Formal Verification and Validation of ERTMS
Industrial Railway Train Spacing System

Alessandro Cimatti®, Raffaele Corvino2, Armando Lazzaro2, Iman Narasamdyal,
Tiziana Rizzo?, Marco Roveri', Angela Sanseviero?, and Andrei Tchaltsev'

1 Fondazione Bruno Kessler — IRST
2 Ansaldo-STS

Abstract. Formal verification and validation is a fundamental step for the certifi-
cation of railways critical systems. Many railways safety standards (e.g. the CEN-
ELEC EN-50126, EN-50128 and EN-50129 standards implement the mandatory
safety requirements of IEC-61508-7 standard for Functional and Safety) currently
mandate the use of formal methods in the design to certify correctness.

In this paper we describe an industrial application of formal methods for the
verification and validation of “Logica di Sicurezza” (LDS), the safety logic of a
railways ERTMS Level 2 system developed by Ansaldo-STS. LDS is a generic
control software that needs to be instantiated on a railways network configuration.
We developed a methodology for the verification and validation of a critical sub-
set of LDS deployed on typical realistic railways network configurations. To show
feasibility, effectiveness and scalability, we have experimented with several state
of the art symbolic software model checking techniques and tools on different
network configurations. From the experiments, we have successfully identified
an effective strategy for the verification and validation of our case study. More-
over, the results of experiments show that formal verification and validation is
feasible and effective, and also scales reasonably well with the size of the config-
uration. Given the results, Ansaldo-STS is currently integrating the methodology
in its internal Development and Verification & Validation Flow.

1 Introduction

The verification of industrial safety critical systems is paramount. It is a particularly dif-
ficult activity because of the size and complexity of the systems. The most frequently
used methods, simulation and testing, can increase the reliability of the systems, but,
since they are not exhaustive, they cannot show the absence of errors. Failure in detect-
ing an error in a safety critical system can lead to a catastrophic situation.

Formal verification has proved to provide a complete coverage. Particularly for rail-
ways critical systems, formal verification is becoming fundamental for the certification
of such systems. The CENELEC EN-50126, EN-50128 and EN-50129 standards, that
implement the mandatory safety requirements of the IEC-61508-7 standard for Func-
tional and Safety, require the use of formal verification techniques to certify the cor-
rectness of the design. Despite their importance, the application of such techniques
in industrial settings is by no means trivial. First, a proper verification and validation
methodology has to be designed to allow for an efficient handling of the size of the
system under verification. Second, the verification and validation techniques should in-
tegrate smoothly in the company internal Development, Verification & Validation Flow.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 378-B93] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Formal Verification and Validation of ERTMS 379

In this paper we describe an industrial application of formal methods for the verifi-
cation and validation of a fragment of railways critical software. The software is called
Logica di Sicurezza (LDS), which is a realization of the safety logic of a Level 2 Euro-
pean Railways Train Management System (ERTMS) developed by Ansaldo-STS. LDS
is a generic distributed complex control software, which is designed to manage and con-
trol the train spacing in an ERTMS. LDS also guarantees the safety of the controlled
railway network, e.g., no train collisions and proper distance among the trains. LDS is
programmable and scalable, in the sense that, different train spacing control systems can
be developed by instantiating the generic controller to a specific railway network config-
uration. For our case study, we have focused on radio block sections (RBS), which are
a critical fragment of LDS that controls routes in railways. We consider instantiations
of RBS on typical realistic railways network configurations.

The verification of the RBS application, carried out by Ansaldo-STS, has been rely-
ing on manual inspections and on simulations, where the simulation vectors were man-
ually designed based on the experience of the engineers. Achieving full coverage was
considered a very challenging task. We show in this paper a methodology that we have
identified for applying formal verification to the considered application. This method-
ology is a result of a thorough evaluation of the state-of-the-art verification techniques
that have shown to be highly effective in the verification of large systems. In particular,
we focus on symbolic model checking for software as it is exhaustive and completely
automatic, and thus allows for an easy integration within the Development and Verifi-
cation & Validation Flow.

We have devised a verification flow for the verification of the considered application.
We first translate the specifications of the case study, written in the VELOS language,
a restricted version of the C++ language developed and used by Ansaldo-STS, into
forms that can be verified by existing tools. In particular we translate such specifica-
tions into NUSMV models and sequential C programs. The translation into NUSMV
models allows us to use the portfolio of advanced verification techniques, like bounded
model checking [[7], temporal induction [19], and CEGAR [15], that have been imple-
mented in an extended version of the NUSMV model checker [12] developed within
Fondazione Bruno Kessler (FBK). The translation into sequential C programs allows us
to experiment with advanced software model checking techniques, like the eager and
lazy predicate abstractions [[17/4], and enables the use of off-the-shelf software model
checkers for C, like CBMC [16]], BLAST [4], SATABS [17], CPACHECKER [5], and
KRrRATOS [14] (developed by FBK). We have further customized KRATOS and have ex-
tended its analysis to achieve the verification needs identified during the project.

We have carried out experiments with the above mentioned verification tools on a
significant set of benchmarks obtained from the critical subset of the considered ap-
plication. The experiment results allow us to devise an effective strategy, based on a
combination of verification approaches, that greatly improves the efficiency of the veri-
fication. The results also provide evidence that formal verification in our industrial set-
ting is feasible and effective. Given these results, Ansaldo-STS is currently integrating
the methodology and tools in its Development and Verification & Validation Flow.

This paper is organized as follows. In Section [2| we describe LDS application. In
Section 3 we present an overview of formal verification techniques. In Section [4] we

380 A. Cimatti et al.

| CONTROL POST ! U
COLOR ‘

: 3 I
Y || LOGICA DI SICUREZZA !
: 3 I
. | COLOR ; SCHEDULER < |
REMOTE VDU § I
SYSTEM 3 |

TRACK SIDE UNITS

=
c
=

Fig. 1. The application and its environment

describe the verification methodology, along with the extensions to KRATOS. In Sec-
tion [l we show the results of our experimental evaluation. In Section [6] we discuss
related work. Finally, in Section [7] we draw some conclusion, including the lessons
learned, and discuss future work.

2 The Application: Logica Di Sicurezza

The work in this paper is concerned with the verification of a complex real-world safety
critical application developed by Ansaldo-STS. The application is used to manage and
control the train spacing in an ERTMS railway system. Figure [I] shows a high-level
architecture of the application and its environment. Our work has focused on Logica
di Sicurezza (LDS), a software subsystem that controls train movements and track-side
equipment that is connected to track-side units, e.g., track circuits, signals and switches.
LDS also implements the logical functions that can be requested by human operators,
e.g., preparing the tracks for moving trains.

LDS is highly programmable and scalable: it is possible to program the modalities
under which the requested logical functions are performed; and to program various con-
figurations of track-side units. Such a distinguishing feature is achieved by means of a
logical architecture composed of a scheduler controlling the activation of application-
dependent processes. LDS is designed by specifying the processes controlled by the
scheduler, which are then converted into executable code. In general, LDS can be
thought of as a reactive system, acting along the following loop: read status from track-
side units and input from the operator, run the processes through the scheduler to apply
the control law of the logic, and write commands to actuators of the units.

The specification of processes in this architecture is non-trivial. Indeed, a railway
station can have a large number of physical devices, and processes of many differ-
ent kinds are required to take into account the relations and interconnections among
physical devices. Moreover, although the software is completely deterministic and the
possible external events (e.g. faults of peripheral devices) have been exhaustively clas-
sified, there is still a high degree of non-determinism. The software does not know if
and when external events will happen, e.g., certain tasks can be requested at any time.
Furthermore, the physical devices will typically react to controls with (unpredictable)
delays, and may even show faulty behaviors.

Formal Verification and Validation of ERTMS 381

Fig. 2. A radio block section fragment of LDS and the railway layout that the fragment controls

Currently, the specification is validated by means of traditional techniques, such as
simulation. Designing test cases that ensure high code coverage, as well as stimulate
the whole specification to exercise all the critical functionalities, as mandated by the
standards, is non-trivial. This is typically done manually, and thus often miss some
critical functionalities.

2.1 The Radio Block Section

In this paper, we focus on the radio block section (RBS) fragment of LDS, a critical
subsystem responsible for the allocation of logical routes to trains. In particular, as a
case study, we consider the configuration corresponding to the physical layout of the
railways depicted in the lower part of Figure [2] with thick dark lines. Some entities in
this fragment correspond to physical entities, while some others to logical ones. A com-
ponent is a logical reservation for a segment of line. A point is a logical controller for
a switch. For example, the component Ci and the point Pi correspond, respectively,
to the segment Ci and the switch Pi in Figure[2l A radio block section (RBS) corre-
sponds to a logical route through the physical displacement. An RBS is composed of
several components and points, and enclosed by an initial and final end-of-authority
(EOA). In Figure 2l EOAIQ, EOAI1, and EOAI2 are the initial EOA, while EOAF1 and
EOAF?2 are the final EOA. Figure [shows the ten RBS’s of the physical layout in dif-
ferent dashed/dotted (colored) lines; each route in the figure denotes two RBS’s, for
left-to-right and right-to-left directions.

Figure 2l (upper part) shows the fragment of LDS that we have focused on in this ac-
tivity. The (light blue) rectangle represents the scheduler, the (green) cone is the whole
set of processes in LDS, the dark (blue) triangles represent the RBS’s, and the light
(pink) triangles represent the call graphs of the “underlying” processes. Each process
consists of data and functions to modify the data. Processes are organized hierarchically
according to the call graph of the whole logic of LDS, e.g., RBS processes can call the
functions of sub-processes illustrated in Figure 2 by the light (pink) triangles.

382 A. Cimatti et al.

2.2 Verification Properties of the RBS

Ansaldo-STS has identified five parametric properties for the RBS fragment: one for
each component and four for each RBS. These properties correspond to the safety re-
quirements of the considered application, and are formulated as invariants that have to
hold at every read-scheduler-output cycle. For the case study in Figure 2] there are 12
components and 10 RBS’s, and this amounts to have 52 properties. An example of a
property is “no two different trains occupy the same track”. An additional property is
introduced to test the consistency of the physical layout configuration, so in total we
have 53 properties.

Since the focus of the analysis is on the RBS’s, along with the processes that they in-
duce, we abstract away non-RBS processes, and use an abstracted scheduler that repeat-
edly chooses one of the ten RBS’s, depending on a certain condition, starts its process
by executing one of its functions, until some exiting condition is met. To avoid having
a too coarse abstraction, we specified a number of assumptions, e.g., constraints over
signals, that have to be satisfied by the abstracted parts. The assumptions have been
thoroughly discussed, refined, and approved by Ansaldo-STS.

2.3 The VELOS Specification

A specification of LDS consists of (1) an entity description of the physical and logical
entities of LDS, and (2) a configuration describing a particular physical layout (relation
between the entities). The entity description is specified in a structured programming
language, called the VELOS language, that resembles the C++ language. It contains
classes that define component, point, EOA, and RBS. Like typical C++ classes, each of
these classes contains member variables and member functions. The values of member
variables constitute the states of the corresponding entity, while the member functions
are used to modify the states of the entity. In particular, the functions of the RBS class
define the logic of RBS. Member functions can contain loops that can statically be un-
rolled. They are also non-recursive, and thus can be inlined. Operations in these func-
tions only involve data of types Boolean, bounded integers, or enumerations, with no
pointers and no dynamic memory allocations. (These restrictions are standard for this
kind of applications.) The properties to verify are expressed in a temporal logic, and are
attached to the corresponding classes in the entity description.

The configuration specifies instances of the classes in the entity description as well
as the relation between these instances. In particular, it describes the RBS’s and entities
that constitute them. Currently, both the entity descriptions and the configurations are
created manually by the design engineers. The actual assembly code deployed on the
physical devices is automatically generated from the specifications.

3 Verification Techniques and Tools

The problem of selecting the right techniques and tools for the verification of LDS
is non-trivial. First, the techniques and tools must scale to industrial-sized designs. In
particular, the chosen techniques should address the state explosion problem that is very
common in such applications. Second, the right techniques are often not apparent due
to a representational issue. The product development team have their own specification
language that is far from the languages assumed by most verification techniques or

Formal Verification and Validation of ERTMS 383

tools. Third, the high-efficiency demand from the development team often cannot be
met by existing techniques and tools. Customizations of and extensions to the existing
techniques and tools, as well as a good strategy in combining them, are required to
boost the performance.

In this work we appeal to symbolic (software) model checking techniques. Being
completely automatic, model checking techniques can easily be integrated into the
development cycle. Moreover, symbolic techniques are known to be effective in com-
bating the state explosion problem. In what follows, we review some state of the art
symbolic software model checking techniques: bounded model checking (BMC) [7]
and counter-example guided abstraction refinement (CEGAR) [15]]. We focus on model
checking safety properties in the form of program assertion. Although, they are often
used to represent requirements, they can also be used to generate execution traces that
help the generation of test cases for automatic test pattern generation [22].

Software model checking has proved to be an effective technique for verifying se-
quential programs. In particular advances in solvers for satisfiability modulo theory
(SMT) [2] have enabled for efficient Boolean reasoning and abstraction computation,
which in turn have enabled SMT-based software model checkers to efficiently verify
large programs with significant improvements in precision and accuracy.

In the BMC approach one verifies the program by specifying some bounds to guar-
antee termination. The bounds can be the number of executed statements, the depth of
recursions, or the number of loop unwindings. This approach can only be used to dis-
prove assertions (or bug finding). The seminal work on temporal induction [19] uses
BMC, not only to disprove properties, but also to prove invariants.

In the CEGAR paradigm one checks if an abstraction (or over-approximation) of
the program has an abstract path leading to an assertion violation. If such a path does
not exist, then the program is safe. When such a path exists and is feasible in the con-
crete program, then the path is a counter-example witnessing the assertion violation.
Otherwise, the unfeasible path is analyzed to extract information needed to refine the
abstraction. For the CEGAR approach, two predicate abstraction based techniques have
proved to be effective: the eager abstraction [17] and the lazy abstraction [4]]. Predicate
abstraction [23]] is a technique for extracting a finite-state program from a potentially
infinite one by approximating possibly infinite sets of states of the latter by Boolean
combinations of some predicates. In each CEGAR iteration of the eager abstraction,
one verifies a Boolean program extracted from the input program based on a set of
predicates. The Boolean program consists only of Boolean variables, each of which cor-
responds to a predicate used in the abstraction. The lazy predicate abstraction is based
on the construction and analysis of an abstract reachability tree (ART). The ART repre-
sents an over-approximation of reachable states obtained by unwinding the control-flow
graph (CFG) of the program. An ART node typically consists of a location in the CFG,
a call stack, and a formula representing a region or a set of data states. The formula in
an ART node is obtained by means of predicate abstraction.

4 Verification Approach

We explore two directions for the verification of a VELOS specification: translation into
a behaviorally equivalent NUSMV model, and translation into a behaviorally equivalent

384 A. Cimatti et al.

Entity VELOS TOOL SMV Model NUSMV
Description E Parsing/Type checking
E Loop unrolling

E Function inlining
SSA conversion C Software
Configuration L SMV emitting C Program Model

C emitting Checker

Fig. 3. Verification and validation flow

U

C program. The translation into a NUSMV model enables the use of a rich portfolio
of verification techniques, e.g., BMC [7], temporal induction [19], CEGAR [13], all
available in an extended version of the NUSMV model checker [12]. The translation
into a sequential C program enables the use of mature off-the-shelf software model
checking techniques and tools. Figure[3lshows our verification and validation flow.

To support our approach, we have implemented a translator, called the VELOS tool,
that takes a VELOS specification as an input, and outputs a NUSMV model or sequen-
tial C programs. Independently of the final output, the VELOS tool always starts with
parsing and type checking. During this phase all the syntactic and semantic errors, if
any, are detected and reported to the user. The remaining steps deal with the specific
target verification language. In what follows we describe the details of the translation,
as well as some issues related to verifying multiple assertions using existing software
model checkers. We also explain a customization of and an extension to our C model
checker, KRATOS, to efficiently prove multiple assertions simultaneously.

4.1 From VELOS Specifications to NUSMYV Models

To verify the VELOS specification, we have to model the application-environment loop.
We model such an interaction in the NUSMV model using the synchronous semantics
of NUSMV. That is, each transition in the model corresponds to a complete iteration of
the loop. Note that this loop may contain an inner loop induced by the scheduler. This
latter loop (also called the scheduler loop), however, is expected to be finite, and often
its termination can be proved by means of simple syntactic criteria. For our case study,
we are able to unroll completely the scheduler loop.

The translation of a VELOS specification to a NUSMYV model is a complex trans-
formation because of the difference between the paradigm of the two languages. A
VELOS specification is in an imperative sequential language with control flow branches
and variables assignments. NUSMV language is a transition-based data-flow language,
where, for each variable, it is necessary to specify the precise transition relation between
the current and next time step variables, including the frame conditions. Moreover, the
flow of control in the sequential language has to be encoded explicitly in the NUSMV
model using a program-counter variable.

The translation into NUSMV models first removes loops and function calls by, re-
spectively, unrolling and inlining them. Such removals are possible due to the restriction
in the VELOS specification, as described in Section [2.3] Finally, the resulting sequen-
tial program is translated into its static single assignment (SSA) [[18] form, where each
variable can be assigned at most once. Such a form reflects the final transition relation

Formal Verification and Validation of ERTMS 385

a_l =a.0 + 2;

if (a > b) a += 2; b 1 =a_0;

else b = a; a2 = (a0 >Db 0) ? a_1 a_0;
b2 = (a_0 >Db 0) ? b0 : b_1;

l

Fig. 4. Fragment of code (left), and corresponding SSA (right)

in the current and next time steps. For example, for the fragment of code on the left of
Figure [the SSA conversion would generate the code on the right. In this translation
we assumed the initial value of variables a and b are a 0 and b 0, respectively. After
the SSA conversion, the final value of every variable V is always V 1 with the highest
index i. This corresponds to the “ASSIGN next (V) := V_i;” NUSMV statement.
In terms of the application, the value of V 1 is the value of V after a complete iteration
of the application-environment loop. All others V j only hold values of intermediate
expressions, and thus we can use the “DEFINE V j := expression;” construct to
avoid the introduction of explicit variables for their representation, which in turn enable
NUSMYV to inline them with the defined expressions.

The invariant properties in the VELOS specification are output directly as
INVARSPEC NUSMYV statements [11]. The translation also maintains a one-to-one
correspondence between variables in the NUSMV model and the variable in the VE-
LOS specification, e.g., for a class instance I of class C having class member variable V,
aNUSMYV variable I Visdeclared. Such a correspondence is important for examining
counter-examples when some invariants fail to hold, and also for certification purposes.

To obtain NUSMV models that are amenable to be checked by NUSMYV, we apply
several optimizations in the VELOS tool. In particular, we reduce the number of vari-
ables and perform range analysis over possible values for variables. After this analysis,
only the Boolean and enumeration types remain, and both are supported by the NUSMV
language. For instance, if a variable has an initial value and is never re-assigned, than
the variable can be removed completely by converting it into a constant.

4.2 From VELOS Specifications to C Programs

The translation from VELOS specifications into C programs is simpler than the transla-
tion into NUSMV models because the language of VELOS and C are both imperative
and have a lot in common. In particular, the VELOS tool converts member variables
and member functions of class instances into C global variables and functions. Similar
to the translation into NUSMV models, the translation into C programs also keeps a
one-to-one correspondence between the variables in the resulting C programs and the
variables in the VELOS specification.

The C program consists of a top-level main loop that models the application-
environment loop. At the beginning of the loop body, the inputs are read and latched. As
a common practice in software model checking, we use an extension of C that includes
constructs to model non-deterministic data acquisition. The body performs computa-
tions according to the logic of the applications. It contains loops that are expected to be
finite, and thus in principle can be unrolled. But in general, the unrolling may depend
on the input acquired and on the computations performed within the loop. In particular,
an inner loop of the top-level main loop corresponds to the scheduler loop.

386 A. Cimatti et al.

int bl = 0, b2 = 0;
[0} true ‘199
assert (bl !'= 0);
assert (b2 != 0); L J O o
(a) (b) (c)

Fig. 5. Fragment of code (a), and assertions as branches in the control-flow graph: standard se-
mantics (b) and assertion-as-property semantics (c)

A
1
s

All properties specified in the VELOS specification are translated into program as-
sertions, and are positioned after all the function calls in the top-level loop body.

4.3 Model Checking Sequential Software with Multiple Assertions

The resulting C programs contain many program assertions. Here, we are interested in
checking if each assertion in the set can be violated. However, if we put all assertions in
a single C program, then it might be the case that some violated assertions can prevent
other assertions violation from being detected. Indeed, given an assertion assert (¢),
the standard semantics requires that the execution of an assertion will pass if ¢ holds;
otherwise a violation is detected and the execution quits. For instance, in the small
program on the left of Figure [5l the second assertion violation can never be detected
because the first one is always violated.

We explore two directions in addressing the problem of multiple assertions. First,
for each property in the specification, we invoke the VELOS tool to generate a single
separate C program such that the only assertion in the program is the property. Second,
we invoke the VELOS tool to generate a single C program that contains all properties (or
assertions) in the specification, but, during the analysis, we give a different semantics
to the assertions such that it allows the execution to escape from assertion violations.

In the first direction, most existing software model checkers for C are readily ap-
plicable to verify the generated C programs. However, for a single specification, these
model checkers have to be run many times, one run for each of the generated C pro-
grams. This bounds to be inefficient. Particularly for the CEGAR-based tools, as the
generated C programs come from the same specification, these tools might perform the
same abstraction-refinements on these programs.

To overcome these problems, in the second direction, we have extended the sequen-
tial analysis of KRATOS to analyze multiple assertions. First, we treat assertions as prop-
erties: given an assertion assert (), the execution of the assertion can pass whether
or not ¢ holds, but can also quit when ¢ does not hold. To support this semantics, we
customize KRATOS to translate the assertion assert () into a different kind of branch
in the CFG such that the branch follows the new semantics. That is, instead of translat-
ing the assertion into the (b) branch of Figure[3l KRATOS translates the assertion into
the (c) branch. With the new translation, checking for an assertion violation can still be
reduced to the reachability analysis of the error node (dark node in Figure[3)).

Second, we have implemented two different sequential analyses for checking multi-
ple properties simultaneously: all-in-one-go and one-at-a-time. The all-in-one-go anal-
ysis is basically the standard lazy predicate abstraction, but instead of quitting the
analysis on finding an assertion violation, the analysis continues the search for other
violations. The known violated assertions are no longer considered in the successive

Formal Verification and Validation of ERTMS 387

searches. The one-at-a-time analysis, unlike the all-in-one-go, in one run checks one
assertion at a time, but uses the ART constructed for checking the previous assertions
to prove the subsequent assertions. On finding that an assertion assert (¢) cannot
be violated, the corresponding CFG branch is strengthened by turning it into the (b)
branch of Figure[3l The one-at-a-time analysis allows for performing an on-the-fly slic-
ing with respect to the checked assertion. Such a slicing can reduce the size of symbolic
expressions involved in the abstraction computations, and can also exclude predicates
irrelevant to the assertion being checked. The analysis also allows for partitioning the
predicates used to prove each assertion, and collecting loop invariants from the con-
structed ART that will be used to strengthen the successive searches.

5 Experimental Evaluation
5.1 Benchmarks

In our evaluation we consider the 10-RBS case study described in Section 2l To eval-
uate the scalability of the considered techniques, we create a set of benchmarks by
varying the number of RBS’s that can be chosen by the scheduler. The RBS’s that can
be chosen are called active RBS’s. Given the 10-RBS case study, in total we have 1023
benchmarks with at least one active RBS.

The experiments have been carried out on all of the benchmarks. For presentation,
in this paper we report only the statistics obtained from the experiments on two fam-
ilies of 10-RBS benchmarks: one family with one active RBS, subsequently called 1-
active-RBS, and the other with all ten active RBS’s, subsequently called 10-active-RBS.
Experiments on other [V-active-RBS families, for 1 < N < 10, exhibit patterns of
statistics that are similar to either that of the 1-active-RBS or that of the 10-active-RBS.
The 1-active-RBS family consists of 10 benchmarks and the 10-active-RBS family con-
sists of only 1 benchmark. As explained in Section[2] each benchmark has 53 assertions.

To experiment with NUSMV, the VELOS tool generates an NUSMV model for each
of the benchmarks. Each of 1-active-RBS NUSMYV models consists of about 7 KLOC
and has about 350 elementary Boolean variables. The 10-active-RBS NUSMYV model
consists of about 60 KLOC and has about 625 elementary Boolean variables.

To evaluate the software model checking approach, as explained in Section the
VELOS tool has to generate a single C program for each of the assertions. Thus, for the
1-active-RBS family, we have 530 C programs, and, for the 10-active-RBS family, we
have 53 C programs. Each of the generated C program is of size 40 KLOC.

5.2 Setup and Configurations

For evaluating the software model checking approach, we experimented with KRATOS,
BLAST-2.7 [8], and CPACHECKER [3] for the lazy predicate abstraction, with SATABS-
3.0 [17] (with CADENCE SMYV as the back-end) for the eager predicate abstraction, and
with CBMC-4.0 [16] for the BMC approach. For SATABS, BLAST, and CPACHECKER,
we used the configurations that the tools used in the TACAS 2012 software verification
competition. For CBMC, the loop unwinding was limited to the least value sufficient for
detecting all assertion violations. For the direction via translation into NUSM'V models,
we experimented with the BMC algorithm implemented in NUSMV. (We disabled
the counter-example generation and we set the bound to five steps.) To prove/disprove

388 A. Cimatti et al.

the assertions we ran all the software model checkers but CBMC. For CBMC and
NUSMYV, we focused on detecting assertion violations using BMC techniques.

We set the time limit to 500s and the memory limit to 2Gb for the experiments with
the 1-active-RBS family, and we increased the time limit to one hour and the memory
limit to 10Gb for the 10-active-RBS family. All experiments have been performed on a
machine equipped with a 2.5GHz Intel Xeon E5420 running Scientific Linux.

5.3 Results of Experiments

The 1-active-RBS Case. The following table shows the results of experiments with
the software model checkers on the 1-active-RBS family:

All Properties KRATOS BLAST ~ SATABS CPACHECKER

Solved 530 0 244 312

Safe 436 0 244 218

Unsafe 94 0 0 94
Time out 0 56 286 2
Memory out 0 474 0 216
Total time 27m:26s - 3h:58m:30s 1h:48m:30s
Max time 6.7s - 221.3s 40.3s
Avg. time 3.1s - 58.6s 20.8s
Max space 147.7Mb - 454.6Mb 1.3Gb
Avg. space 74.8Mb - 168.1Mb 985.5Mb

The row “Solved” indicates the number of benchmarks (or the number of assertions)
that can be proved/disproved. The rows “Safe” and “Unsafe” indicate the number of,
respectively, safe and unsafe benchmarks out of the solved ones. The rows “Time out”
and “Memory out” indicate the number of benchmarks on which the tools went out of
time and out of memory, respectively. The rows “Total time”, “Max time”, and “Avg.
time” indicate, respectively, the total, the maximum, and the average time that the tools
used for the solved benchmarks. Similarly for the rows “Max space” and “Avg. space”.

Only KRATOS was able to solve all assertions. BLAST was unable to verify any as-
sertion; it either went out of time/memory, experienced failure in refinement, or crashed.
SATABS proved some assertions, but failed to disprove any. As mentioned before, SA-
TABS employs the eager predicate abstraction that requires it to create a Boolean pro-
gram at each CEGAR iteration. Although SATABS generates such a Boolean program
efficiently, given that each benchmark is reasonably big, along with a large number of
predicates in some cases, the resulting Boolean program is often too big for the back-
end model checker, and thus SATABS spends a lot of time in model checking the gener-
ated Boolean programs. Moreover, unlike KRATOS that employs large-block encoding
(LBE) [3]] on the CFG, SATABS uses basic-block encoding (BBE). As shown in [3]],
LBE tackles the problem of exploring a huge number of paths in the CFG.

Compared to CPACHECKER, KRATOS showed a better performance on the 1-active-
RBS family. Unlike CPACHECKER, KRATOS performs aggressive, but cheap, static
program optimizations (e.g., constant propagation, dead-code and unreachable-code
eliminations) before analyzing the input program using the lazy predicate abstraction.
These optimizations turns out to boost considerably the abstraction computations and
the path feasibility analysis. KRATOS can even prove some assertions by simply relying

Formal Verification and Validation of ERTMS 389

on these static optimizations and without performing the lazy predicate abstraction at
all. CPACHECKER employs a flexible LBE on the CFG called adjustable-block encod-
ing (ABE) [6]. The lazy predicate abstraction with ABE often suffers from memory
problem because it has to keep track of the results of symbolic evaluations on the CFG
paths in the ART nodes.

Focusing on bug hunting, the following table shows the performance of the model
checkers in detecting assertion violations:

Unsafe Properties KRATOS BLAST SATABS CPACHECKER CBMC NuSMV

Solved 94 0 0 94 94 94
Time out 0 56 94 0 0 0
Memory out 0 38 0 0 0 0
Total time 6m:4s - - 42m:6s 22m:58s 59s
Max time 4.9s - - 38.9s 18.1s -
Avg. time 3.9s - - 26.9s 14.7s 0.6s
Max space 145.7Mb - - 1.2Gb 257.9Mb 30Mb
Avg. space 121.5Mb - - 1.1Gb 246.8Mb 25.7Mb

The above table shows that the BMC algorithm in NUSMYV performs the best in terms
of run time and memory usage. Both CBMC and NUSMYV are able to find all assertion
violations. However, NUSMV handles enumerative types using a logarithmic encoding
(see [12] for details) that turns out to reduce significantly the size of state space.

The 10-active-RBS Case. We now consider the most complex case, i.e. the 10-active-
RBS family. The table below contains the accumulated results

All properties ~ KRATOS BLAST SATABS CPACHECKER

Solved 53 0 0 8

Safe 33 0 0 8

Unsafe 20 0 0 0
Time out 0 2 52 0
Memory out 0 43 0 45
Total time 2h:36m:46s - - 17m:7s
Max time 553.4s - - 208.3s
Avg. time 177.5s - - 128.5s
Max space 5.2Gb - - 8.4Gb
Avg. space 4.5Gb - - 7.9Gb

while the following table focuses only on the case of unsafe properties:

Unsafe properties KRATOS BLAST SATABS CPACHECKER CBMC NuSMV

Solved 20 0 0 0 20 20
Time out 0 2 19 0 0 0
Memory out 0 10 0 20 0 0
Total time 26m:45s - - - 2h:41m:22s 129s
Max time 85.7s - - - 8m:26s -
Avg. time 80.3s - - - 8m:4s 6s
Max space 5.2Gb - - - 728.1Mb 176Mb

Avg.space 5.2Gb - - - 6843Mb 176Mb

390 A. Cimatti et al.

To a large extent, the above results emphasize the pattern discussed for the 1-active-
RBS case (and for the intermediate n-active-RBS cases, not reported here for lack of
space). Although the state-of-the-art software model checking techniques and tools are
feasible for dealing with our case study, they are still far from being efficient in verifying
our industrial-sized benchmarks. On the one hand, the CEGAR-based software model
checking techniques can readily be used to prove or disprove assertions, but they are far
less efficient than the BMC approach via the translation into NUSMV models in bug
hunting. On the other hand, the BMC approach is known to be ineffective in proving
assertions because one needs to know the diameter of the state space.

We also consider the impact of the new multiple-assertion analyses implemented
in KRATOS. The effectiveness of these two new analyses depends heavily on the predi-
cates used or discovered in the abstraction-refinements. In the all-in-one-go analysis, the
predicates can simultaneously rule out some assertions violations, but can also clutter
the search. The one-at-a-time analysis can benefit from the smaller size of the program
resulting from the on-the-fly slicing, and possibly from a small number of predicates
resulting from predicate partitioning. However, due to the slicing, the predicates used
for solving previous assertions are often not sufficient for discharging the remaining
ones. Thus, for solving the remaining assertions, the one-at-a-time analysis needs to
further refine the abstraction. Overall, both techniques yield substantial speed-ups of
about 80%.

Multiple assertions KRATOS One-Per-File KRATOS One-At-A-Time KRATOS All-In-One-Go

Total time 2h:36m:46s 28m:46s 33m:36s
Max space 5.2Gb 6.3Gb 7.9Gb

Following the above results, we experimented with a simple strategy to further speed
up the overall verification process. The idea is to combine several approaches by using
cheap techniques to solve as many assertions as possible, and then use expensive ones
to prove or disprove the remaining assertions. In particular, we first ran the BMC of
NUSMYV with a short time limit, to find as many assertion violations as possible, and
then used the multiple-assertion analyses of KRATOS to solve the remaining assertions.
The results are reported in the following table:

NUSMYV + One-At-A-Time NUSMYV + All-In-One-Go

NUSMYV time 129 sec 129 sec
KRATOS time 560 sec 289 sec
Total time 11m:29s 6m:58s
Max space 5.4Gb 5.7Gb

Compared to using multiple-assertion analyses alone, in terms of run time, we further
gained a speed-up of up to 80%. We also observe a positive impact on memory usage,
with a reduction of up to 28%.

5.4 Remarks on other Experiments

The translation into NUSMV models allows for proving assertions by means of tempo-
ral induction. We experimented with the temporal induction implemented in NUSMV
to first prove or disprove as many assertions as possible in the 10-active-RBS bench-
mark, and then use the multiple-assertion analyses to solve the rest. For this experiment,

Formal Verification and Validation of ERTMS 391

we only tried with induction of length 10. In this experiment, in addition to detecting all
assertion violations as before, NUSMV was able to prove eight assertions. The follow-
ing table shows that the induction slows down the verification but, with less properties
to prove, KRATOS, with the all-in-one-go analysis, consumes considerably less memory
than before, i.e., up to 74% of reduction.

NUSMYV + One-At-A-Time NUSMYV + All-In-One-Go

NUSMYV time 196 sec 196 sec
KRATOS time 620 sec 254 sec
Total time 13m:36s Tm:30s
Max space 5.4Gb 0.9Gb

Finally, we remark that we also did experiments with explicit-state model check-
ing techniques. Besides model checking, KRATOS is able to encode C programs into
PROMELA models that can be checked by the SPIN model checker [25]. However, it
turned out that the size of the resulting PROMELA models is beyond the capability of
SPIN: SPIN failed to translate the models into pan protocol analyzers.

6 Related Work

There have been numerous works that attempt to apply model checking for the verifica-
tion of industrial software. A comprehensive survey can be found in [20]. Particularly
for the verification of ERTMS, the work closely related to ours includes [1113l24]. The
work in [[13] covers the whole safety logic of the interlocking application via manual
translations into PROMELA, the language of the SPIN model checker. Besides verify-
ing safety-related properties, the work also verifies liveness properties of the scheduler.
Unlike our work, this work creates an under-approximation of the non-deterministic
environment, and thus cannot show the absence of bugs.

Similar to [13]], the work in [24] considers the whole safety logic, but only verifies
bounded safety properties. The work relies on the translation into the target language
accepted by the Verus model checker [10]. Both approaches in [13/24] showed poor
scalability: they were applied only to small configurations with at most three processes.

The work in [1]] shows the use of BMC approaches, via CBMC, to automatically
generate test suites for the coverage analysis of safety-critical ERTMS. The problem
of generating test suite can be reduced to the problem of verifying multiple assertions.
However, due to the bound in loop unwindings, achieving full coverage is hard.

Other works related to the verification of ERTMS include [21/26/27]]. The work
in [27]] applies theorem proving techniques to prove properties in European Train Con-
trol System specifications by means of manual encodings into Keymaera. The work
in [21] adopts model-based testing, complemented with abstract interpretation tech-
niques, for the verification of a railway signaling system. The work in [26] validates
ERTMS specifications via translations into UML, and then uses Petri Nets models to
generate test scenario.

Related to the multiple-assertion analysis, the work in [4] describes a technique sim-
ilar to the all-in-one-go analysis in this paper. However, instead of targeting the verifica-
tion of multiple properties, the goal of that work is to generate a test suite guaranteeing
target predicate coverage.

392 A. Cimatti et al.

7 Conclusions and Future Work

We have presented an application of model checking techniques to the verification of
a significant fragment of Logica di Sicurezza, the safety logic of an ERTMS Level-2
system developed by Ansaldo-STS. We have developed a verification approach, and
performed an evaluation of different verification techniques and tools. From this evalu-
ation, we have learned two main lessons. First, even though existing verification tech-
niques and technologies are readily applicable in the industrial settings, they might
be neither efficient nor effective in verifying benchmarks coming from these settings.
Moreover, a single approach alone is often not sufficient to handle the benchmarks or
to satisfy the high-efficiency demand from the product development team. Second, an
appropriate combination of approaches/techniques/technologies can dramatically im-
prove the verification of industrial benchmarks. But such a combination can only be
obtained by a thorough experimental evaluation on existing or new techniques.

In this work we have extended the KRATOS software model checker with two anal-
yses that allow for checking multiple assertions simultaneously. We have successfully
found a strategy that can handle our case study effectively. That is, we benefit from
the efficiency of BMC for ruling out as many assertion violations as possible, and then
check the rest of the assertions using the above KRATOS analyses. This strategy has
proved to greatly reduce the verification effort.

For future work, given the very promising results, Ansaldo-STS is currently collabo-
rating with FBK to integrate the methodology and approach in its internal Development
and V&V Flow in order to verify the whole safety logic, with a possibility to verify the
correctness regardless of the configuration.

We also plan to evaluate new model checking techniques, like Property Driven
Reachability [9]. Moreover, by exploiting the functionality of NUSMV to dump verifi-
cation problems in AIGER format, we plan to experiment with other model checkers.

Finally, for the certification of the application, as mandated by the standards, we will
work on the certification and qualification of KRATOS and NUSMV.

References

1. Angeletti, D., Giunchiglia, E., Narizzano, M., Puddu, A., Sabina, S.: Using bounded model
checking for coverage analysis of safety-critical software in an industrial setting. J. Autom.
Reason. 45(4), 397414 (2010)

2. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers
in Art. Int. and Applications, vol. 185, pp. 825-885. I0S Press (2009)

3. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model check-
ing via large-block encoding. In: FMCAD, pp. 25-32. IEEE (2009)

4. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast.
STTT 9(5-6), 505-525 (2007)

5. Beyer, D., Keremoglu, M.E.: CPACHECKER: A Tool for Configurable Software Verifica-
tion. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 184—190.
Springer, Heidelberg (2011)

6. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-block encod-
ing. In: Bloem, R., Sharygina, N. (eds.) FMCAD, pp. 189-197. IEEE (2010)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

Formal Verification and Validation of ERTMS 393

Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193-207. Springer, Heidelberg
(1999)

Blast-2.7, http://forge.ispras.ru/projects/blast

Bradley, A.R.: Sat-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 70-87. Springer, Heidelberg (2011)

Campos, S.V.A., Clarke, E.: The verus language: representing time efficiently with bdds.
Theor. Comput. Sci. 253(1), 95-118 (2001)

Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M., Roveri, M.,
Tchaltsev, A.: NuSMV User Manual v 2.5 (2011), http://nusmv. fbk.eu

Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: A New Symbolic Model
Checker. STTT 2(4), 410425 (2000)

Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.: Formal ver-
ification of a railway interlocking system using model checking. Formal Asp. Comput. 10(4),
361-380 (1998)

Cimatti, A., Griggio, A., Micheli, A., Narasamdya, 1., Roveri, M.: KRATOS — A Software
Model Checker for SystemC. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 310-316. Springer, Heidelberg (2011)

Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement for symbolic model checking. J. ACM 50(5), 752-794 (2003)

Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen, K.,
Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168—176. Springer, Heidelberg (2004)
Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate Abstrac-
tion for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
570-574. Springer, Heidelberg (2005)

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Program. Lang.
Syst. 13(4), 451-490 (1991)

Eén, N., Sorensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor.
Comput. Sci. 89(4), 543-560 (2003)

Fantechi, A., Gnesi, S.: On the Adoption of Model Checking in Safety-Related Software
Industry. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS,
vol. 6894, pp. 383-396. Springer, Heidelberg (2011)

Ferrari, A., Magnani, G., Grasso, D., Fantechi, A., Tempestini, M.: Adoption of model-based
testing and abstract interpretation by a railway signalling manufacturer. IJERTCS 2(2), 42—
61 (2011)

Gargantini, A., Heitmeyer, C.L.: Using Model Checking to Generate Tests from Require-
ments Specifications. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE
1999. LNCS, vol. 1687, pp. 146—162. Springer, Heidelberg (1999)

Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72-83. Springer, Heidelberg (1997)
Hartonas-Garmhausen, V., Campos, S.V.A., Cimatti, A., Clarke, E., Giunchiglia, F.: Verifica-
tion of a safety-critical railway interlocking system with real-time constraints. Sci. Comput.
Program. 36(1), 53—64 (2000)

Holzmann, G.J.: Software model checking with SPIN. Adv. in Comp. 65, 78-109 (2005)
Jabri, S., El Koursi, E., Bourdeaudhuy, T., Lemaire, E.: European railway traffic management
system validation using UML/Petri nets modelling strategy. European Transp. Res. Review 2,
113-128 (2010)

Platzer, A., Quesel, J.-D.: European Train Control System: A Case Study in Formal Verifi-
cation. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246-265.
Springer, Heidelberg (2009)

http://forge.ispras.ru/projects/blast
http://nusmv.fbk.eu

	Formal Verification and Validation of ERTMS Industrial Railway Train Spacing System
	Introduction
	The Application: Logica Di Sicurezza
	The Radio Block Section
	Verification Properties of the RBS
	The Velos Specification

	Verification Techniques and Tools
	Verification Approach
	From Velos Specifications to NuSMV Models
	From Velos Specifications to C Programs
	Model Checking Sequential Software with Multiple Assertions

	Experimental Evaluation
	Benchmarks
	Setup and Configurations
	Results of Experiments
	Remarks on other Experiments

	Related Work
	Conclusions and Future Work
	References

