lift the
reduction relation for functional expressions to guards by the rules of Fig. 7. It
follows from Lemma 1 that well-typedness is preserved by guard reduction in the
context of well-typed substitutions and configurations. If a guard ¢ in a context
o, cn reduces to a ground term b, we denote the resulting value by [¢]<".

Auziliary functions. If T is the return type of a method m in a class C, we let
bind(o, f, m, v, C') return a process resulting from the activation of m in C with
actual parameters v, callee 0o and associated future f. If binding succeeds, this
process has a local variable destiny of type fut(T) bound to f, and the formal
parameters are bound to 7. If binding does not succeed, we get the error process.
The function atts(C,v, 0, c) returns the initial state of an instance of class C, in
which the formal parameters are bound to v and the reserved variables this and
cog are bound to the object and cog identities o and ¢, respectively. The function
init(C) returns an activation of the init method of C, if defined, and otherwise
the idle process. The predicate fresh(n) asserts that a name n is globally unique
(where n may be an identifier for an object, a future, or a cog).

Transition rules transform state configurations into new configurations, and
are given in Figs. 8 and 9. There are different assignment rules for functional
expressions (AssiaN-LocaL and AssSIGN-FIELD), object creation (NEw-OBJECT and
NEw-CoG-OBJECT), method calls (AsyNc-caLL, Cog-SyNc-CaLL and SELF-SYNC-
CaLL), and future dereferencing (REaD-FuT). Rule SKiP consumes a skip in the
active process. Here and in the sequel, the variable s will match any (possibly
empty) statement list. Rules AssieN-LocAr and AssigN-FIELD assign the value of
expression e to a variable x in the local variables [ or in the fields a, respectively.
Rules ConD-TRUE and ConND-FALSE branch the execution depending on the value
obtained by evaluating the expression e. (We omit the standard rule for while.)

Process Suspension and Activation. Three operations manipulate a process
pool ¢: ¢Up adds a process p to ¢, ¢\p removes p from ¢, and select(q, a, cn) selects



(SKip) (ASSIGN-LOCAL) (AssIGN-FIELD)
KIP

) v € dom(l) v = [e] gor z € dom(a) » = [elgor
Oi0;265l:k57é§}7 3]) ob(o,a,{ljlz = €; 5},(q) : ob(o,a,{l|lz = €; s},(q) :
T d — ob(o, a, {l[x — v]|s}, q) — ob(o, alz — v],{l|s}, q)
(CoND-TRUE) (COND-FALSE)
le] (aor) [e] a0t
ob(o, a, {l|if e then {s1} else {s2};s},q) ob(o, a, {l|if e then {s1} else {s2};s},q)
— ob(o,a,{l|s1;s},q) — ob(o,a, {l|s2; s}, q)
(SuspEND) (RELEASE-COG) (AWAIT-TRUE)
ob(o, a, {l|suspend; s}, q) ¢ = a(cog) [[g]]f‘?"l)
N 01;(07 a.idle qd{l‘;}) ob(o, a, idle, q) cog(c, o) {ob(o, a, {l|await g;s},q) cn}
e ’ — ob(o, a, idle, q) cog(c, €) — {ob(o,a,{l|s},q) cn}
(ACTIVATE) (AWAIT-FALSE)
p = select(g,a,cn) ¢ = a(cog) ﬁ[g}]ﬁf;,l)
{ob(o, a, idle, q) cog(c,€) cn} {ob(o, a, {l|await g;s},q) cn}
— {ob(o, a,p,q\p) cog(c,o0) ecn} — {ob(o, a, {l|suspend; await g;s},q) cn}
(AsyNc-CALL) (BIND-MTD)
o' = [elaory ¥ = [€](acry fresh(f) p’ = bind(o, f,m, v, class(0))
ob(o, a, {l|lz = e!m(€); s}, q) ob(o, a,p, q) invoc(o, f, m,D)
— ob(o,a, {l|x = f;s},q) invoc(d, f,m,v) fut(f, L) — ob(o,a,p,qUp")

Fig. 8. Semantics of the concurrent object level of Core ABS (1).

a process from ¢ (if ¢ is empty or no process is ready, the result is the idle process
[24]). The actual definitions of these operations are left unspecified; different
definitions correspond to different scheduling policies for processes, although
care must be taken that select always gives the initial process of an object the
highest priority (otherwise another process might see uninitialized object states).
Let () denote the empty pool. Rule SusPEND suspends the active process to
the process pool, leaving the processor idle, and RELEASE-CoG makes the cog idle
if its active object is idle. Rule AWAIT-TRUE consumes await g if g evaluates to
true in the object’s current state, AwarT-FALSE adds a suspend statement to the
process if the guard evaluates to false. Rule AcTivaTE selects a process p from
the process pool for execution if p is ready to execute, i.e., if p would not directly
be resuspended or block the processor [24]. These rules ensure that a process
can only be scheduled if the cog associated with the object is idle, and that an
object always acquires the cog if its process is activated. Synchronous calls and
synchronous self-calls, which also influence scheduling, are discussed below.
Communication and Object Creation. Rule Async-CALL sends an invocation
message to o/ with a new future f (which is unique since fresh(f)), the method
name m, and actual parameters T. The return value of f is undefined (i.e.,
1). Rule BIND-MTD consumes an invocation message and places the process
corresponding to the method activation in the callee’s process pool. A reserved
local variable destiny stores the identity of the future associated with the call.

Rule RETURN in Fig. 9 places the return value into the call’s associated fu-
ture. Rule READ-FuT dereferences the future f if v # L. If v = 1, the reduction



(RETURN) (READ-FUT)
v = [el(aory Udestiny) = f v# L f=[e](aon
ob(o, a, {l|return €; s}, q) fui(f, L) ob(o, a, {l|z = e.get; s}, q) fut(f,v)
— ob(o,a,{l[s}, q) fut(f,v) — 0b(o, a, {l|x = v; s}, q) ful(f,v)

(Coa-SyNc-CALL)
o' = [el(aory ¥ =[El(aor) fresh(f) (COG-SYNC-RETURN-SCHED)
a’(cog) =c¢ f' = l(destiny) a’(cog) = c¢ U(destiny) = f
{U'|s'} = bind(¢’, f,m, v, class(0)) ob(o, a, {l|cont(f)},q) cog(c,0)
ob(o,a,{l|z = e.m(€); s}, q) ob(o’,a’,idle, q" U {l'|s})
ob(o’,d’,idle, q') cog(c,0) — ob(o, a,idle, q) cog(c,0’)
— ob(o, a,idle,q U {l|x = f.get;s}) fut(f, L) ob(o',a', {U'|s},q")
ob(o',a/, {U'|s"; cont(f")},q") cog(c,0’)
(SELF-SYNC-CALL)
= l(destiny) o= IIE]](aol) v = [[E]](aol)
fresh(f) {U'|s'} = bind(o, f,m, 7, class(0))
ob(o, a,{l|lz = e.m(€); s}, q)
— ob(o,a, {l'|s";cont(f)},qU {l|lxz = f.get;s}) fut(f, L)
(REM-SYNC-CALL)
o' = [e](aor) fresh(f) a(cog) # a'(cog)
ob(o, a,{l|z = e.m(€); s}, q) ob(o’,a’,p,q")
— ob(o,a,{l|f = elm(e);z = f.get; s}, q)

(SELF-SYNC-RETURN-SCHED)
U (destiny) = f
ob(0,a,{l|cont(f)},q U {l'|s})

— ob(o,a,{l'|s}, q)

(NEW-OBJECT)
fresh(o’) p = init(C)
a’ = atts(C, [€] (ao1); 9, ©)

(NEW-CoG-OBJECT)
fresh(o’) fresh(c’) p = init(C)
a = atts(C7 [[E]](aol) ’ 0/7 C/)

ob(o, a,{l|z = new cog C(€); s}, q)
ob(o',a’,p,0) cog(c,0")

ob(o, a,{l|z = new C(€);s},q) cog(c, o)
— ob(o, a, {l|x = o'; s}, q) cog(c,0)
ob(o’,a’,idle, {p})

Fig. 9. Semantics of the concurrent object level of Core ABS (2).

on this object is blocked. Rules Cog-SyNc-CALL and COG-SYNC-RETURN-SCHED
address synchronous method calls between two objects that are in the same cog.
For a synchronous call, possession of the cog directly transfers control from the
calling object to the callee and back, bypassing the SuspEND and AcTIVATE rules.
A special cont instruction is inserted at the end of the statement list of the new
process in CoG-SyNc-CALL, which is then used to re-activate the caller process
in CoG-SYNC-RETURN-SCHED. Synchronous self-calls are implemented similarly
by SELF-SYNC-CALL and SELF-SYNC-RETURN-ScHED. The cog invariant (only one
object with a non-idle process per cog) is maintained by these rules. A syn-
chronous call to an object of another cog is syntactic sugar for an asynchronous
call which is immediately followed by a blocking get operation, captured by
REM-SYNC-CALL.

Rule NEwW-OBJECT creates an object with a unique identifier o’. The object’s
fields are given default values by atts(C, [€] (401), o', ¢), extended with the actual
values € for the class parameters (evaluated in the context of the creating pro-
cess), o' for this and with the creating object’s cog c. To instantiate the remain-
ing fields, the process p is queued (we assume that this process reduces to idle if



(T-STATEL) (T-Cont) (T-FUTURE) (T-CONFIGURATIONS)
Aw)=T A(f) = fut(T) A(f) = fut(T) AFpg cn ok
AFgowval: T AT cont(f) val # L = A(val) =T Abpg cn' ok
AbFgr T v val ok AbFg fut(f,val) ok AbFg cn cn’ ok
(T-STATE2) (T-PROCESS-QUEUE) (T-PROCESS)
A kg fds ok AFR q ok A" +r T z val ok A(T_Cfm
Abg fds' ok AFgrq ok A=At - T] A Fgsok AF(C)—fcogt
A &g fds fds' ok AbFRqq ok AFg (T z val,s) ok R cog(c, act)
(T-EMPTY) (T-OBJECT) (T-Invoc)
Abg e ok fields(A(0)) = [ > T A(f) = fu(T)
A'=Az—T]) A Fgrqok A@) =T
(T-IpLE) A"Fr T z valok A’ g p ok match(m, T — T, A(0))
AR idle ok AR ob(o,T x val,p,q) ok A kg invoc(o, f,m,v)

Fig. 10. The typing rules for runtime configurations.

init(C') is unspecified in the class definition, and that it asynchronously calls run
if the latter is given). Process p is not directly scheduled in order to uphold the
cog invariant (ie., only one object per cog is active), hence any scheduling policy
must take care to always schedule an initial process p with highest priority. Rule
NEW-CoG-OBJECT is like NEW-OBJECT, except that a fresh cog is created with o
as its (only) active object, and the initial process p is directly scheduled.

6 Subject Reduction for ABS

The initial state of a well-typed program consists of an object ob(start, e, p, 1),
where the process p corresponds to the activation of the program’s main block.
A run is a sequence of reductions of an initial state according to the rules of
the operational semantics. We now show that a run from a well-typed initial
configuration will maintain well-typed configurations; in particular, substitutions
remain well-typed and method binding does not result in the error process.
Runtime Configurations. Typing rules are given for the runtime syntax shown
in Fig. 5. The typing context of the runtime configurations extends the static
typing context with types for dynamically created values, i.e., object and future
identifiers. Object identifiers are typed by the class of the created object.
Typing Rules for Runtime Configurations. Let A Fgr config ok express that
the configuration config is well-typed in the typing context A. The typing rules
for runtime configurations are given in Fig. 10. In rule T-OBJECT, the premise
fields(A(0)) = [T — T) asserts that the object’s fields have the types declared in
its class. If a configuration is well-typed in a typing context A, the substitutions
a and [ (for any object and any process) are well-typed in A. Consequently, by
Lemma 1, expression and guard evaluation in ABS processes preserves typing.
Well-typedness Assumptions for Auxiliary Functions. Let C be a class with
formal parameters Z of types T. We assume that init(C') returns a well-typed
process, and atts(C, v, 0,c) a well-typed substitution if ¥ have types T and o
and ¢ are object and cog identifiers, respectively. If C' implements a method m



with return type T and formal parameters 2’ of types 17, let bind(o, f,m,v’,C)
return a well-typed process if f has type fut(T) and v’ have the types T".

We prove that the object corresponding to the main block of a well-typed
program is well-typed (Lemma 2) and show that the well-typedness of runtime
configuration is preserved by reductions (Theorem 1).

Lemma 2. Let P {T T;s} be an ABS program. If I' = P {T T;s} for some
typing context I', then I' g ob(start,e, {T T atts(T)|s}, D) ok.

Proof. Let I'" = I'[T — T]J. It is obvious that I -z T T atts(T) ok. By assump-
tion, '+ P {T Z;s},s0 ' kg s. O

Theorem 1 (Subject Reduction). If A bg cn ok and cn — cn’, then there
is a A such that A C A" and A’ Fr cn’ ok.

Proof. The proof is by induction over the application of transition rules. We
assume that class definitions are well-typed (and omit them from the runtime
syntax since they do not change). Objects, futures, and messages not affected by
a transition remain well-typed, and are ignored below. It follows from Lemma 1
that the reduction of an expression in a well-typed object results in a well-typed
object. The transition rules apply when these reductions terminate, reducing an
expression e in the state o to the ground term [e],. Hence, the reduction of
expressions e in states o occur as [e], in the assumptions to the transition rules,
and similarly for the evaluation [¢]¢" of guards g in a configuration cn.

— Skip. If A kg ob(o,a, {l|skip;s},q) ok, then A g ob(o,a,{l|s},q) ok.

— Assignment. Let A g ob(o, T T1 v1,{T2 T Va|r = €;5},q) ok. Let A’ =
Az — T1,T2 + Ts]. Then A’ - x = e;s, so A’ F e : A'(z). Assume
that v = [€]qor. For Assioy-Locar, we need to show A kg ob(o, Ty Ty vy,
{T3 Ty Da[x > v]|z = e;5},q) ok, which follows from Lemma 1 since A’ -
v : A'(x). Similarly for AssiGN-FIELD.

— Conditionals. Let A Fg ob(o,a,{l|if € {s1} else {ss};s},q) ok. By assump-
tion there is a A’ extending A with a and [, such that A’ e, A’ F sy,
A"+ s9, and A’ + s. Consequently, A’ F s1;5 and A’ + sg;5, and both
ConD-TRUE and CoND-FALSE preserve well-typedness.

— Process Suspension and Activation. It is immediate that the rules AwaIT-TRUE,
AWAIT-FALSE, ACTIVATE, SUSPEND, RELEASE-COG, SELF-SYNC-RETURN-SCHED,
and Coc-SYNC-RETURN-SCHED preserve the well-typedness.

— Object creation. For NEw-OBJECT, assume A kg 0b(o, a, {l|z = new C(e); s},
q) ok, A(x) = I, and implements(C,I) (so C =< I). Since fresh(o'), let
A" = Alo' — C]. Obviously, A’ kg ob(o,a, {l|z = 0; s}, q) ok. By assump-
tion, o’ and p are well-typed in o', and A’ g ob(o,d’,idle, {p}) ok. For
NEw-CoG-OBJECT, let A" = Ao’ — C,¢ — cog]. Since fresh(c’), this does
not affect the well-typedness of o and o’. We must additionally show that
A" g cog(c,0') ok, which is immediate.

— AsynNcCaALL. Let A Fg ob(o,a, {l|z = elm(e},q) ok. We first consider the
case e # this. By AsyNcCALL, we may assume that A F elm(e) : fut(T) and



by AssioN that A(z) = fut(T). Therefore, A e : I and A + e : T such
that match(m, T — T,I). Assume that [e],o; = o’ and let A(o') = C for
some class C. By Lemma 1, there is a A’ such that A’ Fr [e]qor : I and
A'(0') = C, so C < I. By assumption class definitions are well-typed, so for
any class C that implements interface I we have match(m,T — T,C). By
Lemma 1, [€]q0; similarly preserves the type of €. Let A” = A'[f — fut(T)].
Since fresh(f) we know that f & dom(A’), so if A’ Fr cn ok, then A” g
cn ok. Since A’ F elm(e) = A”(f), we get A” g ob(o,a,{l|lz = f;s},q) ok.
Furthermore, A” + invoc(o, f,m,v) ok and A” g fut(f, L) ok. The case
e = this is similar, but uses the class of this directly for the match (so
internal methods are also visible).

— Bmnp-MtD. Let C' = A(o). By assumption A g invoc(o, f,m,v) ok and
A g ob(o,a,p,q) ok, so A(f) = fut(T), A(®) = T, and match(m,T —
T,C). Let T be the formal parameters of m in C. Consequently, the auxiliary
function bind(o, f,m,v,C) returns a process {I[T T v,fut(T) destiny f]|s}
which is well-typed in A o fields(C), and it follows that A kg ob(o,a,p,q U
{bind(o, f,m,v,C)}) ok.

— RETURN. By assumption, we have A kg ob(o,a, {l|return ¢;s},q) ok and
AFg fut(f, L) ok. Obviously, A Fr ob(o, a, {l|s}, q) ok. Since I(destiny) = f
and [ is well-typed, we know that A(destiny) = A(f). Let A(f) = fut(T).
By T-RETURN, A Fg e: T and by Lemma 1, A(v) =T, so A bg fut(f,v) ok.

— ReAD-Fut. By assumption, A kg ob(o,a,{l|lx = ec.get;s},q) ok, A kg
fut(f,v) ok, and [€]qor = f. Let A(f) = fut(T). Consequently, A g e.get : T
and A(v) =T,s0 At 2z =wv,and A Fg ob(o,a,{l|z = v;s},q) ok.

— REM-SYNC-CALL. By assumption, A kg ob(o, a, {l|x = e.m(€); s}, q) ok, AF
e.m(e) : T, and fresh(f). Let A" = A[f — fut(T)]. Then obviously A"+ f =
elm(e);z = f.get.

— SELF-SYNC-CALL and Coc-SyNc-CALL. By assumption, the judgments A g
ob(o,a,{l|x = e.m(€);s},q) ok, At em(e) : T, Atpg {l'|s'} ok, and fresh(f)
hold. Let A" = A[f — fut(T)]. Obviously A’ F {l'|s’;cont(f)} ok, A"z =
f.get, and A’ Fg fut(f, L) ok. O

7 Tool Support

The ABS language is being used and developed as part of the EU project HATS
(www.hats-project.eu). ABS comes with considerable tool support, including
editing, compiling, running, and visualizing ABS models in the Emacs editor
and in the Eclipse integrated development environment.

Compiler frontend. All ABS tools use a common compiler frontend which sup-
plies parsing, type checking, and basic error reporting. The compiler frontend
is implemented using the JastAdd toolkit [19] and provides an object-oriented,
type-annotated syntax tree representing an ABS model. All backend implemen-
tations, code analyzers, etc. are implemented on top of this common base. At
present there are two language backends, making ABS executable on the Maude
rewriting engine and the Java virtual machine, with more backends planned.



The Maude backend is a translation of the operational semantics given in this
paper into equational logic for the functional level of ABS and rewriting logic for
the concurrent object level. This semantics is executed as a language interpreter
using the Maude tool [10]. Compiling an ABS model into Maude results in a
set of class and function definitions (since all type checking is done at compile
time, interface and datatype declarations do not have runtime representations).
A special class implements the main block; starting an ABS model in Maude
means instantiating an object of that class. The conciseness and high level of
abstraction of the Maude backend make it well-suited for experiments with lan-
guage constructs and semantics. Maude also provides model-checking support,
but the large size of each state, as well as the non-deterministic scheduling and
concurrent execution of ABS, and the resulting combinatorial explosion, make
model-checking ABS models of realistic size very difficult in practice.

The Java backend provides a translation of ABS models into Java source
code, which is compiled into bytecode using the standard Java tool chain. The
Java backend uses a Java translation similar to the one for JCoBox [34], which
proved to be very efficient. Compared to JCoBox, the generated code of ABS has
better support for configuring the scheduling strategies, for system observation,
and debugging. The ABS main block is translated into a standard Java main
method so the generated code can be executed like standard Java programs.

The Java backend provides higher execution speed, an integration into exist-
ing Java tools, and the potential for integrating “native” or library functionality
(e.g., file handling) into the language. Hence, the Java and Maude backends
provide complementary and attractive features for the modeler.

8 Related Work

The concurrency model provided by concurrent objects and in actor-based com-
putation, where software units with encapsulated processors communicate asyn-
chronously, is increasingly attracting attention due to its intuitive and composi-
tional nature (e.g., [2,5,9,13,21,37]). ABS uses the communication mechanisms
of Creol [24] for remote communication, based on asynchronous method calls
and first-class futures [13]. A distinguishing feature of Creol is the cooperative
scheduling between asynchronously called methods [24], which allows active and
reactive behavior to be combined within objects as well as compositional ver-
ification of partial correctness properties [3,13]. Creol’s model of cooperative
scheduling has recently been generalized from single objects to groups of objects
in a Java extension called JCoBox [34], which forms the basis for cogs in ABS.

Formal models are useful to clarify the intricacies of object orientation and
may contribute to improve programming languages by making programs easier
to understand, maintain, and analyze. Object calculi such as the ¢-calculus [1]
and its concurrent extension [20] aim at directly expressing features such as
self-reference, encapsulation, and method calls, but asynchronous method calls
are not addressed. This also applies to Obliq [8], a programming language using
similar primitives to target distributed concurrent objects. The object calculus



of Di Blasio and Fisher [16] has both synchronous and asynchronous method
calls, but, in contrast to ABS, return values are discarded when methods are
called asynchronously and the synchronous and asynchronous calls have different
semantics. Caromel, Henrio, and Serpette propose ASP [9], a concurrent object
calculus with asynchronous method calls and first-class futures. Compared to
ABS, ASP’s futures are transparent (i.e., there is no polling and the get-operation
is implicit) and communication is ordered to make reductions deterministic.

The internal concurrency model of cogs in ABS follows Creol’s concept of
cooperative scheduling [24], but is lifted from the level of objects to the level of
cogs. Synchronous method calls inside a cog are reentrant, which allows standard
recursive programming of internal imperative data structures. Cogs in ABS may
be compared to monitors [22] or to thread pools executing on a single proces-
sor. In contrast to monitors, explicit signaling is avoided. Sufficient signaling is
ensured by the semantics, which significantly simplifies reasoning [12]. However,
general monitors may be encoded in the language [24]. In contrast to thread
pools, processor release is explicit. The activation of suspended processes is non-
deterministically handled by an unspecified scheduler. Consequently, intra-object
concurrency is similar to the interleaving semantics of concurrent process lan-
guages [4,17], and each process resembles a series of guarded atomic actions
(ignoring local variable scopes). Internal reasoning control is facilitated by the
explicit declaration of release points, at which class invariants should hold [3,18].

Our type system resembles that of Featherweight Java [23], a core calculus for
Java, because of its nominal approach. Featherweight Java is class-based with
single inheritance, and subtyping is the reflexive and transitive closure of the
subclass relation. In contrast, ABS cleanly distinguishes classes and types. Creol
combined asynchronous calls and interfaces as in ABS with class inheritance,
choice operators, and a notion of cointerface at the interface level to accomo-
date type-safe callbacks [25]. Creol’s type system used an effect system [28] to
infer types for future variables, which allowed a flexible reuse of future variables
for method calls with different return types. By means of backwards analysis, the
effect system could insert deallocation operations to garbage-collect inaccessible
futures depending on the local control flow at runtime [26]. In contrast, future
variables in ABS have explicit types for return values, which restricts reuse but
allows a type analysis without effects. Compared to previous work on Creol, this
paper formalizes user-defined data types and functions in the context of concur-
rent objects. The presented type safety results show how the typing context is
dynamically extended when new objects and futures are created.

9 Conclusion

This paper presents ABS, an abstract behavioral specification language for de-
signing executable, object-oriented, formal models of distributed systems. The
language is situated between design-oriented, foundational, and implementation-
oriented languages by being abstract, yet executable. The concurrency model of
ABS is based on concurrent object groups (cogs) which are encapsulated behind



interfaces and do not share state. While cogs may execute in parallel, there is
a cooperative model of interleaving concurrency inside each cog, reflected by
explicit processor release points in the language. This concurrency model is in-
herently compositional and allows to reason about concurrent system behavior
using monitor invariants and sequential object-oriented proof systems.

The combination of a functional and a concurrent object level in the ABS
language allows the modeler to focus the model on crucial parts of an impera-
tive system, including its concurrency and synchronization mechanisms, by using
functional data types to abstract from other parts of the internal data structures
and by abstracting from specific scheduling policies and environmental prop-
erties. ABS is a formally defined, executable specification language. We gave
rigorous, mathematical definitions of its core syntax, type system, and opera-
tional semantics. We proved a subject reduction result showing that execution
preserves well-typedness in the sense that “method not understood” errors do
not occur for well-typed ABS models.
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