

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Science of Computer Programming

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa37102

Paper:

Berger, U., James, P., Lawrence, A., Roggenbach, M. & Seisenberger, M. (2017). Verification of the European Rail

Traffic Management System in Real-Time Maude. Science of Computer Programming

http://dx.doi.org/10.1016/j.scico.2017.10.011

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa37102
http://dx.doi.org/10.1016/j.scico.2017.10.011
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Verification of the European Rail Traffic Management System
in Real-Time Maude

Ulrich Bergera, Phillip Jamesa, Andrew Lawrenceb, Markus Roggenbacha, Monika
Seisenbergera

aSwansea University, Swansea, UK
bSiemens Rail Automation UK, Chippenham, UK.

Abstract

The European Rail Traffic Management System (ERTMS) is a state-of-the-art train con-
trol system designed as a standard for railways across Europe. It generalises traditional
discrete interlocking systems to a world in which trains hold on-board equipment for
signalling, and trains and interlockings communicate via radio block processors. The
ERTMS aims at improving performance and capacity of rail traffic systems without
compromising their safety.

The ERTMS system is of hybrid nature, in contrast to classical railway signalling
systems which deal with discrete data only. Consequently, the switch to ERTMS poses a
number of research questions to the formal methods community, most prominently: How
can safety be guaranteed? In this paper we present the first formal modelling of ERTMS
comprising all subsystems participating in its control cycle. We capture what safety
means in physical and in logical terms, and we demonstrate that it is feasible to prove
safety of ERTMS systems utilising Real-Time Maude model-checking by considering a
number of bi-directional track layouts.

ERTMS is currently being installed in many countries. It will be the main train
control standard for the foreseeable future. The concepts presented in this paper offer
applicable methods supporting the design of dependable ERTMS systems. We demon-
strate model-checking to be a viable option in the analysis of large and complex real-time
systems. Furthermore, we establish Real-Time Maude as a modelling and verification
tool applicable to the railway domain.

The approach given in this paper is a rigorous one. In order to avoid modelling errors,
we follow a systematic approach: First, as a requirement specification, we identify the
event-response structures present in the ERTMS. Then, we model these structures in
Real-Time Maude in a traceable way, i.e., specification text in Real-Time Maude can
be directly mapped to requirements. We explore our models by checking if they have
the desired behaviour, and apply systematic model-exploration through error injection
– both these steps are carried out using the formal method Real-Time Maude. Finally,
we analyse ERTMS by model-checking, thus applying a formal method to the railway
domain, and we mathematically prove that our analysis of ERTMS by model-checking is
complete, i.e., that it guarantees safety at all times.

Keywords: Railway Signalling, ERTMS, ETCS, Hybrid Systems, Real-Time Maude,
Verification, Model-Checking.

1

1. Introduction

In 2004, the 18th IFIP World Computer Congress identified the railway domain as a
Grand Challenge of Computing Science [4] because it is of immediate concern and because
it also provides a set of generic, well-understood problems whose solutions would be
transferable to various other application domains, e.g., process control in manufacturing,
also known as industry 4.0.

1.1. The Development of ERTMS

Reflecting on the concerns arising out of this Grand Challenge, the following are
recurring statements from the 2007 Department of Transport White Paper “Delivering
a Sustainable Railway” [9]:

• “Rail’s biggest contribution to tackling global warming comes from increasing its
capacity.”

• “Reliability and capacity are amongst top passengers’ concerns.”

• “Increasing capacity is the most urgent investment need.”

The European Rail Traffic Management System (ERTMS)/European Train Control
System (ETCS) is a signalling, control and train protection system developed to address
these issues. It is designed to allow for high-speed travel, to increase capacity, and to
facilitate cross-border traffic movements [11]. ERTMS/ ETCS is a complex system of
systems, made up of several distributed components. It is specified at four different
levels, each of which defines a different use as a train control system. In our paper we
consider ERTMS/ETCS Level 2, which is characterised by continuous communication
between trains and radio block centres.

With the introduction of ERTMS a number of research questions arise: How can safety
be guaranteed? How can reliability and performance be measured and estimated? How
can capacity be measured and improved? Behind these questions are, from a computer
science point of view, long-standing research challenges: how can we effectively perform
qualitative and quantitative reasoning on complex systems?

• Qualitative reasoning is required to ensure safety.

• Quantitative reasoning is needed to measure both capacity and reliability.

In our paper, we provide a model of ERTMS Level 2 which we qualitatively analyse for
safety using timed model-checking. It is, however, also open to quantitative analysis via
simulation, for example, for studying rail network capacity (e.g. how many trains can be
observed in the network within a given period of time) or exploring energy consumption
(e.g. a slow train may force a faster following train to make regular speed adaptions
leading to high energy consumption).

Preprint submitted to Elsevier November 27, 2017

1.2. Formal Methods in the Railway Domain

Industrial standards for railway and related domains are increasingly relying on the
development of formal methods for system analysis in order to establish a design’s cor-
rectness and robustness. Recent examples include the 2011 version of the CENELEC
standard on railway applications, the 2011 ISO 26262 automotive standard, or the 2012
Formal Methods Supplement to the DO-178C standard for airborne systems.

Fantechi [12] begins his 2014 survey on formal methods in the railway domain: “Since
more than 25 years, railway signalling is the subject of successful industrial application of
formal methods in the development and verification of its computerised equipment”. In
this context, especially the verification of interlocking systems has played an important
role. An interlocking system is responsible for guiding trains safely through a given
railway network. It is a vital part of any railway signalling system and has the highest
safety integrity level (SIL4) according to the CENELEC 50128 standard.

1.3. Classical Interlocking Designs

It is still an open research question as how to perform formal safety checks on inter-
locking designs. The challenge is how to cope with the complexity of the problem: the
state space grows exponentially in the size of the scheme plan to be verified. Several
research groups, see e.g. [20, 3, 18, 14, 16, 15, 24, 23, 22, 13, 19, 39, 38, 36, 5, 28], have
been addressing this challenge and have developed a number of different modelling and
verification approaches.

The modelling part of such approaches usually consists of “transformations” that
aim to derive a (formal) model from informal rail descriptions as used in rail industry,
such as a track plan (e.g., as a CAD drawing) enriched by various tables (e.g., control
tables). Similarly, the verification part usually states a safety condition (e.g., no train
collision) and expresses this as a (formal) property (e.g., as a logical formula). Finally,
an (automated) verification tool is utilised to provide an answer whether or not the
property holds in the model. It is an open research question of how to compare such
models and verification methods. As a first step in this direction, Haxthausen et al. [17]
discussed the challenges, provided first steps towards a general method to compare these
approaches, and performed an initial, however systematic, comparison between two of
the above mentioned approaches.

Classical signalling systems based on interlockings alone treat all trains in the same
way. Consequently, they are designed for worst case braking: the signalling design has to
take into account the longest braking distance of a train admitted to run on the rail node
to be signalled. This separates trains by long margins and reduces capacity. Concerning
formal safety analysis, as such traditional systems concern discrete data only, they can
be treated on a purely logical level, ignoring the aspect of time.

1.4. New Challenges Arising in ERTMS

ERTMS extends classical signalling systems by adding a radio block centre and adding
control computers to trains. This makes it possible, in ERTMS/ETCS Level 2, to take
into account speed and braking curves of each individual train. This data determines,
for each train individually, the train’s braking point well in advance of the end of the
movement authority that the ERTMS signalling system has granted to the train. This
allows for a separation of trains by shorter margins and thus increases capacity. In the

3

EVC

IXL

Eurobalise

RBC

GSM-R

MA

TO

Figure 1: ERTMS/ETCS Application Level 2 core components including the on-board train computer
(EVC) that detects the train’s position using track-based Eurobalise sensors and communicates such
information via movement authority messages (MA) with the Radio Block Centre (RBC). Decisions on
allowing trains to move are then made by the Interlocking (IXL) based on this position information and
readings from track occupation (TO) sensors.

ERTMS standard, the system is described using differential equations when it comes to,
e.g., braking curves. Thus, in its technical definition, the system is a hybrid one. The
question now is what this means for modelling: either one provides a hybrid model, or
– as we do – one works with a timed model with explicit solutions of the differential
equations involved. Both approaches are possible. Note that – as ERTMS Level 2 still
includes interlockings – the above stated challenges on formal safety analysis for classical
interlocking designs remain, however, are extended by new dimensions.

More specifically, an ERTMS/ETCS system consists of a controller, an interlocking
(a specialised computer that determines if a request from the controller is “safe”), a radio
block centre (the component that is responsible for the communication with the trains),
track equipment, and a number of trains. While the ERTMS/ ETCS standard details the
interactions between trains and track equipment (e.g., in order to obtain concise train
position information) and radio block centre and trains (e.g., to hand out movement
authorities), the details of how a controller, interlocking and radio block centre interact
with each other are left to the suppliers of signalling solutions, such as our industrial
partner Siemens Rail Automation UK. In this paper we work with the implementation
as realised by Siemens Rail Automation UK. In the following we refer to this system
simply as ERTMS.

1.5. Modelling ERTMS in Real-Time Maude

One development step when industry builds an ERTMS system consists of developing
a so-called detailed design. Given geographical data about a specific track layout and
the routes to be used, the detailed design adds a number of tables that determine the
location-specific behaviour of the interlocking and radio block centre. To the best of our
knowledge, our modelling of ERTMS is the first one comprising all ERTMS subsystems
required for the control cycle in ERTMS Level 2 – see Figure 1 which highlights the main
components of interest from the ERTMS/ETCS System Requirements Specification [2].

4

The objective of our modelling is to provide a formal argument that a given detailed
design is safe. We focus on collision-freedom, though our model is extensible for dealing
with further safety properties such as derailment and run-throughs, and possibly also
with performance analysis. We also assume that all components are failure-free; that is,
we do not consider fault tolerance.

We base our modelling approach on Real-Time Maude [32], which is a language
and tool supporting the formal object-oriented specification and analysis of real-time
and hybrid systems. In order to obtain a faithful model of ERTMS/ETCS Level 2 at
the design level, we follow a methodical approach, established by the Swansea Railway
Verification Group. First, we systematically identify the system’s entities and determine
the information flow between them – see Section 3 on the ERTMS System Architecture.
Then, we give an informal description: For each of the identified components, we say
which state change it has to undergo in case that an event has occurred – see Section 4
on the Event-Response Structure in this architecture. Based on this informal model, we
provide a number of translations into Real-Time Maude – see Section 6 and also Figure
4 on the structure of our specifications. Static elements such as the track plan and the
various tables are specified as data types using Maude equations; the ERTMS/ETCS
components are represented as objects; their message exchange according to the rules
laid down in the standard, or by Siemens Rail Automation UK, is captured by rewrite
rules.

We note that Real-Time Maude was chosen over other modelling approaches, such
as Uppaal, due to its support for differential equations and object-oriented constructs.
Our modelling of ERTMS requires the explicit solving of differential equations. In ad-
dition, the object-oriented setting is natural as ERTMS is comprised of several distinct
components, and thus having different objects helps to separate concerns.

1.6. Advances Compared to Our Previous Work

This paper provides a realistic model of the ERTMS extending our earlier work pre-
sented at the FTSCS workshop [26, 21]. In [26] we considered only a location-specific
modelling, i.e., a fixed scheme plan was hard-coded into the model. In [21] we provided a
model generic in the scheme plan; however, we still restricted ourselves to unidirectional
travel and trains of zero length. In this work we overcome both these limitations. We
give a generic, detailed model that fully supports bi-directional use of tracks and takes
train lengths into account. Additionally, we give more details on our modelling process
as described in Section 1.5.

Overall, this leads to a more complex model, especially with regards to trains. Train
objects have additional fields, such as direction of travel. Also, rather than just observing
that a train moves, we now capture the locations of the train’s front and rear. Naturally,
a more complex model poses a harder challenge when it comes to model-checking for
safety.

Furthermore, we thoroughly address the question of completeness of our safety analy-
sis, based on the criteria that Ölveczky and Meseguer give for object-oriented Real-Time
Maude specifications [31]. In order to fulfil these criteria in the presence of unavoidable
rounding errors, we store the maximal time elapse as an additional train component
which we only recompute at discrete state transitions. This allows us to achieve time-
robustness. These extra time components are only used to determine suitable sampling

5

time points; they do not affect the behaviour of the trains and thus do not compromise
the faithfulness of our modelling of ERTMS.

Finally, we provide model-checking results based on a number of bidirectional track
plans suggested as a benchmark by Haxthausen et al. [17] when comparing formal veri-
fication approaches of interlocking systems.

1.7. Organisation of the Paper

In Section 2, we introduce the ERTMS Level 2 standard, describe the detailed design
of a pass-through station and briefly discuss high-level safety properties for ERTMS. We
then describe our view on the ERTMS System Architecture in Section 3, and provide
in Section 4 a first, informal model of ERTMS describing how the different components
respond to events. In Section 5, we give a short presentation of Real-Time Maude with
a focus on standard specification techniques for hybrid systems. In Section 6, we present
our modelling of ERTMS in Real-Time Maude, discussing each component in detail. We
formally introduce our safety properties and prove that, with finitely many time-samples,
we achieve completeness in Section 7. Following this, in Section 8, we validate our model
by simulation and error injection. We present our model-checking results in Section 9.
Finally, in Section 10, we put our approach in the context of related work.

All Real-Time Maude models are available via the web-page of the Swansea Railway
Verification Group1.

2. ERTMS Level 2

ERTMS Level 2 extends classical railway signalling with features that aim to improve
capacity and traffic management without compromising safety. To this end its location-
specific design2 extends the classical notion of a scheme plan by information used for the
radio block centre. In addition to this, safety analysis for ERTMS also requires train
characteristics such as maximum speed, acceleration and braking curves.

2.1. Scheme Plans

A scheme plan is a well-established concept within the railway domain. Figure 2
depicts such a scheme plan for a pass-through station. It consists of a track plan, a
control table, release tables and RBC tables.

A track plan determines where and how trains can move. Trains can move along the
track, in Figure 2, e.g., from the Entry/Exit on the left, over track AA to track AB. Track
AB is also a point. A point can be in one of two positions: normal (travelling “straight”)
or reverse. Depending on the point’s position, the train will either move to track BC or
to track AC. Let’s suppose the train moves to track BC. At the end of track BC there
is a special location, indicated by a so-called marker board, in our example MB2. It is
on these locations that ERTMS decides via “signalling” if a train can proceed or not.
The piece of track between two consecutive marker boards (facing the same direction) is
called a topological route (e.g., from MB1 to MB2, or from MB0 to MBOp).
In this sense, the track plan provides the topological information for the station. In our

1http://cs.swansea.ac.uk/rail/
2We focus on one ERTMS system controlling a single geographic region.

6

Entry/Exit

MBOp MB1

AA(1300m)

P1

AB(250m)

BC(1500m) BD(1500m)

MB2

AC(1500m)

MB3

AD(1500m)

P2

AE(250m)

MB4

AF(1500m) Entry/Exit

MB0

Interlocking Control Table:

Route Clear Tracks Normal Reverse

1A AA, AB, AC P1
1B AA, AB, BC P1
2 BD, AE, AF P2
3 AD, AE, AF P2
4 AF, AE, AD, AC, AB, AA P2, P1

Interlocking Release Table:

Point Route Release

P1 1A AC
P1 1B BC
P1 4 AA
P2 2 AF
P2 3 AF
P2 4 AD

RBC Next Route Table:

Current Position Continuation Routes (Marker Board)

Before MB1 1A (MB3), 1B (MB2)
Before MB2 2 (MB4)
Before MB3 3 (MB4)
Before MB0 4 (MBOp)

RBC Geogr. Pos. Table:

Granted Route EoA, rel. to entry point to the left/right∗

1A 3249m
1B 3249m
2 7999m
3 7999m
4 7999m∗

Figure 2: Scheme Plan for a pass-through station.

7

example it consists of eight tracks (e.g., BC) each with a length (e.g., BC is 1500m long),
six marker boards (e.g., MB1), and two points (P1, P2).

The next element of a scheme plan to consider is the so-called control table. The
control table describes under which conditions a route can be set.3 Typically, it has
four columns: the first names the route under consideration; the second lists the tracks
which are “free”, i.e., currently not occupied by a train; the third and the fourth say
which points are in normal or reverse position, respectively. For example, a train can
only proceed on route 1A if point P1 is in normal (straight) position and tracks AA, AB
and AC are clear, i.e., currently not occupied by a train.

The release table is used to implement sequential release, a technique for releasing
tracks for use, in order to improve capacity. The idea is that, after a train has passed a
point, this point could be used for another train already. Suppose for instance, the first
train has travelled from Entry/Exit, over AA, AB to AC, where it waits for a “signal”
to proceed. Then this train blocks route 1A, as track AC is occupied. However, route
1B could be made available for a second train, provided one would be allowed to move
point P1 from normal to reverse. That this is actually possible is expressed by the release
table. Hence, the release table describes when a point is again free to move after being
locked for a particular route. For example, row one says that when sending a train on
route 1A, point P1 is free to move when this train has reached track AC.

The RBC tables are used for similar calculations within the RBC, as discussed in
Section 3. In the RBC Geographic Position Table, EoA (for end of authority) is the
position up to which a train is allowed to travel, relative to a reference point (here to the
left and right entrances of the track plan respectively).

As it is standard practice, we consider open scheme plans with entry and exit tracks.
Furthermore, we make the realistic assumption that marker boards are placed at the
end of tracks only. This is a typical, though not compulsory design decision taken in
the railway domain. We further assume the same speed limit for all tracks. In this
respect, our model is open to extensions regarding train operation, e.g., speed profiles
and gradients.

2.2. Safety Conditions

In the context of ERTMS, several high-level safety conditions have been discussed,
such as collision-freedom or derailment on a point. In this paper, we focus on collision-
freedom, i.e., the exclusion of the possibility that two trains collide. In the context of
classical signalling systems, this property is usually formulated logically, e.g., by requiring
that two trains never be on the same track [22]. For ERTMS we consider, in addition,
the physical invariant that the distance between trains never falls below a minimum
threshold.

3. ERTMS System Architecture

Once a scheme plan has been designed, a number of control systems are implemented
based around it. In the following, as a first modelling step, we systematically identify

3It is a design decision whether a topological route appears in the control table. The routes in the
table are those available for use by trains.

8

Controller

TrainsTrack Equipment

RBCInterlocking

 Route Request / CancelAcknowledge

Track Occupation Point Setting

Request to Proceed

Routes Available / Proceed

Guidance/Beacons

Movement

Movement
Authority
Request

Movement
Authority

Figure 3: ERTMS control architecture.

the entities of ERTMS, describe their abstract behaviour and determine the abstract
information flow between them, in line with the design by Siemens Rail Automation UK,
see Figure 3.

The controller (manual or computerised) is responsible for controlling the flow of
trains through the railway network. The controller completes this task by sending “route
request” messages to the interlocking. These route requests depend on elements such as
the current timetable to be adhered to and information about congestion within the net-
work. For simplicity, we abstract from “route cancel” and “acknowledgement” messages.

The interlocking is responsible for setting and granting requested routes. Once the
controller has requested a route, the interlocking will use information about current track
occupation and point settings (from the track equipment) to determine if it is safe for
the requested route to be set. Whether a route can be set or not is computed in a
process based upon the conditions stipulated by the control table, see Figure 2. Once
the interlocking has checked that all points on the route are free to move or already in
the right position, it will send a “route available” message to the RBC. This informs
the RBC that the route is free for use, however it is not yet reserved for a particular
train. The RBC initiates the process of locking a route for a train by sending a “request
to proceed” message to the interlocking. On receiving this message, the interlocking
will then ensure that, based on the control table, all tracks for the route are free and
the points are indeed locked in the required positions. Once this step is completed, the
interlocking sends a “proceed” message to the RBC indicating that a train can use the
route.

The RBC’s main responsibility is to take the route information presented by the
interlocking and use it to manage the movement of trains across geographic positions on
the railway. To do this, the RBC and trains use the notion of a movement authority.
A movement authority is an area of geographical railway that a train is permitted to
move within. The furthest point along the railway to which a train is permitted to move
is indicated by an EoA, which is given to a train by the RBC. The data within such

9

an EoA includes a distance to which the train can travel, along with a marker board
towards which the train is travelling. As a train moves across the railway network, it
uses beacons on the track to continually calculate its position. When it is nearing its
EoA, it makes a new “movement authority request” to the RBC indicating that it would
like its movement authority to be extended. After receiving this request, the RBC will
map the physical location of the train to an available continuation route that has been
presented to it by the interlocking.4 This calculation is performed based on a look-up
table designed as part of the RBC for a scheme plan. An example of such a table is
provided in Figure 2 in the Next Route Table. It will then issue a “request to proceed”
message to the interlocking for this route. Once the RBC has received a “proceed”
message from the interlocking, it will compute a new EoA for the train, based on the
route that has been granted. Again, this information is provided by a look-up table, see
Figure 2, in particular the Geographic Position Table. This new EoA is then finally sent
as a “movement authority” message to the train.

The behaviour of trains is parameterised by maximum speed, acceleration and braking
curves. We make a maximum progress assumption for trains, i.e., trains are running as
fast and as far as possible. If a train has a movement authority beyond its current position
it will accelerate towards its maximum speed. When the maximum speed is reached, the
train will continue to travel at this speed. Whilst accelerating or travelling at maximum
speed the train will start braking at the last possible time where it is guaranteed that it
will come to a halt before the EoA. Trains are guided by the track layout, respecting the
positions to which the interlocking has set points. As trains move along the track, track
equipment senses track occupation and reports it to the interlocking.

We assume that track equipment (points, track circuits, beacons etc.) functions cor-
rectly and that points move instantaneously. This is justified as our verification aim is to
establish correctness of the location and train specific design parameters for an ERTMS
system. Therefore, we refrain from modelling track equipment.

4. Event-Response Structure

To give a clear understanding of the types of events and corresponding messages that
are involved in ERTMS, this section presents a series of tables that highlight the main
responsibilities of the controller, interlocking and RBC. We refrain from presenting such
a table for the train component, as trains have a much more dynamic nature than the
other components which are mainly event driven. Details of this dynamic nature are
presented in Section 6.

4.1. Controller Events
The main responsibility of the controller is to place route requests into the ERTMS

systems. Hence it has one main event that occurs at a fixed frequency x:

Event Conditions Precondition

Send route re-
quest for RN to
the interlocking

x seconds have passed after
sending the last route request

A route RN has been ran-
domly selected

4At this point, there should be maximally one route available that matches a particular train. This
is ensured by the requests from the controller and also the ability of the interlocking to deny requests
for conflicting routes.

10

4.2. Interlocking Events

The interlocking is responsible for checking and confirming the availability of routes
based on requests from the controller. It is also responsible for updating the RBC with
available routes, and authorising requests for trains to proceed from the RBC.

Event Conditions Action

Receive request
from controller
for route RN

RN already set Do nothing (Request ignored)

RN not set and (points locked
or tracks not clear)

Do nothing (Request ignored)

RN not set, points free to
move and tracks clear

Set route and points, send
route set message to RBC

Receive proceed
request from
RBC for route
RN

Route is set Lock points, unset route, send
proceed granted message to
RBC

Route not set Do nothing (Request ignored)

Receive track
occupation
message from
train (via track
equipment)
concerning track
TR

Front of train on TR Update occupied tracks with
track TR

Rear of train leaving TR and
TR is in the interlocking re-
lease table

Remove TR from occupied
tracks and release points as-
sociated with TR

Rear of train leaving TR and
TR is not in the interlocking
release table

Remove TR from occupied
tracks

4.3. RBC Events

The radio block centre is responsible for the mapping between the discrete commu-
nications of the interlocking and continuous communications of the train. In particular,
it responds to train requests for a new movement authority by asking the interlocking to
set the route.

Event Conditions Action

Receive routes
set message from
interlocking

None Update information stored on
routes that are set in the in-
terlocking

Receive
movement
authority
request from a
train on track
TR

Follow-up route RN has been
set earlier by interlocking

Send a request to proceed
message to the interlocking
for RN

Follow-up route RN has not
been set earlier by interlock-
ing

Do nothing (Request ignored)

Receive pro-
ceed granted
for route RN
message from
interlocking

None Look-up marker board and
end of authority information
for route RN and send this
information to the train in a
’movement authority granted’
message

Each of the events and messages we have presented in this section are directly visible
within our models, which are presented in Section 6.

11

5. Maude and Real-Time Maude

The Maude system [8] is a multi-purpose tool with support for executable specifica-
tions, simulation and verification.

Maude follows the algebraic specification approach in which sort symbols (keyword
sort) provide a classification of the data involved and operators (keyword op) declare
data elements (constants) and computations (functions). Hence, (part of) the data of
the track-plan shown in Figure 2 can be captured as follows:

sort Track .
ops AA AB AC ... : -> Track .

The desired computation of the functions can be defined using equations (keyword
ceq for conditional equations and keyword eq if there is no condition). Continuing with
our example, track AB will be the next track that a train will enter after leaving track AA,
provided the train travels towards the marker boards MB2 or MB3. Variables (keyword
var) are useful when expressing such properties and are to be read in a universally
quantified manner, e.g., the next value for track AA is independent of the point position:

op next : Track MarkerBoard PointPos -> Track .

var PPos : PointPos .
var MB : MarkerBoard .

ceq next(AA, MB, PPos) = AB if MB == MB2 or MB == MB3 .
...

Beyond data types Maude supports the modelling of object-based systems by offering
primitives to declare classes (seen as a product type consisting of a finite number of fields)
and class hierarchies. To this end, Maude provides syntax for declaring classes (keyword
class):

class C | a_1 : SortName_1, ... , a_n : SortName_n .

The above declares a class C with attributes a_1 to a_n of sort SortName_1 to
SortName_n. An object of this class is represented as a term

< O : C | a_1 : v_1, ... , a_n : v_n > .

Here, object O has attribute values v_1 to v_n.
Furthermore, there is a predefined sort Msg for the declaration of parametrised mes-

sages:

msgs M_1 ... M_k : Sort_1 ... Sort_n -> Msg .

Objects and messages together form the Configuration of an object-oriented sys-
tem:

sorts Object Msg Configuration .
subsort Object Msg < Configuration .

where objects and messages are introduced as subsorts (keyword subsort to declare
class hierarchies) of a system configuration. Objects and messages form a multi-set
with none as the constant denoting the empty configuration and _ _5 as a constructor
(keyword [ctor]):

5More precisely: the space between the underscores denotes the multiset union operator, the under-
scores are placeholders for the operator’s arguments, needed because of the infix use of the operator.

12

op none : -> Configuration [ctor] .
op _ _ : Configuration Configuration -> Configuration [ctor] .

A configuration itself is a subsort of a system:

subsort Configuration < System .

The data types of a system are described using (conditional) equations. In contrast,
changes of configurations are written in the form of (conditional) rewriting rules (key-
words rl and crl, respectively). Take for instance the following conditional rule:

crl routerequest(RN1)
< O : Inter | routeset : MAPRNB1 >

=>
< O : Inter | > if (MAPRNB1[RN1] == true) .

This rule says that if a configuration includes a message routerequest(RN1) and an
interlocking object O with attribute value MAPRNB1, then the message is to be deleted
from the configuration provided the condition (MAPRNB1[RN1] == true) holds. Note
that at the right hand side of the rule we do not have to repeat the attribute routeset
: MAPRNB1, as it is not going to be changed by the rule. Finally, to explain the variable
name MAPRNB: It is a variable for routeset which is a sort that maps routenames (RN)
to booleans (B), thereby storing which of the routes are set.

Real-Time Maude [32, 33] extends Maude to support the specification and analysis
of real-time systems. A Real-Time Maude specification consists of

• a sort Time (for instance the naturals, predefined as Nat, or the positive rationals,
predefined as PosRat),

• a designated sort GlobalSystem with no subsorts or supersorts,

• a free constructor {_} : System -> Globalsystem, with the meaning that
the term {t} represents the whole system,

• instantaneous (i.e., non time-consuming) rewrite rules, and

• so-called tick rules that define how time elapses (see below).

In order to express tick rules, we follow the modelling approach by Ölveczky and
Thorvaldsen [34] and use their two operators delta and mte. delta defines the effect
of time elapse on a configuration, while mte defines the maximal possible time elapse.

Intuitively speaking, the maximal time elapse is the maximal time that can elapse
before an event has to occur. In our railway model, for instance, trains shall send a
message when they have arrived on a new track. Thus, in a train model time can elapse
as long as the train travels on its old track – the moment the train arrives on a new
track, in a correct model, an event has to occur.

The operations delta and mte are declared as follows:

op delta : Configuration Time -> Configuration [frozen (1)] .
op mte : Configuration -> TimeInf [frozen (1)] .

Declaring a given operator, say f, as frozen, forbids rewriting with rules in all proper
sub-terms of a term having f as its top operator; this avoids ill-timed rewrites. TimeInf
is the sort Time enriched with an infinity element INF.

13

The two functions delta and mte distribute over objects and messages, i.e., each
object has the same time available. As we will set the maximal time elapse for a message
to the value 0 (see section 6.1), time can only progress once all messages have been
consumed.

vars CON1 CON2 : NeConfiguration . var R : Time .
eq delta(none, R) = none .
eq delta(CON1 CON2, R) = delta(CON1,R) delta(CON2,R) .
eq mte(none) = INF .
eq mte(CON1 CON2) = min(mte(CON1),mte(CON2)) .

NeConfiguration is a subsort of Configuration denoting non-empty configura-
tions. Both these general definitions of delta and mte will be extended to the specific
objects of our Real-Time Maude specification for the ERTMS.

Finally, this allows us to describe how time elapses, whereby the maximal time elapse
computed for the current configuration provides a bound for the time R.

var CURRENT : Configuration .
crl [tick] : {CURRENT} => {delta(CURRENT,R)} in time R

if R <= mte(CURRENT) [nonexec] .

This rule is time-nondeterministic, as the value R can be chosen arbitrarily within the
chosen time domain, restricted only by the given bound. Consequently, tick rules are not
directly executable by the underlying Maude engine, which is marked by the [nonexec]
attribute.

Rather than directly executing tick rules, Real-Time Maude offers the user a choice
of so-called time sampling strategies:

(1) (set tick def 10 .)
(2) (set tick max def 10 .)

(1) is the default tick mode where time sampling is done after a fixed amount of time,
here 10 seconds, at the latest, or earlier if an event occurs, i.e., if the maximal time
elapse is smaller than 10. (2) uses the maximal time sampling strategy, i.e., it samples
only when an event occurs, unless the maximal time elapse is infinite in which case the
next sampling occurs after 10 seconds. The maximal time sampling strategy has the
advantage that, in general, it requires fewer sampling points and thus may allow for
larger systems to be verified.

In the physical model, as outlined in Section 2, time is evolving continuously according
to Newton’s laws. In order to control numerical errors due to rounding, we choose the
sort NNegRat of non-negative rational numbers as our time domain. However, this
domain still has infinitely many elements in the relevant bounded time interval. Thus,
we discretise time by utilising the two time sampling strategies above in the hope to
obtain a finite (though possibly still large) state space that allows us to apply model-
checking for safety. Naturally, in this context, the question arises if safety established
for finitely many time samples will imply safety for all (infinitely many) time points,
i.e., if the time sampling strategies are complete. Ölveczky and Meseguer give criteria
(time-robustness and tick-stabilisation) for when this is the case [31]. We will show in
Section 8 that these criteria are indeed satisfied by our modelling.

For formal verification, we make use of the Maude LTL model-checker [10]. In partic-
ular, Real-Time Maude provides timed and untimed model-checking commands to check
whether each behaviour from a given initial state satisfies a given temporal logic formula.

14

Timed model-checking is implemented using timed rewrite sequences and properties can
be checked for both unbounded and bounded time periods. In particular, we will use the
following command:

mc initState |=t phi in time < T .

which checks that the formula phi holds for all points in time up to point T with respect
to the current tick mode. For model-checking without a time limit Real-Time Maude
offers the command

mc initState |=t phi with no time limit .

which checks that the formula phi holds for all points in time with respect to the current
tick mode. When one is interested in verification rather than counterexamples including
time-stamps, one usually applies untimed model-checking rather than model-checking
without time limit:

mc initState |=u phi .

Untimed model-checking essentially ignores time stamps when model-checking, but takes
into account the time sampling strategy when applying the tick rules, see [10] for more
details. All three approaches will return a counterexample if the formula does not hold.

6. Modelling ERTMS in Real-Time Maude

In the following, we provide an overview of our model. Figure 4 illustrates the struc-
ture of our specification. First we discuss the static data types (context) and messages
used in our model; then we look at the instantaneously reacting sub-systems, i.e., con-
troller, interlocking, and RBC; finally, we describe how we capture train behaviour, which
requires differential equations describing motion. We note that our model is generic,
with location-specific data as a parameter. This location-specific data has been encoded
manually, however this process could be automated, for example, within the OnTrack
toolset [25].

6.1. Datatypes: Location-specific Data and Messages

We model the rail topology as a connected collection of tracks, points, and routes
and provide a systematic translation into Maude. For the example given in Figure 2, the
location-specific data is encoded in Maude as follows:

sort Track . ops AA AB AC ... : -> Track .
sort Point . ops P1 P2 : -> Point .
sort RouteName . ops RouteName1A ... : -> RouteName .
sort MarkerBoard . ops MB1 MB2 ... : -> MarkerBoard .

The connection between tracks is given by a next function. For each track the next
track that a train will travel along depends on the direction in which a train enters the
track. A train’s direction is determined by the marker board that the train is currently
travelling towards. If the track in question is a point, e.g., track AB, it has more than
one potential successor. For example, if a train is travelling from left to right, then the
tracks AC and BC are both possible successors, depending on the current setting of the
point.

15

Controller

RBC

Train

Interlocking

Control Tables

RBC Tables

Topology Messages

Location-Specific
Data

Active
Sub-Systems

Context and
Messages

Figure 4: Structure of our specifications.

sort PointPos .
ops normal reverse : -> PointPos .
op next : Track MarkerBoard PointPos -> Track .

var PPos : PointPos .
var MB : MarkerBoard .

ceq next(AA, MB, PPos) = AB if MB == MB2 or MB == MB3 .
ceq next(AB, MB, normal) = AC if MB == MB3 or MB == MB4 .
...
eq next(AA, MBOp, PPos) = Exit .

The various tables (clear and release tables for the interlocking and the tables of the
RBC) are encoded by defining a function for each column. A typical example is the
“Clear Tracks” column of the control table in Figure 2:

op clearTracks : RouteName -> SetOfTracks .
eq clearTracks(RouteName1A) = (AA, AB, AC) .
...
eq clearTracks(RouteName4) = (AA, AB, AC, AD, AE, AF) .

The ERTMS components exchange a number of messages, see Figure 3. As we are dealing
with a single geographic region, controller, interlocking, and RBC are unique. Thus, for
most messages no object identifier is needed:

msgs routerequest proceedrequest ... : RouteName -> Msg .

This is in contrast to messages involving trains. For instance, the message

msg magrant : Oid MarkerBoard Nat -> Msg .

grants a movement authority (encoded as a natural number determining the position to
which the train is allowed to travel along with marker board information) to a specific
train with an object identifier of type Oid. Finally, as already specified in the previ-

16

ous section, we consider messages as urgent, i.e., they will be read immediately; their
processing time/maximal time elapse is set to zero.

eq mte(M:Msg) = 0 .

6.2. Controller

An ERTMS controller issues route requests to the interlocking. Section 4.1 gives a
full description of the events and messages that are involved in this process. In order
to make route requests after a given time interval has passed, the controller contains a
counter that is used to initiate a route request message being generated. Similarly, for
efficiency reasons when it comes to model-checking, we also have a flag that indicates
when the controller can stop making new requests. Therefore, a controller is modelled
by an object of the following class Controller, whose attributes counter and end
denote, respectively, the time until the next route request and a Boolean indicating
whether the controller has stopped working.

class Controller |
counter : NNegRat, --- Time until next route request.
end : Bool . --- Once true controller can stop requests.

The following equations demonstrate behaviour of a controller that is still in action (flag
end = false) and has N seconds left before issuing the next route request. In case time
progresses by an amount R, where N<=R6, a routerequest message will be sent (with
a randomly generated or chosen route as argument, depending on the strategy explained
below) and the counter will be reset. In case N>R holds, the counter will be updated to
N-R. (That is N monus R in Maude, which is the maximum of N-R and 0.)

ceq delta(< O2 : Controller | counter : N, end : false >, R)
=
routerequest(randomRoute)
< O2 : Controller | counter : (requestTime monus (R monus N)) >
if (N <= R) .

ceq delta(< O2 : Controller | counter : N, end : false >, R)
=
< O2 : Controller | counter : (N monus R) >
if (N > R) .

For a general safety analysis, a random controller that can request routes in any order
is considered: randomRoute is given by

op randomRoute : -> RouteName .
rl randomRoute => RouteName1A .
...
rl randomRoute => RouteName4 .

and can non-deterministically become any possible route. Alternatively, it is possible to
perform safety analysis relative to a specific strategy, for example, as given by a train
timetable; for instance here is the route order of a round-robin controller that requests
routes as follows – 1A first, followed by 1B, until route 4, starting over with 1A again:

6In this case actually R=N will hold as R is bound by the maximal time elapse of the controller which
is N.

17

eq routeOrder = (RouteName1A : RouteName1B : ... : RouteName4) .

For further details we refer to the implementation. The computation of the maximal
time elapse ensures that there is indeed a sampling point when the counter becomes 0
and a new route is to be requested.

eq mte(< O1 : Controller | counter : N, end : false >) = N .
eq mte(< O1 : Controller | counter : N, end : true >) = INF .

Finally, for the purpose of optimising verification, the flag end will be set to true
when an ‘end‘ message sent by a train arrives which, in the case of two trains and when
checking for collision-freedom, can be sent as soon as one train has left the railway plan
– i.e., no collision can happen anymore.

rl endmsg(O) < O2 : Controller | end : false >
=> < O2 : Controller | end : true > .

6.3. Instantaneously Reacting Sub-Systems

The processing times of an interlocking and RBC are negligible compared to the
time that it takes a train to pass a track. Thus, in our modelling we assume that these
components react instantaneously when a message arrives, specified for the interlocking
as:

eq mte(< O1 : Interlocking | >) = INF .

Interlocking. In rail control systems, the interlocking provides a safety layer between
controller and track. To this end, it monitors the physical rail yard by storing the relevant
information within its fields:

class Inter |
occ : MapTrack2Bool, --- Track occupation.
pointPositions : MapPoint2PointPos. --- Point positions.
pointslocked : MapPoint2Bool, --- Points locked by a route.
routeset : MapRouteName2Bool, --- Currently set routes.

occ stores which tracks are currently occupied (by mapping tracks to booleans),
pointPositions stores for each point whether or not it is in normal or in reverse
position, pointslocked stores whether a point is currently locked by a route, and
finally, routeset stores which routes are currently set.

The interlocking is a passive component, i.e., only upon receiving a message it possibly
changes its state and/or sends a message. Section 4.2 gives a full description of the events
and messages that it reacts to and generates. A typical action of the interlocking is to
decide if a route request from the controller is safe to grant:

crl routerequest(RN1)
< O : Inter | routeset : MAPRNB1,

occ : MAPTB1,
pointslocked : MAPPB3 >

=>
< O : Inter | > if (not checkClear(RN1, MAPTB1)) or

pointsLocked(RN1, MAPPB3) .

18

A route request by the controller is ignored in the case that the tracks specified in the
clear table for route RN1 are occupied or the points of route RN1 are locked in different
positions.

If the route being requested by the controller is already set, the interlocking does
nothing and ignores the route request:

crl routerequest(RN1)
< O : Inter | routeset : MAPRNB1 >

=>
< O : Inter | > if (MAPRNB1[RN1] == true) .

Finally, in the case that it is safe to set the route requested by the controller, the
interlocking will issue a setroutes message to the RBC informing it that the route is
now available for use by a train. For a route to be set safely, the interlocking must ensure
that the points required for use by the route are not locked by another route, the tracks
used by the route are not occupied, and the route is not already set:

crl routerequest(RN1)
< O : Inter | routeset : MAPRNB1,

pointslocked : MAPPB3,
occ : MAPTB1,
pointPositions : MAPPP1 >

=>
< O : Inter | routeset : setRoute(RN1, MAPRNB1),

pointPositions : setPoints(RN1, MAPPP1) >
setroutes(setRoute(RN1, MAPRNB1))
if ((not pointsLocked(RN1, MAPPB3)) and

checkClear(RN1, MAPTB1) and
not (MAPRNB1[RN1] == true)) .

We omit details of the checkClear operation which checks that each track listed within
the control table for the requested route is unoccupied.

RBC. The RBC mediates between requests from the trains to extend their movement
authorities and the successful route requests by the controller. To this end it reconciles
two different views of the rail yard: trains use continuous data to represent their position
(in our model the distance from their entry point of the rail yard); the interlocking uses
discrete data (track occupation, set routes, point positions etc.) in its logic. Section
4.3 gives a full description of the events and messages that are reacted to and generated
by the RBC. In our model, we take a rather simplified and also abstract view on the
challenges involved. Namely, we abstract the mapping between continuous and discrete
data into the tables presented in Figure 2. These tables present the core information
needed by the RBC for computing movement authorities. In particular, we abstract
away particular implementation details regarding e.g. the encoding formats used for the
data.

In our model, the RBC only holds information on successful route requests (in
availableRoutes) and for which trains (characterised by their Oid) it currently has
an open “request to proceed” (in designatedRoutes):

class RBC |
availableRoutes : SetOfRouteNames, --- Available set routes.
designatedRoutes : MapOid2RouteName . --- Stores which routes are

--- designated to trains.

The RBC is also a passive system component. A typical reaction is when the inter-
locking sends a “proceed message” for a particular route RN. Below, the RBC sends a

19

new “end of authority” message to the train and removes the corresponding request from
its internal state.

rl proceedgrant(RN)
< O2 : RBC | designatedRoutes : MAPTRN >
=>
magrant(getTrain(RN, MAPTRN), markerBoard(RN),endOfAuthority(RN))
< O2 : RBC |
designatedRoutes : removeRoute(getTrain(RN, MAPTRN),MAPTRN) > .

6.4. Trains

The Train class is the main entity in our model. It is heavily time dependent. We
designed it, at a high level, as an automaton with four movement modes (called states),
namely stop, acc (acceleration), cons (constant maximal speed), and brake. There
are six transitions, stop → acc → cons → brake → stop, and acc ↔ brake. In
addition, it has fields representing the current distance, speed, acceleration/deceleration
rate, movement authority, name of the marker board the train is travelling towards,
current track segment which the front of the train is on, current track segment of the
rear of the train, maximum speed, length of the train, maximal time elapse (see below
for explanation) and, for internal reasons to make model-checking feasible, a field end
indicating whether a train has left the rail yard. dist denotes the position of the front
of the train. We make the assumption that trains are shorter than track segments.7

class Train |
state : TrainState,--- One of acc, cons, brake, stop.
dist : NNegRat, --- Current position relative to entry point.
speed : NNegRat, --- Current speed, between 0 and maxspeed.
ac : NNegRat, --- Acceleration/deceleration rate (abs value).
ma : NNegRat, --- Movement authority, relative to entry point.
mb : MarkerBoard, --- Markerboard the train is travelling towards.
tseg : Track, --- Current track segment of the train’s front.
tsegR : Track, --- Current track segment of the train’s rear.
maxspeed : NNegRat,--- Maximum speed.
length : NNegRat, --- Length of the train.
mtemin : TimeInf, --- The train’s maximal time elapse

--- (which is the minimum of four mte values).
end : Bool . --- Initially false, set to true if train has

--- left the rail yard.

Train movement. We assume that a train’s acceleration, seen as a function over time,
is piece-wise constant, and, for simplicity, use the same absolute value for the rate of
both acceleration and braking. Below, we show and explain the equations defining the
operation delta (discussed earlier) for several movement modes and mode transitions.

Recall from Section 5 that the time R a system can progress is bound by the overall
maximal time elapse. This overall maximal time elapse of the system is defined as mini-
mum of the maximal time elapse of all the system’s components (and the tick frequency,
e.g. every second)8.

7We note that we are concentrating on a proof-of-concept that all system components can be modelled
at once, and therefore incorporated several simplifying assumptions. The assumption about train length
is not critical; removing it would essentially just lead to further case distinctions.

8Later in this section we show how to compute the maximal time elapse for a train.

20

We start our discussion of train modelling with the situation that a train in acceler-
ating state after time R still accelerates, i.e., neither has reached full speed nor needs to
start braking. The equation computes the new configuration of a train O after time R
from its old configuration and the data held by the interlocking O1.

*** acc=>acc
ceq < O1 : Inter | pointPositions : PointSettings >

delta(< O : Train | state : acc,
dist : DT, speed : S, ac : A,
ma : MA, tseg : AN, tsegR : ANR,
maxspeed : MAX, mtemin : T1 >,

R)
=
< O1 : Inter | > trackseg(PointSettings,
< O : Train | state : acc,

dist : DT + S * R + (1/2) * A * R * R,
speed : S + A * R,
mtemin : T1 monus R >)

if
ANR =/= Exit and
S + R * A < MAX and
DT + ((S * S) / (2 * A)) + 2 * (S * R) + R * R * A

<= MA monus e .

We recall that it is sufficient to list only those attributes that are updated; for instance,
the interlocking does not change at all, therefore in the right hand side we just list < O1
: Inter | > with no further attributes. The interlocking provides information about
the current point settings. This is necessary as we have not modelled the track equipment
explicitly. (If we had, then the information whether the points are set and whether a
train has traversed to new track segment would be provided by the track equipment
component rather than the interlocking.) For a moment, let us further assume that, in
the period R, the train does not traverse to a new track segment; in that case the function
trackseg, which will take a newly updated train object and the PointSettings
from the interlocking, will just return the newly updated train object without further
modification. Thus, we can focus on how trains objects are updated: Trains move
according to Newton’s laws, i.e., for trains with distance DT, speed S, and acceleration
rate A, we have after time R:

Snew(S,A,R) = S + A*R

DTnew(DT,S,A,R) = DT + S*R + 1
2*A*R

2

A train’s maximal time elapse mtemin is updated relative to its previous value (see
discussion at the end of the section). The conditions ensure that the train is not on the
Exit track (1st condition), nor has reached the allowed maximal speed (2nd condition),
and also does not need to start braking, due to the end of the movement authority being
close (3rd condition). The correctness of the latter can be seen as follows: If a train
with speed S is fully braking it needs the braking time bt(S) = S/A to come to a halt.
During that time it will have travelled the braking distance :

bd(S) = DTnew(DT,S,-A,bt(S)) - DT = S2/(2*A)

The condition on the maximally allowed time R for a train at position DT with speed S
to maximally accelerate is

DTnew(DT,S,A,R) + bd(Snew(S,A,R)) <= MA monus e
21

We subtract a small amount e, e.g., e = 1, to avoid that the train would start or
keep accelerating in the case that the train is already close to the end of the movement
authority. An easy calculation shows that the left hand is equal to

DT + 2*S*R + A*Rˆ2 + Sˆ2/(2*A)

The cases ‘max speed reached’ or ‘train needs to start braking’ are covered by the
next equation, which includes a state change9 from acc to cons, respectively brake,
and a re-computation of the maximal time elapse of the train (via the function newmte,
see below).

*** acc => brake, acc => cons
ceq < O1 : Inter | pointPositions : PointSettings >

delta(< O : Train | state : acc,
dist : DT, speed : S, ac : A,
ma : MA, tsegR : ANR, maxspeed : MAX >,

R)
=
< O1 : Inter | >
trackseg(PointSettings,
newmte(< O : Train |

state : if (DT + ((S * S) / (2 * A)) +
2 * (S * R) + R * R * A > MA monus e)

then brake
else cons fi,

dist : DT + S * R + (1/2) * A * R * R,
speed : S + R * A >))

if
ANR =/= Exit and
(S + R * A >= MAX or
(DT + (S * S) / (2 * A) + 2 * (S * R) + R * R * A > MA monus e)) .

For illustration, we also show some of the equations for a train in the other states;
the remaining (omitted) equations are similar. The first one is for a train that can start
moving, as its movement authority is sufficiently large. Note that we require that the
end of the movement authority is at least more than 1m ahead, otherwise a train that
just came to a standstill would start moving again.

*** stop => acc.
ceq delta(< O : Train | state : stop,

dist : DT, ma : MA, tsegR : ANR >,
R)

=
newmte (< O : Train | state : acc >)
if ANR =/= Exit and DT < MA monus e .

The next two equations are for a train in the cons state. Both are similar to the acc
state, but simpler due to the acceleration being 0.

*** cons => cons
ceq < O1 : Inter | pointPositions : PointSettings >
delta(< O : Train | state : cons,

dist : DT, speed : S, ac : A,
ma : MA, tsegR : ANR,
mtemin : T1 > ,

R)
=

9We included the state changes into the equation to ensure that state change and possible track
segment updates are done at the same time.

22

< O1 : Inter | pointPositions : PointSettings >
trackseg(PointSettings,
< O : Train | state : cons,

dist : DT + S * R,
speed : S,
mtemin : T1 monus R >)

if
ANR =/= Exit and
(DT + ((S * S) / (2 * A)) + S * R < MA monus e) .

The following demonstrates how a movement authority request is sent when braking
starts.

*** cons => brake
ceq < O1 : Inter | pointPositions : PointSettings >
delta(< O : Train | state : cons,

dist : DT, speed : S, ac : A,
ma : MA, tseg : AN, tsegR : ANR,
mtemin : T1 > ,

R)
=
< O1 : Inter | pointPositions : PointSettings >
marequest(O, AN)
trackseg(PointSettings,
newmte(< O : Train | state : brake,

dist : DT + S * R,
speed : S >))

if
ANR =/= Exit and
DT + ((S * S) / (2 * A)) + S * R >= MA monus e .

Note that we include sending the movement authority request in the equation, again to
ensure that the request, track segment update, and re-computation of the maximal time
elapse are happening at the same time, thereby fixing the order in which things happen.
Movement authority requests will regularly be resent in the braking and stop state,
the frequency depending on the maximal time elapse of the respective states.

Once a train has reached the exit, it will send an end message, to be consumed by
the controller.

eq delta(< O : Train | tsegR : Exit, end : false > , R)
=
endmsg(O) < O : Train | end : true > .

eq delta(< O : Train | end : true > , R)
=
< O : Train | > .

Further interaction with other components. We have already discussed some of the inter-
actions where the train sends messages, for instance, requests a new movement authority.
In the following we present the rule for a train O with a current movement authority MA,
receiving a new movement authority N (towards the marker board MB).

crl magrant(O1, MB, N)
< O : Train | ma : MA >
=>
< O : Train | ma : N, mb : MB > if MA + 1 <= N .

If a train traverses to a new track segment, it is required that the interlocking is informed
and that the track segment stored in the train is updated. This is done by the function

23

trackseg which we already mentioned in the previous paragraph in the case that noth-
ing needs to be done, i.e., no track segment transition takes place. Below, we first show
the equation for this case, where, in more detail, after a movement neither the position
of the front of the train, DT, nor the rear, DT monus L, are on a new segment:

op trackseg : MapPoint2PointPos Configuration -> Configuration .
ceq trackseg (PointSettings,

< O : Train | dist : DT,
tseg : AN, tsegR : ANR,
length : L, mb : MB >)

=
< O : Train | >
if
DT <= endof(AN, dir(MB)) and
DT monus L <= endof(ANR, dir(MB)) .

In the case where the front of a train has entered a new track segment, the maximal time
elapse of the train will need to be recomputed, and a message indicating the transition
to the new track segment is sent to the interlocking. The function computeNext (we
omit the straight forward definition) computes the new track segment from the old track
segment and the information about the marker board and point settings.

ceq trackseg (PointSettings,
< O : Train | dist : DT,

tseg : AN, tsegR : ANR,
length : L , mb : MB >)

=
newmte (< O : Train |

tseg : computeNext(AN, MB, PointSettings) >)
tsegtransitionFront(AN, computeNext(AN, MB, PointSettings))
if
DT > endof(AN, dir(MB)) and
DT monus L <= endof(ANR, dir(MB)) .

Finally, if the rear traverses to a new track segment, a tsegtransitionRear message
will be sent to the interlocking, which will release the old track segment.

Computation of maximal time elapse. The time R that the system can progress by is
bounded by the maximal time elapse which, for a train, is computed by the function
newmte as the minimum of the following cases: (1) constant speed is reached, (2) the
distance to MA monus e/2 becomes smaller than the braking distance,10 (3) the front
of the train reaches a new track segment, (4) the rear of the train reaches a new track
segment. We show the equations for the re-computation of the maximal time elapse and
the four cases for the state acc (omitting the sort information):

eq newmte(< O : Train | state : TS, dist : DT, speed : S, ac : A,
ma : MA , tseg : AN, tsegR : ANR, mb : MB,
maxspeed : MAX, length : L , end : false >)

=
< O : Train | mtemin : min(mteCons(TS, DT, S, A, MAX),

mteMA(TS,DT, S, A, MA),
mteTrans(TS,DT, S, A, MA, AN, MB),
mteTransR(TS,DT, S, A, MA, ANR, L, MB)) > .

eq newmte(< O : Train | end : true >)
= < O : Train | mtemin : INF > .

eq mte (< O : Train | mtemin : T1, end : false >) = T1 .
eq mte (< O : Train | end : true >) = INF .

10monus e/2 to ensure that the train comes to a halt between MA monus e and MA independent of
any rounding error.

24

(1) eq mteCons(acc, DT, S, A, MAX) = ((MAX monus S) / A) .
(2) eq mteMA(acc, DT, S, A, MA) =

solveEq(A, 2 * S, (DT + ((S * S) / (2 * A))) - (MA monus e/2)) .
(3) eq mteTrans(acc,DT, S, A, MA, AN, MB) =

solveEq(A / 2, S, DT - (endof(AN, dir(MB)) + e/2)) .
(4) eq mteTransR(acc,DT, S, A, MA, ANR, L, MB) =

solveEq(A / 2, S, (DT - L) - (endof(ANR, dir(MB)) + e/2)) .

In case (3) we need to compute the mte as the maximal solution of the quadratic
equation DT + S*R + A*R*R/2 = endof(AN) + e/2 which is done by the func-
tion solveEq. Similarly, for (2) and (4). The value e/2 is added to ensure that the
train is indeed on the new track segment.

We also show mteMA for the brake state. In that case, it is a constant, e.g., y = 1,
after which a new movement authority request will be sent.

eq mteMA(brake, DT, S, A, MA) = y .

mteMA for the cons is similar to the acc state. mteMA for the stop case is also constant.

Rounding errors and physical uncertainties. In order to be able to prove that our time
sampling is time-robust, one condition we need to check is that the maximal time elapse
of a train satisfies: (5) mte(delta(train, R)) = mte(train) - R for all R <=
mte(train) (see (OO1) in Sect. 7.2). This would hold if, e.g. in the case of (3),
mte(train) is determined by an exact solution R of the equation DT + S*R + A*R*R/2
= endof(AN). However, in our modelling, time is modelled by the rational numbers
(enriched with INF). Thus, we work with a rational approximation of the root, using
Maude’s built-in root function11 for floating point numbers, and convert the result back
a rational number. Overall, this implies that the sampling point is not exactly the time
when the train reaches the new track segment, but when the train is approximately
e/2 metres on the new track segment (i.e., +/- e/100 metres due to rounding).12

This small shift of the sampling point needs to be taken into account when formulating
the safety condition and showing completeness, see Section 7. Furthermore, we store
the maximal time elapse in the train’s state, mtemin, to be able to fulfil (5) exactly:
Whenever time evolves by a value R < mtemin we subtract R, rather than computing
mtemin freshly and getting to a different approximation due to the inevitable rounding.
Only at points where the system undergoes an instantaneous transition, see (1)-(4) above,
will new mte values be computed. Concluding, we note that there is a slight discrepancy
between the exact modelling, needed to be able to apply the completeness result, and the
real world situation, where we have to deal with further uncertainties (see Section 11).

7. Modelling safety and addressing completeness

In this section we define a physical and a logical property guaranteeing collision-
freedom of two trains and argue, using the results in [31], that model-checking is complete
for these properties.

11Alternatively, we could implement the Newton method in Real-Time Maude, but the results are
sufficiently precise.

12The inaccuracy in the determination of the sampling point does not concern the position of the
train, therefore this can not lead to an accumulation of errors.

25

7.1. Defining Collision-Freedom

It is our goal to show that trains are at least a certain minimum distance apart at
all times. To this end we first define a property nocrahshDistance that says that the
heads of two trains are at least minDist metres apart at all sampling times, see Figure 5.
We then model-check this property for a large enough value of minDist to ensure the
required effective minimum distance is respected at all times, taking into account the
lengths of trains and maximal acceleration values as well as the length of time sampling
intervals.

We define safety for a configuration which consists of two train objects and some no
further specified REST:

eq { REST < train1 : Train | tseg : T1 , dist : DT1, mb : MBA>
< train2 : Train | tseg : T2 , dist : DT2, mb : MBB > }

|= nocrashDistance(train1, train2)
=

((not (T1 == Entry) and not (T2 == Entry) and
not (T1 == Exit) and not (T2 == Exit))

and (T1 == T2 or
T1 == next(T2, mb : MBB, normal) or
T1 == next(T2, mb : MBB, reverse) or
T2 == next(T1, mb : MBA, normal) or
T2 == next(T1, mb : MBA, reverse)))

implies
distance(DT1, MB1, DT2, MB2) >= minDist .

where

eq distance(DT1,MB1,DT2,MB2) = abs(rdist(DT1,MB1)-rdist(DT2,MB2)) .

eq rdist(DT,MB) = if dir(MB) == Up
then DT else (TLength monus DT) fi .

This formula reads: a configuration with two objects train1 and train2 of the
class train satisfies the parameterised formula nocrashDistance iff the states of the
two train objects under consideration are in the relation specified in the right-hand side
of the equation. T1 and T2 are the track segments, DT1 and DT2 are the positions of the
two trains relative to the reference point where they started, and MBA and MBB are the
marker-boards that the two trains are travelling towards respectively. rdist computes
their distance to the reference point to the left (where TLength is the total length of the
rail yard), and distance computes the distance between the trains. In the formula we
check that the two trains are at least minDist metres apart, provided they are not on
an Entry or Exit track, and provided they are on the same (T1 == T2) or on adjacent
tracks.13 The second condition is necessary as we model positions from a single reference
point on the Entry track. For instance, on the track plan shown in Figure 2, we can
have one train on track BC and another train on track AC, both with the same distance,
though by no means colliding with each other.

The traditional logical way of guaranteeing collision-freedom is to require that two
trains are never on the same track:

eq { REST < train1 : Train | tseg : T1 >
< train2 : Train | tseg : T2 > }

13We note that as all tracks are greater in length than our safety distance, this definition of adjacency
suffices.

26

|= nocrashTracks(train1, train2)
= (not (T1 == Entry) and not(T2 == Entry) and

not(T1 == Exit) and not(T2 == Exit))
implies not (T1 == T2) .

This formula defines a relation nocrashTracks(train1, train2) which holds iff
the two trains are not on the same track provided they are both ‘within’ the overall
railway system, i.e. neither at an entry nor at an exit.

There is one caveat to this condition: T1 and T2 are the track segments stored
within the two trains, which, for a short while (≤ 0.501/60 seconds, assuming a maximal
speed of 60m/s), may be different from the track segments the trains are actually on.
This is due to the slightly late update of a train’s track segment fields mentioned at the
end of Section 6.4. Therefore, the formula’s conclusion not (T1 == T2) concerning
the field values within the train objects does not necessarily guarantee that the (physical
positions of the) two trains are actually on different track segments at the sampling time.
However, this does not compromise safety. In our model, two trains can only be on the
same track segment if the trailing train’s head is on the first 0.501 metres while the head
of the leading train is on the last 0.501 metres of that track segment. Otherwise, the two
trains would store the same track segment after the trailing train gets its fields updated,
contradicting the validity of the formula not (T1 == T2). Therefore, the actual effective
distance of two trains can drop no more than 1.002 metres below the safety distance
predicted by the model checking, which, is the minimal track length in the plan minus
maximal train length. Since the safety distance is way larger than 1 metre, this slight
drop is negligible. Furthermore, it is way smaller than the accuracy of track occupation
information for real interlockings, which is in the order of ±3 metres.

7.2. Completeness

In Section 9 we model-check the safety properties defined above using the default and
the maximal time sampling strategies. An important question is whether the checking
is complete, that is, whether it implies that the safety properties hold at all times, not
only at the times sampled. For the property nocrashDistance, which we model-
checked using the default sampling strategy, the problem to consider is that the distance
of the two trains might drop between two adjacent time sampling points r1 < r2 below
the allowed minimum. This case can occur when a fast train that is maximally braking
(acceleration = −a) follows a slow train that is maximally accelerating (acceleration = a)
and the two trains reach the same speed exactly in the middle between r1 and r2. In that
case the distance of the two trains at time (r1 +r2)/2 is by the amount of a((r2−r1)/2)2

lower than at the sampling times r1 and r2. The lemma below shows that this is the
worst possible case.

We note that we only consider the relevant scenarios, namely, that the two trains
train1 and train2 move either towards each other or in the same direction. These
scenarios are summarised in Figure 5 which shows the possibility of both a head-to-head
collision and a head-to-tail collision.

Lemma. To ensure a minimum distance dmin between train1 and train2 at all times
it suffices to model-check the property nocrashDistance for the value

minDist = dmin + lmax + a(∆/2)2

27

where lmax is the maximum of the lengths of the trains, a is the maximal possible absolute
value of accelerations of the trains and ∆ is the maximal length of the time sampling
intervals.

Proof. Let d(r) be the distance of the two trains at time r. Due to our assumption that
the trains do not move away from each other and the fact that our trains always ‘pull’, i.e.
have their heads at the front, we know that d(r) ≥ dh(r)−lmax where dh(r) is the distance
of the trains’ heads at time r. If we successfully completed the required model-checking
we also know that at every time sampling point r, dh(r) ≥ dmin + lmax + a(∆/2)2, and
therefore d(r) ≥ dmin + a(∆/2)2. Let r0 be a time where d(r0) is minimal. We have to
show that d(r0) ≥ dmin. If r0 is an end-point of the entire time interval, then it is a time
sampling point and hence we are done. Otherwise, d0 is in the interior of the time interval.
Since d(r) is a differentiable function of r it follows that its derivative, the relative speed
of the trains, is zero at r0. Therefore, since 2a is an upper bound of the absolute value
of the relative acceleration of the two trains, we have d(r) ≤ d(r0) + 2a|r − r0|2/2 =
d(r0) + a|r − r0|2 at any time r. Since the time point r0 is at most ∆/2 away from the
nearest time sampling point r′ it follows

dmin + a(∆/2)2 ≤ d(r′) ≤ d(r0) + a|r′ − r0|2 ≤ d(r0) + a(∆/2)2

hence dmin ≤ d(r0). �

DistA < Pos(MBA)

MBA ->

DistB < Pos(MBB)

MBB ->
Dmin

Head-to-tail

DistB < Pos(MBB)

<- MBB

MinDist

DistA < Pos(MBA)

MBA ->

Head-to-head

MinDist

Figure 5: Illustration of safety distance between trains.

With respect to a head-to-head collision, Figure 5 highlights two trains. The first
one travelling towards marker board MBA, with the position of the head of the train
DistA being before the position of this marker board Pos(MBA). The second train is
then travelling the opposite direction towards marker board MBB, again with the the
head of the train DistB being before the position of the marker board Pos(MBB). In
such a scenario, our modelling ensures that the heads of the trains are the full minDist
= dmin + lmax + a(∆/2)2 apart.

With respect to a head-to-tail collision, Figure 5 again highlights two trains, but this
time travelling in the same direction. In this setting, we again ensure the positions of the

28

heads of the two trains are the full minDist = dmin + lmax + a(∆/2)2 apart. However,
notice that the safety distance between the head of the first train and tail of the second
is only guaranteed to be dmin.

Regarding the property nocrashTracks, one can show completeness of the max-
imal time elapse strategy, with respect to unbounded model-checking, by verifying the
criteria given by Ölveczky and Meseguer in [31]. Essentially, one needs to prove that
the property being checked is tick-stabilising and the system is time-robust. Time-robust
means, roughly speaking, that the time in the system can be advanced by any amount,
but an instantaneous rewrite rule can only be applied when the system has advanced
time by the maximal possible amount. Tick-stabilisation means, roughly speaking, that
between two sampling points the property may change its truth value at most once. This
is the case for nocrashTracks since this property mentions only the discrete compo-
nents T1 and T2 of the states of the trains which may change only immediately before
the sampling points. Time-robustness for object-oriented systems is characterised in [31]
for an object t by the following conditions on the maximal time elapse function mte and
the function delta specifying the change of the configuration in the tick rule:

OO1. mte(delta(t, r)) = mte(t)− r for r ≤ mte(t).

OO2. delta(t, 0) = t.

OO3. delta(delta(t, r), r′) = delta(t, r + r′) for r + r′ ≤ mte(t).

OO4. mte(t) = 0 for each left-hand side of an instantaneous rewrite rule.

OO1 and OO4 hold as can be easily seen from our modelling of ERTMS. In fact, the mte
components of the trains were added precisely to make OO1 hold true, trivially. OO2
and OO3 can also been seen to hold, by carefully checking the definition of delta for
objects. For example, consider the rule shown in Section 6.4 that defines delta for a
train that accelerates and continues doing so. That OO3 holds can be verified directly,
but it also follows from the fact that the speed and distance are the first and second
integral of the acceleration and integration is additive. In order for the equation OO3 to
hold exactly it is important that we are able to integrate exactly.

Note that the property nocrashDistance is not necessarily tick-stabilising since,
as elaborated in the discussion of the correctness of the default time sampling strategy
above, the distance of two trains may drop unnoticed below the threshold between two
time sampling points unless we can control the lengths of the time sampling intervals,
which we can’t if we apply the maximal time elapse strategy. Hence, model-checking the
property nocrashDistance using the maximal time elapse strategy would not provide
direct evidence for its validity at all times.

8. Validation Through Simulation and Error Injection

We give a number of scenarios to illustrate that our modelling is able to capture
typical errors that are made when designing ERTMS subsystems. Concerning verification
tools, we rely on the model-checking capabilities of Real-Time Maude to provide the
relevant counterexamples. In carrying out the verification, our starting point is that the
generic models of the interlocking, RBC and trains are correct. However, we make no

29

assumptions about the correctness of the instantiation of our modelling with concrete
design decisions, that is the control tables, release tables and RBC tables. Throughout
the following scenarios, for ease of reading, we present all rational numbers involved in
the simulations as floating point numbers rounded to two decimal places.

8.1. Simulation

We first demonstrate via simulations that trains can move as expected. Our first
example concerns the behaviour of one train moving through the rail yard in Figure 2.
The train first accelerates and then has to come to a standstill before the end of its
movement authority. It starts on track Entry, with a movement authority of 3249m.
The interlocking already has a preset route, thus the train can start immediately. To this
end, we use the Real-Time Maude trew command to execute our model up to a given
time bound.

(trew {
< inter1 : Inter | routeset : (RouteName1B |-> true)

pointPositions : (P1 |-> reverse,
P2 |-> reverse) , ... >

newmte(< train1 : Train | state : acc, dist : 110, speed : 0,
ac : 1, ma : 3249, tseg : Entry , tsegR : Entry,
maxspeed : 60, length : 100, mtemin : 0, ... >)}

in time <= 0 .)

At time 0 the train is not yet moving, but the function newmte will compute the maximal
time elapse indicating when the next state change will happen.

Result ClockedSystem : { < inter1 : Inter | ...>
< train1 : Train | state : acc, dist : 110, speed : 0,
ac : 1, ma : 3249, tseg : Entry , tsegR : Entry,
maxspeed : 60, length : 100, mtemin : 13.37 .. >} in time 0 .

Thus, we look at the system again at time 14:

(trew {
< inter1 : Inter | routeset : (RouteName1B |-> true)

pointPositions : (P1 |-> reverse,
P2 |-> reverse) , ... >

newmte(< train1 : Train | state : acc, dist : 110, ...)> }
in time <= 14 .)

That is, when the front of the train traversed to track segment AA.

Result ClockedSystem : { < inter1 : Inter | ...>
< train1 : Train | state : acc, dist : 199.49, speed : 13.37,
ac : 1, ma : 3249, tseg : AA, tsegR : Entry, ...
mtemin : 6.09, .. >} in time 13.37 .

After a further 6.09 seconds, the rear end of the train will be on AA. From then on, the
train accelerates until, at time 56.02, it has to brake.

Result ClockedSystem :
{marequest(train1,AB) < inter1 : Inter | ...>
< train1 : Train | state : brake, dist : 1679.24, speed : 56.02,
ac : 1, ma : 3249, tseg : AB, tsegR : AB, ... >} in time 56.02

It will issue a movement authority request 1s later.

{marequest(train1,AB) < inter1 : ...>
< train1 : Train | speed : 55.02, ... >} in time 57.02

30

The system cannot progress, unless we add an RBC to our configuration.

(trew { < inter1 : Inter | ... > < train1 : Train | ... >
< rbc1 : RBC | availableRoutes : empty ,

designatedRoutes : empty >} in time <= 113 .)

As no follow-up route is available in the RBC, the train will eventually stop at 3248.49m
on BC.

{< inter1 : Inter | ... > < rbc1 : RBC | ... >
< train1 : Train | state : stop, dist : 3248.49, speed : 0,
ma : 3249, tseg : BC, ... >} in time 112.04

To let the train progress, we need to add a controller to our start configuration that
requests new routes:

< ctr1 : Controller | counter : 10, routes : routeOrder, ... >

If we now let the system run, we see that the movement authority gets extended to
7999m.

{< inter1 : Inter | ... > < rbc1 : RBC | ... >
< train1 : Train | ma : 7999, state : ac, mb : MB4,

tseg : BD, ... > < ctr1 : ... >} in time 65

Finally, we add a second train to our original start configuration

newmte(< train2 : Train | state : stop, dist : 110, speed : 0,
ac : 1, ma : 1, tseg : Entry , tsegR : Entry, maxspeed : 60 ,
length : 100, mtemin : 0, end : false, mb : MB0 >)

and find in this scenario the first train will remain on the upper route, whilst the second
traverses the bottom opposite route (The first train has come to a standstill; but earlier,
e.g., at time 80, both were still accelerating).

{< inter1 : Inter | ... > < rbc1 : RBC | ... >
< train1 : Train | state : stop, ma : 3249, mb : MB2,
tseg : BC, ... > }

< train2 : Train | state : cons, ma : 7999, mb : MBOp,
tseg : AF, ... > < ctr1 : ... >} in time 160

8.2. Error Injection

This section shows that our modelling is able to find errors in the design of various
ERTMS components. The following scenarios use our random controller with a fixed
route request interval of 25 seconds. We check the safety condition presented in Sec-
tion 7.1. Furthermore, we model one slow train (max speed 20m/s) and one fast train
(max speed 60m/s), as shown in the below specification. Further examples of error
injections into our model, especially concerning train parameters, are presented in [26].

eq initState = {
< ctr1 : Controller |

counter : 1,
end : false >

< inter1 : Inter |
pointPositions : (P1 |-> reverse, P2 |-> normal),
routeset : empty,
occ : empty,
pointslocked : empty >

< rbc1 : RBC |

31

availableRoutes : empty ,
designatedRoutes : empty >

< train1 : Train |
state : stop, dist : 110,
speed : 0, ac : 1,
ma : 1, tseg : Entry,
tsegR : Entry, maxspeed : 20,
length : 100, mtemin : 1,
end : false, mb : MB1 >

< train2 : Train |
state : stop, dist : 110,
speed : 0, ac : 1,
ma : 1, tseg : Entry,
tsegR : Entry , maxspeed : 60,
length : 100, mtemin : 1,
end : false, mb : MB1 > } .

Scenario 1 – Incorrect Control Tables. We consider a scheme plan where the
designer forgets to put track section AC for route 1A into the various interlocking tables
in Figure 2; i.e., it is not in the clear tracks column of the interlocking control table
for route 1A, and the first row of the Interlocking Release Table is missing. Applying
bounded model-checking:

(mc initState |=t [] nocrashDistance(train1,train2)
in time <= 300 .)

with the safety condition nocrashDistance highlights that two trains may be within
100 metres of each other, with both trains on track AC, highlighting a head-to-tail style
violation of our safety condition.

{... < train1 : Train | ac : 1, dist : 3248.5, end : false,
length : 100, ma : 3249, maxspeed : 20, mb : MB3,
mtemin : 10, speed : 0, state : stop,
tsegR : AC, tseg : AC >

< train2 : Train | ac : 1, dist : 3085.69, end : false,
length : 100, ma : 3249, maxspeed : 60, mb : MB3,
mtemin : 1, speed : 18.04, state : brake,
tsegR : AC, tseg : AC > ...}

Scenario 2 – Incorrect RBC Tables. In this scheme plan the designer incorrectly cal-
culates an EoA of 3449m for route 1A in the RBC tables given in Figure 2. Again model-
checking with the same safety condition highlights that two trains may be within 100
metres with train1 overrunning onto track AD due to the incorrect EoA and train2
approaching on tracks AC and AD.

{... < train1 : Train | ac : 1, dist : 3448.5, end : false,
length : 100, ma : 3449, maxspeed : 20, mb : MB3,
mtemin : 10, speed : 0, state : stop,
tsegR : AD, tseg : AD >

< train2 : Train | ac : 1, dist : 3287.4, end : false,
length : 100, ma : 3449, maxspeed : 60, mb : MB3,
mtemin : 1, speed :17.95, state : brake,
tsegR: AC, tseg : AD > ...}

9. Model-Checking Results

In this section we verify a number of rail yards with the Real-Time Maude tool [33].
We start with the initial state, initState, as given in Section 8.2, which lets (only)

32

two trains run through the rail yards. We claim that this is justified since, for classical
railway signalling, the following finitisation theorem has been established by James et
al. [22]: If a signalling system is collision-free for two trains, then it is collision-free for any
number of trains. We conjecture that this result carries over to ERTMS and consider
our ERTMS system to be safe if – within the scheme plan under consideration – two
trains will not collide. We check two invariants, both capturing the high-level condition
that “trains do not collide” (c.f. Section 7.1). The first invariant captures that two trains
always have to be a minimum distance apart, concretely 165m:

mc initState |=u [] nocrashDistance(train1,train2) .

or alternatively for 300 seconds14:

mc initState |=t [] nocrashDistance(train1,train2) in time <= 300 .

The second invariant captures the more traditional safety property that two trains are
never on the same track:

mc initState |=u [] nocrashTracks(train1,train2) .

or alternatively for 300 seconds:

mc initState |=t [] nocrashTracks(train1,train2) in time <= 300 .

For these experiments, we set the frequency of controller requests to be every 25
seconds. As mentioned in Section 7.1 we use the default time sampling strategy for the
first invariant and the maximal time sampling strategy for the second invariant.

As track plans, we consider those presented by Haxthausen et al. [17] as a benchmark.
That is, we consider the pass-through station shown in Figure 2, which is a slight variation
on the “Mini” plan presented by Haxthausen et al., as well as the “Cross” and “Twist”
plans they presented, see Figures 6 and 7 respectively. These are representative in the
sense that larger scheme plans can be decomposed into these smaller ones, and typical
difficulties are covered.

t10 t11 t12
mb12

mb21

t20 t21 t22

mb11
mb22

mb10

b10

mb23

b22

mb20

b20

mb13

b12

Figure 6: Track plans for the “Cross” scheme plan [17].

14See the discussion at the end of the section as to why this is a useful bound for bounded model-
checking.

33

Scheme Round-Robin Controller Unbounded
Plan No Crash Tracks No Crash Distance

Pass-through 0.29s / 428508 rewrites 0.32s / 545431 rewrites
Cross 0.22s / 403997 rewrites 0.36s / 490469 rewrites
Twist 0.37s / 639841 rewrites 0.72s / 933716 rewrites

Table 1: Verification results of model-checking with restricted control strategy.

Scheme Random Controller in Time 300
Plan No Crash Tracks No Crash Distance

Pass-through 39.62s / 40,147,258 rewrites 43.30s / 58,907,793 rewrites
Cross 891.50s / 503,331,780 rewrites 632.78s / 742,640,103 rewrites
Twist 1222.79s / 652,668,124 rewrites 1038.27s / 1,023,398,631 rewrites

Table 2: Verification results of model-checking with random control strategy.

t20

t10 t11

mb21

mb11

t13

t30

mb12

mb30

t12

mb10

b10

mb13

b13

mb20

b20

mb31

b30

Figure 7: Track plan for the “Twist” scheme plan [17].

Verification results. In all settings the model-checking confirms that these rail yard de-
signs are collision-free (within the given time bound, if applicable). Tables 1 and 2 show
verification times15 and the number of rewrite steps for the three rail yards against the
round-robin controller and random controller (see Section 6.3).

Discussion. The results show that unbounded model-checking is successful when control
is restricted, e.g., to our round-robin controller. This is due to the restrictions that such
a control strategy imposes on train movements through the scheme plan. However, when
using our random controller, the state space increases immensely, in particular as there
are an infinite number of states possible, e.g., by the controller choosing the same route
over and over again. Thus, we provide results for up to a given time bound of 300s. This
time is enough to ensure that at least one of the trains can travel completely through
each of the scheme plans.

Another phenomenon is the fact that model-checking for the logical safety condition,
“No Crash Tracks”, requires less rewrites (approximately 20%) than for the physical
safety condition, “No Crash Distance”. This follows one’s intuition.

15Using a PC running Xubuntu 14.04.2 with an i7 4790 @3.60Ghz and 32GB RAM.

34

As expected, model-checking times increase with the complexity of the scheme plans.
One naive complexity measure would be the number of routes available in a scheme plan.
We note that there are 5 routes in the “Pass-through” station, 6 routes in the “Cross”,
and 8 routes in the “Twist”. This again follows intuition, as the random controller has
more freedom in more complex track plans. This observation does not necessarily carry
over to the round-robin controller where the order in which the routes are requested plays
a role as well and can possibly overshadow this effect.

Finally, it is future work to consider more varied rail yards, and also how the frequency
of controller requests affects model-checking results.

10. Related Work

We compare our approach to verifying ERTMS with seven other approaches, classi-
fying them along the following three dimensions:

Comprehensiveness. This concerns the question of whether the approach discusses
the overall control cycle including all components or if it concerns only a subsystem
of the systems involved in the ERTMS.

Design level. This dimension asks if the artefacts to be verified are at the requirement
level or design level, i.e., early in the system life-cycle, or at the implementation
level.

Degree of formalisation. The third dimension considers if only formal methods are
applied, or if overall the approach includes semi-formal elements.

Our approach covers the full control cycle between controller, interlocking, radio block
centre and trains. It is at the design level. More specifically, it is our objective to verify
the location-specific data of railway designs in their early development stages, accompa-
nying a standard design process performed by signalling companies such as our industrial
partner Siemens Rail Automation UK. In short: our work concerns all components at
the design level and is formal.

Vu et al. [37] provide a generic and re-configurable model of ERTMS Level 2 inter-
lockings at the design level. They present their model as a Kripke structure and verify
high-level safety properties such as the absence of head-to-head collision or derailment on
a point. They introduce the concept of virtual signals and argue that this allows them to
handle the assignment of movement authorities in a similar way to the situation where
conventional signals are used. The verification technology they apply is SMT solving as
implemented in the RT-Tester tool-box. Overall the tool is able to scale to large Danish
rail stations. Their approach abstracts from trains and the RBC and presumes these
components to always behave correctly. Their verification focuses on the interlocking
component at the design level. Concerning the modelling of the interlocking component,
differences between Vu et al. and the work presented here appear to be mostly due to
national peculiarities. Vu et al. model the Danish interlocking system, which is based
upon “interlocking tables” similar to our control tables. In summary, their approach
targets a subsystem of ERTMS at the design level in a formal way.

Cimatti et al. [7] apply software model-checking to verify the implementation level
of a subsystem responsible for the allocation of logical routes to trains. The software

35

under consideration has been developed by Ansaldo-STS and is part of this company’s
implementation of ERTMS Level 2. An example of a property under consideration is
“no two different trains occupy the same track”. Cimatti et al. represent the software
in the VELOS specification language (resembling the C++ language), the properties
of interest in temporal logic, and discuss in detail the performance of different model-
checkers. Their approach concerns a subsystem at the implementation level where they
apply formal methods.

Nardone et al. [30] develop a new, rail-specific specification language, DSTM4Rail,
an extension of hierarchical state machines. They employ their language DSTM4Rail to
the modelling of specific functionalities of the ERTMS radio block centre. Overall the
objective is to obtain a formal model of ERTMS requirements for system testing purposes.
Their long term goal is integration into a model-driven development processes. This work
is specialised towards quality assurance for one ERTMS component. Hence, they consider
a subsystem at the requirement level only, where they apply formal methods.

The openETCS initiative [1] sets out to provide specifications that can be used for
software generation for ETCS train control components, track elements, and functionality
to be integrated in track side interlocking systems. This software development follows
a model-driven approach, where the methods and tools aim to comply with a SIL 4
development process. This initiative offers a wide spectrum of research, which can be
classified mostly as targeting a subsystem at the design or implementation level. In terms
of methods the initiative explores a number of semi-formal elements.

Chiappini et al. [6] work towards the formalisation and validation of the overall
ERTMS/ETCS specification. To this end, they formalise a reference subset (including
movement authority management and RBC/RBC handover) of the system requirements
through a set of concepts and diagrams in UML, and through additional constraints in
a defined controlled natural language. This formalisation then undergoes an automatic
validation check covering questions concerning consistency, scenario compatibility, and
if certain properties hold. Their work puts the ERTMS/ETCS specifications themselves
under scrutiny. Their work concerns a subsystem with the objective to be extended to
all components; it takes place at the requirement level where semi-formal methods are
used.

Platzer and Queser [35] use Differential Dynamic Logic to formalise ETCS Level 3
with free parameters (e.g. for speed and acceleration of trains). They use the verification
tool KeYmaera to automatically derive and verify constraints on the parameters that
guarantee correctness of the ETCS co-operation protocol regarding the interaction of
the RBC with a train. Among the correctness properties considered are safety, control-
lability, reactivity and liveness. They also show that these properties continue to hold
in the presence of perturbation by disturbances in the dynamics. This work is close to
ours, however, it concerns a system of a different nature, as Level 3 utilises moving block
signalling, while we are looking into Level 2 which concerns fixed block signalling. Fur-
thermore, they deal with railways on a far more abstract level: location-specific aspects
such as track plans are not considered. Hence, their work deals with all components and
takes place on an abstract design level where formal methods are applied.

The verification of railway interlocking systems is a challenging task, and therefore
several research groups have suggested to solve it by using formal methods, however
using different modelling and verification approaches. To advance this research, there is
a need to compare these approaches. To this end, Haxthausen et al. [17] suggest a way

36

to compare different formal approaches for verifying designs of route-based interlocking
systems and demonstrate it through modelling and verification approaches developed
within the research groups at DTU/Bremen and at Surrey/Swansea. In this paper,
we already verify their benchmark scheme plans. However, it is left as future work to
investigate the numerous scenarios that they obtain from these benchmark scheme plans
by systematic error injection. This comparison concerns a specific subsystem, namely
interlockings at the design level where formal methods are applied.

The diagram below (fig. 8) summarises and visualises the comparison.

6

-

Stage in life-cycle

Comprehensiveness

Requirement

Design

Implementation

Subsystem All components

Nardone et al.

Chiappini et al.

Vu et al.

Haxthausen et al.

Berger et al. (this article)

Platzer/Queser

openETCS

Cimatti et al.

Figure 8: Comparison of formal and semi-formal verification approaches to ERTMS

11. Summary and Future Work

In this paper, we modelled, validated, and verified a complex system of systems of
hybrid nature. We presented an analysis of the ERTMS system, described its information
flow, gave an informal model by deciding on events and formulating tables stating their
influence of the system state, and, finally, provided a concise formal model in Real-Time
Maude. This model is astonishingly small; it consists of around 1000 lines of code. We
believe that this is due to the advanced concepts, especially the object-oriented features
that Real-Time Maude offers. We showed that safety analysis of our model is com-
plete in spite of using only finitely many time sampling points. Through simulation we
demonstrated that our model exhibits a number of expected behaviours. Furthermore,
by systematic error injection, we showed that safety in ERTMS depends on all its com-
ponents. Simulation and error injection together give us confidence that our model is
valid. Finally, we presented a number of model-checking results that indicate that, for
small bi-directional rail yards, model-checking of physical and logical safety properties is
feasible.

In Section 8.2 on error injection, we demonstrated that the safety of ERTMS depends
on the correctness of all of its components. This was achieved by showing that it is

37

possible to inject one mistake in the interlocking alone, or in the RBC alone, or in one
train alone in such a way that safety is violated. Concerning its location-specific design,
ERTMS Level 2 is not an error tolerant system: a design flaw in one of its components
cannot be compensated by the other components. Though this property is to be expected,
to the best of our knowledge we are the first to demonstrate it. This is thanks to the
fact that our work is the first to include all ERTMS components.

Haxthausen et al. [17] compare, in the context of traditional railway signalling sys-
tems, the distinguishing power of verification approaches and present, as a benchmark,
a number of simple verification problems. These include our examples “Cross” and
“Switch”, see Figures 6 and 7, whose verification results in an ERTMS Level 2 setting
we discuss in Section 9. It would be desirable to add more comparative studies, how-
ever, the area of railway verification tends to lack such comparative benchmarks. With
regards to the complexity that the verification of a railway network poses, in traditional
railway signalling most authors tend to agree that the input size is best measured by
giving the number of tracks, points, and signals involved. As a first approximation, ver-
ification complexity is assumed to be exponential in a weighted sum of these. However,
this approximation abstracts from important topological properties such as the number
of conflicting and/or opposing routes, which can have dramatic effects on verification
complexity, see [29] for some examples. These considerations carry over to our ERTMS
setting, as ERTMS includes traditional interlockings. However, to the best of our knowl-
edge, there is no ERTMS specific metric available to calculate the verification complexity
posed by a railway network.

In our modelling of the ERTMS and its analysis we had to deal with different kinds
of inexactness at several places: As mentioned at the end of Section 6, there is a discrep-
ancy between our exact modelling and the real world where there always remains some
uncertainty about the exact location of a train. We dealt with this issue by allowing
for extra space between trains. In the completeness proof in Section 7.2 we solved the
problem of rounding errors in the calculation of the maximal time elapse by adding this
data as an extra component to the trains. In this way we could guarantee the equations
OO1-OO4 to hold exactly, as required in [31] for completeness. These phenomena of
inexactness are not a peculiarity of our modelling, but something that occurs in any
modelling and verification task involving continuous data. Therefore, a systematic way
of dealing with these issues would be highly desirable. For example, one could try to
prove approximative versions of the completeness results in [31] that tolerate controlled
rounding errors.

It is future work to explore further, and in particular more complex, rail yards. On
the practical side, we intend to extend our modelling with further controller strategies,
especially ‘taming’ the random controller, and more complex train progression behaviour.
On the theoretical side, we plan to prove our conjecture that for a complete safety
analysis it is enough to consider two trains only – as is the case in our CSP||B models
[22]. Naturally, it would be desirable to prove such a property for railways in general.
However, the railway domain is an informal one and therefore not open to formal proofs.
Consequently, such a result can be only proven after a formal model has been provided.

Additionally, we want to investigate abstraction techniques to reduce model-checking
time: For traditional railway signalling several authors, e.g., [22, 27], have investigated
compositional verification methods – such results may allow us to scale-up our method
to real ERTMS networks that can hold hundreds of routes.

38

From an industrial perspective, Siemens Rail Automation UK considers our work
to have high potential to improve quality assurance within their software development
process of ERTMS Level 2 interlockings and RBCs. More concretely, they started a
new research programme with us concerning model-based testing in Real-Time Maude.
Objectives of this programme include: Given a location-specific design for an ERTMS
controlled rail yard, i.e., interlocking tables and rules regarding messages to be sent by
the RBC, provide a formally verified, location-specific test model and derive test suites
from it, that can be used to test the location-specific Siemens Rail Automation UK RBC
realisation and interlocking computer – either in isolation or in combination.

Acknowledgement. The authors would like to thank Simon Chadwick, Siemens Rail Au-
tomation UK, for his continued support and many helpful discussions. We also appreciate
the useful feedback and advice from Peter Ölveczky and José Meseguer on Real-Time
Maude. As usual, Erwin R. Catesbeiana (Jr) was keeping us on track. We are also
grateful to the three anonymous referees for their helpful comments and constructive
criticism. Finally, the financial support of Siemens Rail Automation UK and EPSRC
(EP/P5057631) is gratefully acknowledged.

References

[1] openETCS. http://openetcs.org, 2017. Accessed: 2017-01-30.
[2] Alcatel, Alstom, Ansaldo Signal, Bombardier, Invensys Rail and Siemens. System Requirements

Specification, Chapter 2, Basic System Description, 2006. SUBSET-026-2.
[3] M. Banci, A. Fantechi, and S. Gnesi. Some Experiences on Formal Specification of Railway Interlock-

ing Systems Using Statecharts. In Software Engineering and Formal Methods - TRain Workshop
at SEFM 2005, 2005.

[4] D. Bjørner. TRain: The Railway Domain - A Grand Challenge. In R. Jacquart, editor, Building
the Information Society, volume 156 of IFIP International Federation for Information Processing,
pages 607–611. Springer, 2004.

[5] Y. Cao, T. Xu, T. Tang, H. Wang, and L. Zhao. Automatic Generation and Verification of In-
terlocking Tables Based on Domain Specific Language for Computer Based Interlocking Systems.
In Proceedings of the IEEE International Conference on Computer Science and Automation En-
gineering, CSAE 2011, volume 2, pages 511 – 515. IEEE, 2011.

[6] A. Chiappini, A. Cimatti, L. Macchi, O. Rebollo, M. Roveri, A. Susi, S. Tonetta, and B. Vittorini.
Formalization and Validation of a subset of the European Train Control System. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering, Volume 2, ICSE’10,
pages 109–118. ACM press, 2010.

[7] A. Cimatti, R. Corvino, A. Lazzaro, I. Narasamdya, T. Rizzo, M. Roveri, A. Sanseviero, and
A. Tchaltsev. Formal verification and validation of ERTMS industrial railway train spacing system.
In Computer Aided Verification, CAV’12, volume 7358 of Lecture Notes in Computer Science,
pages 378–393. Springer, 2012.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L. Talcott, editors.
All About Maude, volume 4350 of Lecture Notes in Computer Science. Springer, 2007.

[9] Department for Transport. Delivering a sustainable railway: white paper CM 7176, 2007.
[10] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. In Rewriting

Logic and Its Applications, WRLA’02, volume 71 of ENTCS, pages 162–187. Elsevier, 2004.
[11] European Railway Industry. ERTMS. http://www.era.europa.eu/Core-Activities/ERTMS/

Pages/home.aspx, 2015. Accessed: 2015-08-30.
[12] A. Fantechi. Twenty-Five Years of Formal Methods and Railways: What Next? In Software

Engineering and Formal Methods, volume 8368 of Lecture Notes in Computer Science, pages 167–
183. Springer, 2014.

[13] A. Ferrari, G. Magnani, D. Grasso, and A. Fantechi. Model Checking Interlocking Control Tables.
In FORMS/FORMAT 2010, pages 98–107. Springer, 2011.

39

[14] A. E. Haxthausen. Towards a Framework for Modelling and Verification of Relay Interlocking Sys-
tems. In 16th Monterey Workshop: Modelling, Development and Verification of Adaptive Systems:
the Grand Challenge for Robust Software, volume 6662 of Lecture Notes in Computer Science,
pages 176–192. Springer, 2011.

[15] A. E. Haxthausen. Automated Generation of Formal Safety Conditions from Railway Interlocking
Tables. International Journal on Software Tools for Technology Transfer (STTT), Special Issue
on Formal Methods for Railway Control Systems, 16(6):713–726, 2014.

[16] A. E. Haxthausen, M. L. Bliguet, and A. A. Kjær. Modelling and Verification of Relay Interlocking
Systems. In Foundations of Computer Software, Future Trends and Techniques for Development,
15th Monterey Workshop, volume 6028 of Lecture Notes in Computer Science, pages 141–153.
Springer, 2010.

[17] A. E. Haxthausen, H. N. Nguyen, and M. Roggenbach. Comparing Formal Verification Approaches
of Interlocking Systems. In Reliability, Safety, and Security of Railway Systems. Modelling, Anal-
ysis, Verification, and Certification - First International Conference, RSSRail 2016, volume 9707
of Lecture Notes in Computer Science, pages 160–177. Springer, 2016.

[18] A. E. Haxthausen, J. Peleska, and S. Kinder. A Formal Approach for the Construction and Verifi-
cation of Railway Control Systems. Formal Aspects of Computing, 23(2):191–219, 2011.

[19] A. E. Haxthausen, J. Peleska, and R. Pinger. Applied Bounded Model Checking for Interlocking
System Designs. In Software Engineering and Formal Methods, volume 8368 of Lecture Notes in
Computer Science, pages 205–220. Springer, 2014.

[20] A. Iliasov, I. Lopatkin, and A. Romanovsky. Practical Formal Methods in Railways - The Safe-
Cap Approach. In Reliable Software Technologies, Ada-Europe 2014, Proceedings, volume 8454 of
Lecture Notes in Computer Science, pages 177–192. Springer, 2014.

[21] P. James, A. Lawrence, M. Roggenbach, and M. Seisenberger. Towards Safety Analysis of ERTM-
S/ETCS Level 2 in Real-Time Maude. In Formal Techniques for Safety-Critical Systems, FTSCS
2015, volume 596 of Communications in Computer and Information Science, pages 103–120, 2015.

[22] P. James, F. Moller, N. H. Nga, M. Roggenbach, S. A. Schneider, and H. Treharne. Techniques for
modelling and verifying railway interlockings. STTT, 16(6):685–711, 2014.

[23] P. James, F. Moller, H. N. Nguyen, M. Roggenbach, S. A. Schneider, and H. Treharne. On modelling
and verifying railway interlockings: Tracking train lengths. Sci. Comput. Program., 96:315–336,
2014.

[24] P. James and M. Roggenbach. Encapsulating formal methods within domain specific languages: A
solution for verifying railway scheme plans. Mathematics in Computer Science, 8(1):11–38, 2014.

[25] P. James, M. Trumble, H. Treharne, M. Roggenbach, and S. Schneider. Ontrack: An open tooling
environment for railway verification. In NASA Formal Methods, 5th International Symposium,
NFM 2013, Proceedings, pages 435–440. Springer, 2013.

[26] A. Lawrence, U. Berger, P. James, M. Roggenbach, and M. Seisenberger. Modelling and analysing
the European Rail Traffic Management System in Real-Time Maude. In FTSCS’14 – Preliminary
Proceedings, 2014.

[27] H. D. Macedo, A. Fantechi, and A. E. Haxthausen. Compositional Verification of Multi-station
Interlocking Systems. In Leveraging Applications of Formal Methods, Verification and Validation:
Discussion, Dissemination, Applications, ISoLA 2016, volume 9953 of Lecture Notes in Computer
Science, pages 279–293, 2016.

[28] A. Mirabadi and M. B. Yazdi. Automatic Generation and Verification of Railway Interlocking
Control Tables Using FSM and NuSMV. Transportation Problems, 4:103–110, 2009.

[29] F. Moller and M. Roggenbach. Towards Tool Interaction and Safety Assessment, RSSB, 2016.
DITTO Project Deliverable 1.3 Milestone 8, available at www.dittorailway.uk.

[30] R. Nardone, U. Gentile, A. Peron, M. Benerecetti, V. Vittorini, S. Marrone, R. De Guglielmo,
N. Mazzocca, and L. Velardi. Dynamic State Machines for Formalizing Railway Control System
Specifications. In Formal Techniques for Safety Critical Systems, FTSCS’14, Communications in
Computer and Information Science 476, pages 93–109. Springer, 2015.

[31] P. C. Ölveczky and J. Meseguer. Abstraction and Completeness for Real-Time Maude. In Rewriting
Logic and Its Applications, WRLA’06, volume 176 of ENTCS, pages 5–27, 2007.

[32] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude. Higher-Order
and Symbolic Computation, 20(1-2):161–196, 2007.

[33] P. C. Ölveczky and J. Meseguer. The Real-Time Maude tool. In Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2008, volume 4963 of Lecture Notes in Computer
Science, pages 332–336. Springer, 2008.

[34] P. C. Ölveczky and S. Thorvaldsen. Formal modeling, performance estimation, and model checking

40

of wireless sensor network algorithms in Real-Time Maude. TCS, 410(2):254–280, 2009.
[35] A. Platzer and J.-A. Quesel. European Train Control System: A Case Study in Formal Verification.

In K. Breitman and A. Cavalcanti, editors, Formal Methods and Software Engineering. ICFEM
2009, volume 5885 of Lecture Notes in Computer Science, pages 246–265. Springer, 2009.

[36] D. Tombs, N. Robinson, and G. Nikandros. Signalling Control Table Generation and Verification. In
Proceedings of Cost Efficient Railways through Engineering, CORE 2002, pages 415–425. Railway
Technical Society of Australasia, 2002.

[37] L. H. Vu, A. E. Haxthausen, and J. Peleska. Formal Modeling and Verification of Interlocking Sys-
tems Featuring Sequential Release. In Formal Techniques for Safety Critical Systems, FTSCS’14,
Communications in Computer and Information Science 476, pages 223–238. Springer, 2015.

[38] K. Winter. Optimising Ordering Strategies for Symbolic Model Checking of Railway Interlockings.
In T. Margaria and B. Steffen, editors, Leveraging Applications of Formal Methods, Verification
and Validation. Applications and Case Studies, volume 7610 of Lecture Notes in Computer Science,
pages 246–260. Springer, 2012.

[39] K. Winter, W. Johnston, P. Robinson, P. Strooper, and L. van den Berg. Tool Support for Checking
Railway Interlocking Designs. In 10th Australian workshop on Safety Critical Systems and Software,
SCS’05, Proceedings, volume 55, pages 101–107. Australian Computer Society, Inc., 2006.

41

