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Abstract 

The Bayesian Computational Sensor Network methodology is applied to small-

scale structural health monitoring. A mobile robot, equipped with vision and 

ultrasound sensors, maps small-scale structures for damage (e.g., holes, cracks) 

by localizing itself and the damage onin the a map. The combination of vision 

and ultrasound reduces the uncertainty in damage localization. The data storage 

and analysis takes place exploiting cloud computing mechanisms, and there is 

also an off-line computational model calibration component which returns 

information to the robot concerning updated on-board models as well as proposed 

sampling points to measure. The approach is validated in a set of physical 

experiments. 

 
 

1. General Overview 

The goal of structural health monitoring (SHM) is to determine the existence   

and extent of any flaws in a materials structure. SHM is applied to a wide variety of 

structures, ranging from buildings, bridges, and roads as well as to nuclear reactors, 

to and aircraft. Clearly the failures inof such systems can lead to large-scale 

catastrophe resulting in death, and injury, and broader damage, and it is therefore 

important to correctly detect problems as early as possible. However, every structure 

has its own particular properties, and detection systems often use a standard set of 

parameters which may result in damaged areas being overlooked or cause the report 

of damage when none exists. 

WehaveThis Chapter  discusses methods and capabilities developed by the authors in the 

context of using the Computational Sensor Network (CSN) approach [14,15] which 

uses models of the object of study (e.g., the airplane wing material and health 

conditions) as well as models of the sensor network in order to improve 

understanding of both and to reduce the uncertainty in the models. This The CSN 

approach requires relating the properties of interest in the sensor network (e.g., 

sensor position, bias, etc.) to the sensed data concerning the physical 

phenomenonprocess involved in the measurement (e.g., sound waves, 

temperature, etc.). 

CSN’s are designed and developed using the model-based approach which 

provides a strong scientific computing foundation as well as the basis for robust 

software engineering practice. CSN is comprised of three main components: (1) 

models of physical phenomena, (2) models of sensor-actuator systems, and (3) 

sensor network computational models. Computational modeling requires the 

elucidation of principles to identify the state of the sensed phenomenon as well as 

the sensor network. The operational system development is then guided by these 

methods which are mapped onto the system architecture. Such a real-time 

computational mapping allows system parameters to be changed according to 

real-time performance measures. 

The Verification and Validation (V & V) methodology [20] applied in high 

performance computing can be  incorporated in the CNS framework; i.e., model  

1This material (Abstract and Sections 2 through 7) is reprinted from Publication “Bayesian 
Computational Sensor Networks: Small-Scale Structural Health Monitoring,”, Procedia 
Computer science, Vol. 51, W. Wang, A. Joshi, N. Tirpankar, P. Erickson, M. Cline, P. Thagaraj 
and T.C. Henderson, pp. 2603–2612, 2015, with permission fromElsevier. 
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implementations may be verified for correctness and numerical properties like 

convergence and error. It is also possible to embed tests in the executable to 

check correctness during execution. CSN’s offer a novel aspect in that they can 

sense and interact with the environment, and thus, can refute or confirm model 

parameters or structure properties by running validation experiments on the fly. 

As pointed out earlierIn addition, the structure of the measurement system can be 

estimated using the phenomenon model representing the physical phenomenon. 

Ee.g., the partial differential equation describing heat flow can be combined with 

known temperatures at fixed (but unknown) locations in order to determine the 

positions of the sensors. We have, in fact, applied this In fact, thisthe CSN 

method has been applied in a different application area, namely an avalanche 

prediction system which modeled heat flow through snow [26]. Finally, real-time 

computational steering may be performed by (1) embedding verification and 

validation functions into the executable code, and (2) modeling component 

performance in terms of a statistically meaningful characterization of output 

features conceptually defined by the user. 

The Dynamic Data Driven Applications Systems (DDDAS) approach 

provides away to develop custom models dynamically (e.g., material density, 

geometry, propagation properties, etc.),dynamically based on data acquired 

during inspection. Such improved models also allow the determination of more 

accurate state information about the sensor system (e.g., location, orientation, 

bias, etc.) usually within verse solutions. In the application presented here, a 

mobile robot moves along a metal plate and uses sound waves (ultrasound) to 

detect cracks and holes and reports their locations and dimensions as accurately 

as possible. A Simultaneous Localization And Mapping (SLAM) algorithm is 

used to construct a map of the flaws, and at the same time, the holes and cracks 

are used as landmarks in the SLAM method to improve the pose estimation of the 

robot. In addition, off-line software agents are used to dynamically calibrate the 

physics models and to propose optimal new sensing locations so as to reduce the 

overall uncertainty of the mapping process. 

Theis application of these methods, involved the development of a cloud-

based computational and storage system where interactions between the mobile 

robot platform and the other computational agents are mediated by a highly 

customizable data sharing model optimized as sockets, and this work is described 

in this Chapter. Subsequently, this Thisthe cloud-based approach has been extended 

to perform geospatial intelligence analysis in the system entitiled BRECCIA 

system [23,24,25]. ]; BRECCIA receives information from humans (as logical 

sentences), simulations (e.g., weather or environmental predictions), and sensors 

(e.g., cameras, weather stations, microphones, etc.) where each piece of 

information has an associated uncertainty. This The BRECCIA system has also 

been applied to Unmanned Aerial Systems (UAS) flight planning in urban 

environments. 

 
 

2. State-of-the-Art, Challenges and Method 

Structural health monitoring equipment for of aircraft inspection poses a 

significant problem in their problems including real-time exploitation utilization, 

operation, and maintenance. To address this the issuechallenges involved, the 

major specific objectives of our the work presented here are aimed 

todevelopments include: 

1. Exploiting Bayesian Computational Sensor Networks (BCSN)[14] to detect 

and identify structural damage. HerewedemonstrateAnd specifically 

presented is the using combination of  a Simultaneous Localization and 

Mapping (SLAM) method with the use ofand ultrasound measurements to 

map damage in a small-scale structure. 

2. Exploit Designing an active feedback methodology using model-based 

sampling advice which informs the sample point selection during path planning 

for the monitoring task. 
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3. Providinge a rigorous model-based systematic treatment of the uncertainty 

in the process, including stochastic uncertainties of system states, unknown 

model parameters, dynamic parameters of sensor nodes, and material 

damage assessments. 
 

4. Achieve goals 1-3 exploitingIntegrating the approaches (1-3) in a cloud computing environment. 
 

This work addresses 3 of the 4 DDDAS (Dynamic Data-Driven Analysis Systems) 

interdisciplinary research components: applications modeling, advances in 

mathematics and statistical algorithms, and application measurement  systems  and  

methods, . andm More specifically, the design addresses several questionschallenges 

articulated raisein the DDDAS-InfoSymbiotics 2010 Report [8] by Working Group 3 

(WG3) Large and Heterogeneous Data from Distributed Measurement & Control 

Systems (Alok Chaturvedi, Adrian Sandhu): “DDDAS inherently involves large 

amounts of data that can result from heterogeneous and distributed sources which 

require analysis before automatically integrating them to the executing applications 

that need to use the data.” 

Figure 1 shows a conceptual layout of the case-study problem addressed here. The mobile 

 

Figure 1: Small-scale Structural Health Monitoring in the Cloud. 

 
robot (SLAMBOT) is placed on the structure to be monitored (here an aircraft 

wing), and performs its analysis by interacting with storage and computational 

agents in the cloud. In our the study presented herework, theThe interaction is 

mediated by means of a highly customizable data sharing model which provides 

low latency between sensing and computational resources (using optimized 

socket applications), and dynamic routing. The various components include (1) 

the SLAMBOT, (2) storage capabilities for image and ultrasound data, (3) off-

line simulation agents which can dynamically calibrate models and provide 

optimal sample point locations, and (4) some form of HCIa human-computer 

interface (HCI) agent (e.g., smart phone app or data analysis center). For another 

view, see [4]. 

In theThe remainder of the paperChapter, we are described describes the 

following aspects of the small-scale structural health monitoring system: 
 

1. Robot Monitoring Agents: a high-level monitoring agent is developed 

using the Contract Net approach; where this agent is invoked by the human 

inspector. 
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It The agent, in turn, contracts with the SLAMBOT to gather damage 

location information in terms of a map created during the ultrasound 

examination of the small-scale structure. 

2. Ultrasound Analysis Model: An ultrasound range sensor is described 

which exploits a computational model of Lamb wave propagation through 

the structure to be monitored. 

3. Cloud Computing Architecture: the cloud computing architecture 

allows various agents to efficiently exchange data and information. 

4. Validation Experiment: a physical experiment using an aluminum plate, 

and a mobile robot is described which provides bounds on the uncertainty of 

the operation of the monitoring process. 

 

 

3. Robot Monitoring Agents 

The monitoring task is divided between a virtual agent which manages the 

monitoring process (the manager), and a set of inspection agents (the 

contractors) which are physical robots capable of mapping damage in the 

structure of interest. In addition, the manager may request bids on other aspects 

of the problem (e.g., computational simulations for model calibration, etc.). This 

The agent-based approach has been chosen so as to make the solution more 

general and applicable to a wide variety of scenarios. For example, in aircraft 

inspection, it we is envisioned that a set of SLAMBOT type robots which may be 

tracked ground vehicles, or quadrotors, that are available to provide inspections;, 

but which must be contracted to perform the work. The Contract Net protocol 

[27] is used which followsper the following sequence: 

The manager agent issues a general broadcast task announcement with an 

eligibility specification, a task abstract, a bid specification and an expiration 

time. 

The contractor agents bid on tasks they can handle, and provide some 

information about their capabilities. 

• The manager agent then awards bids (perhaps multiple). 

The contractor agents then proceed with the task and may exchange 

information with other agents as necessary to complete the task. They also 

store the acquired data in the cloud so that it is available to other agents 

involved in the process.  Once the task is completed they announce that to the 

manager and submit a final report. 

 

 The SLAMBOT 

In tThe current version of the system, we have employsdeveloped  the SLAMBOT 

developed by the authors [32], as depicted  (seein Figure 2). The SLAMBOT is 

equipped with a camera for SLAM, and two ultrasound sensors (front and back) for 

damage analysis in of the structure. When taking ultrasound readings, the 

SLAMBOT lifts itself up on the ultrasound sensors so as to press them firmly against 

the material surface. The SLAMBOT is built on a SystronixTrackbot chassis and is a 

differential drive robot. The vision, motion, actuation and localization algorithms are 

implemented on-board by a minicomputer 

• 

• 

• 
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Figure 2: SLAMBOT for Structural Health Monitoring. 

 
 

(pcDuino),which runs a version of the Ubuntu operating system and interfaces 

with the robot’s hardware directly. The SLAMBOT’sIts wi-fi capability enables 

it to communicate with the cloud server and other agents as necessary. The 

SLAMBOT is equipped with a Logitech C250 webcam for measurement (for 

locating landmarks and ensuring a collision-free motion on the surface being 

inspected). The ultrasound sensor carried by the robot is a VS900-RIC 

VallenSysteme high sensitivity Acoustic Emission (AE) sensor.2 

 
 SLAM 

WehaveThe work presented here has implemented the SLAM algorithm comes from 

Thrun et al.[29] with the following modifications. For a landmark located at 

[xL,yL]T, and robot pose [x,y,θ]T, the sensor returns the landmark’s coordinates 

with respect to the robot frame. The returnz =[u,v]Tcan beis written as a 

function of [x,y,θ,xL,yL]T as: 

z =
u

= h(x, y, θ, xL, yL) =
c∆x+ s∆y

 

 

where s = sin θ, c = cos θ, ∆x = xL− x, and ∆y = yL− y. 

Then the Jacobian of h at [x, y, θ, xL, yL] is: 

 

H̃(x,y,θ,x,y)= 
−c−s−s∆x+c∆y c s 

s −c −c∆x−s∆y −s c 

According to the SLAM algorithm, the sensed data is considered to be from a 

new landmark if the likelihood is low that it is from an existing landmark. Let µ̄ be 

the mean of the current beliefs. The mean with new landmark locations is 

µ=[µ̄,xL,yL]T, where xL and yL are the unique values such that h(µ x̄, µ̄ y, µ̄ θ, xL, yL) 

= z. In our the case studied hereThus,, 

xL

yL 

wherec̄=cosµ̄θands̄=sinµ̄θ. 

= 
µ̄x+c̄u−s̄v 

µ̄y+s̄u+c̄v 

 
 

2From their website:  “High sensitivity AE-sensor (wide band) with integral preamplifier (34 dB) 
and calibration bypass.   Optimized for applications requiring sensitivity from 100-900 kHz. Able to 
drive longcables.” 
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The update of the covariance matrix is more complicated. Since the new land- 

mark was unobserved before, it is natural to extend the current covariance matrix     

to 

Σ̄ =
Σ̄ 0

. 
 

for some large γ. γ is taken to be in to make computation possible. We use tThe 

limit result i s  u sed  as γ later in this subsection. 

The Bayesian inference is implemented using the Extended Kalman Filter is 

given as follows.  Let Q be the covariance of the sensing noise, and let F       
5
×

(3+2(N+1)), where N     is the number of existing landmarks. All the entries of F are 

zeros except the upper 3 by 3 and lower 2 by 2 block matrices which are the 

identity. Let 

 

H=H̃  

µ̄x 

µ̄y 

µ̄θ 
 

 

 

 F, 

 

 

 
 

Then the new covariance is: 

 

 

where in the limit case 

Ψ=HΣ̄exHT+Q,K

=Σ̄exHTΨ−1. 

 
Σ=(I−KH)Σ̄ex, 

 
Σ = lim Σ(γ)=

Σ̄ A
 

 

with A ∈�(3+2N )×2, A2,i= σi,1−∆yσi,3, and Ai,2= σi,2+ ∆xσi,3; B 

∈�2×2,B1,1=c2q1,1−2csq1,2+s2q2,2+σ1,1+∆y2σ3,3−2∆yσ3,1,andB2,2=s2q1,1+2csq1,2+c2q

2,2+σ2,2+∆x2σ3,3+2∆xσ3,2,andB1,2=B2,1= c2q1,2+ 

csq1,1−csq2,2−s2q1,2+σ1,2+∆xσ1,3−∆yσ2,3−∆x∆yσ3,3whereQ=(qi,j) 

andΣ̄=(σi,j). 

 
4. Ultrasound RangeSensor 

Much work has been done on the theory and application of Lamb waves to 

structural health monitoring (see [1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 17, 18, 19, 21,   

22, 30, 33]).  We  make use of tThese methods are used in our the work presented 

here.  Given a received signal    f: and a time interval (t0, t1), the range finder 

estimates the trivial time of maximum energy delivery that is defined by the CWT 

(Continuous Wavelet Transform) based scaled-average wavelet power (SAP) (see 

[28], p. 166 for a description of this method) in (t0, t1). Define a function peek 

:C2(�) ×�2 →�such that 

peek(f, t0, t1) = arg max sap(f )(t). 
t∈(t0,t1) 

The peek function returns a t such that the SAP of signal f is maximized in (t0, t1). 

Then the range range-finder is defined by 

argmax|peek(f,t0,t1)−peak(sig(d),−∞,∞)|, 

xL 

yL 

γ→∞ 
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where sig(d) is the signal that should be received at distance d away from the 

actuator in the homogeneous plate. In our the simulations performed here, we 

model the wave propagation is modeled by the 2D Helmholtz Equation 
 

∆u + k2u = g, 

where g is the actuation signal and u is the wave function, and Sommerfeld radiation 

condition   
lim 

|x|→∞ 
J

|x|(n·∇u−iku)=0, 

uniformly for all n = 1. If the actuator is located at xs and emits a signal g, the 

solution of u is that 

u(x,t)=
1
r∞

dωĝ(ω)G(x,x,ω)e−iωt, 

G(x,y,ω)=
i
H (1)(k|x−y|), 

 

where H is the Haenkel function, and k is the wave number that is a function of ω 

in dispersive materials. For a thin plate, k can be approximated by the Lamb Wave 

approximation (see [31]). Our The sig function is defined as 
 

 
for all|xr−xs|=d. 

sig(d)(t) = u(xr, t) 

Figure 3 shows the ultrasound range sensor principle. An ultrasound signal is 

transmitted by the emitter, and the receiver gets the directly propagated signal 

from emitter to the receiver, followed by any signals reflected from features in 

the material (e.g., damage locations, edges, etc.). Thus, the time of arrival (TOA) 

of the reflected signal 

 

 
Figure 3: Damage Detection with Ultrasound Network. 

 
allows the calculation of the distance traveled by that signal, and thiswhich means 

that the feature causing the reflection is located somewhere on an ellipse around the 

emitter-receiver pair. 

The following discussionfollowsourexposition ensues from the work by the 

authors in [16]. Several measurements are needed to get the best location estimate 

for a feature; from which these range values are collected by having the robot 

place the actuator and receiver at different locations, and the location is 

constrained by the corresponding ellipse. Thus, by using an accumulator array 

and adding a ’vote’ to each location on the ellipse, these six sensed range 
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values allow the determination of the most likely location of the reflecting point 

(damage in this case). This The ’voting’ is done with a Gaussian spread which 

leads to a smooth accumulator surface. 

Observed and simulated reflected A0 mode signals with known minimized 

possible reflection range are shown in Figure 4. There is significant overlap between 

the directly propagated and simulated reflected signals. This The overlap necessitates 

a method to separate reflected versus directly propagated waves in the observed data. 

In addition, we would likeone needs to isolate the main component of the reflected 

signal in the data. To achieve thissignal isolation, the signals outside a certain 

reflection range are eliminated. Figure 5 
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Figure 4: First Step in DSR Sensor comparing Actual Data with Simulated Signal. 

 
shows the windowed signals versus the simulated signals as described above.  In   

this form, the peak amplitude is not clearly identifiable. We tTherefore, the system 

needs to compute the CWT based scaled-average wavelet power (SAP),(see [28], 

referenced above page 166, for a description of this method). The computed SAPs 

are shown in Figure 6; . aAs can be seen in this figureFigure 6, the peaks are more 

clearly discernible. 
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Figure 5: Windowed SAP Signal versus Simulated Signal. 
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Figure 6: Computer Scaled-Average Wavelet Power (SAPs). 

 
 

5. Data Routing Model for Distributed Cloud Computing 

This The SLAMBOT system includesis a highly customizable data sharing model 

between sensing and computing resources. The data sharing model enables multiple 

sensing nodes to open connections with computing resources and retrieve results. As 

can be seen above, Tthe system gains its advantages from the three main 

components: (1) sensor nodes, (2) router, and (3) processor nodes ADD the other 

TWO. Thesewhich are discussed later in this Section.  The presence of multiple 

processor and broker nodes nodes reduces the chance of failure. The RabbitMQ 

message broker service provides reliable, flexible, highly available and multi-

protocol communication system.  ; Iitand also provides the ability to handle multiple 

protocols and supports message tracing. Figure 7 shows the current implementation 

layoulayout of the cloud architecturet.Ascanbeseenabove,the 

 

 

Figure 7: Cloud Component Architecture for Small-scale Health Structure 

Monitoring. 

 
system gains its advantages from the five main components: (1) sensor nodes, (2) 

router, and (3) processor nodes. A data routing model as customizable as this enables 

failsafe and quick communication between resources while providing isolation 

between sensing and computing resources. The dynamic queuing eases development 

and scalability. 

 
Sensor Nodes The sensors on the individual devices communicate with network 

connected sensor nodes which in this case are physical SLAMbotsSLAMBOTs. This 

The communication can be over the preferred sensor protocol. For example, GPS 

sensors can exchange data over I2Cor RS-232(serial) interconnects with the 

nodes. The sensor nodes are applications running on host devices that have the 

capability of posting messages onto the RrabbitMQ message broker queues. The 

sensor nodes gather sensor data, serialize it and put them onto the relevant work 

queues. Thus, they the sensor nodes are unaware of the computing resources on 

the cloud. Any processor capable of handling the work posted on the relevant 

work queue can pick it up. Also, the node only needs to subscribe to the work 

queue that is relevant to it. 

 
RabbitMQ Message Brokers This RabbitMQ is a highly reliable message 

broker that has several built built-in features. This has allowed affording us to create 

implementing inof the DDDAS framework presented in this Chapter. The systems is 

a fault tolerant allowing, persistent messaging system between processes running on 

disparate devices. Work  Work- queues can be spawned by remote applications 

dynamically. This allows allowing creation of a highly configurable easy to use 

messaging system. It The messages comprisecontains routing tables contain 

providing routing information regarding the available processing and sensing nodes. 
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Contract Net Manager This agent arbitrates allocation of work awards 

assignementassignments to sensor node agents that bid on a task. It The manager 

agent accepts tasks provided by the user and sets sets-up contracts. It has knowledge 

of contractor capabilities that which it uses in making this decision.   

 
RabbitMQ/Contract Net Management Interface A web interface to a 

service running on the message broker and contract manager allows us to monitoring 

the messaging activity. This which helps in not only debugging the system developed 

here but also in managing a large environment. This The web interface allows 

manually declaring queues, sending and receiving messages and monitor 

connections. 

 
Processor Nodes This The processor applications runs on a remote machine 

computer platform that has angood  adequate computing capability. This The 

applications generally handles singular responsibilities  but can also be used to 

consolidate data from multiple sensors and take derive a decision based upon the 

multiple data points. 

 
 

6. Validation Experiments 

Figure 9 shows the experimental layout for our the testing scenario for the 

methods presented hereof the SLAMBOT system. The aluminum panel is 

121.92cm2, and 1.6 mm thick, the sensors were VS900-RIC Vallen transducers, and 

the excitation signal was a 200 KHz 5 cycle, Hann-windowed waveform. Figure 8 

shows a trace of a sample SLAM run; as can be seen, the localization results are 

good for the robot and for nearby landmarks. However, more distant landmarks are 

poorly localized due to the failure of the underlying assumptions. We areFuture 

planned work can  planning includesand performing a multi-robot SLAM with another 

tracked robot on the surface and a quadrotor hovering above the plate. Figure 10 

shows ellipses produced by reflections from the boundary. Figure 11 shows the range 

ellipses derived from ultrasound signals reflected from a large hole. As can be seen, 

the intersection of the signals localizes the damage in the structure (in this case a hole 

in an aluminum plate). Figure 10 shows ellipses produced by reflections from the 

boundary. 
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Figure 8: Results from a SLAM rRun. 
 

 

Figure 9: Experimental Layout for Damage Localization using the Lamb Wave 

Range Sensor in an Aluminum Plate. 

 

We haveThe work described in this Chapter is on thedevelopedpresents  development 

of a cloud-based architecture which supports multiple agents working together to 

provide a structural health monitoring capability on a small-scale materials structure, 

which supports DDDAS-based methods. This The system developed hereincludes 

not only agents who contract for monitoring service and those that deliver it, but also 

agents that analyze the data delivered by the monitoring robot (e.g., here this includes 

both camera and ultrasound data; the Lamb wave based range finder function is 

performed by an off-line agent in Matlab and that information can be exploited by the 

mobile robot running Python). The combination of Lamb wave damage analysis with 

a robot SLAM methodology allows for more autonomous and accurate mapping of 

damage in structures. 

We are currentlySubsequent to the work presented here, a number of  investigating the following aspects of the system m:have 

been investigated: 

More precise mathematical characterization of the uncertainty in the results. 

While the covariance matrix of the EKF SLAM method gives some insight 

into the uncertainty, we it’s believed/conjectured that this can be further 

constrained by using multiple robots, and a better understanding of the 

Lamb wave uncertainties. 

The system is being extended to include multiple robots in order to reduce the 

uncertainty in the the localization results. Moreover, it’s seen as useful to we 

are looking toexplore the use other bases for the SLAM technique itself; e.g., 

Lamb wave reflection patterns at individual locations (e.g., similar to visual 

SLAM based on the appearance  of the surface), as well as other robots to 

locate the ultrasound sensors on the surface. 

• WealsoarelookingatAlso, extending the system to inspecting composite materials is a useful direction, given the 

increasing ubiquity of composites in airframe structures, and thus. 

• 

• 
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Figure 10: Range Data from the Boundary. 

This will be especially important for aircraft monitoring. 

 

8. Summary 

The methods presented here are applicable to a wide variety of disciplines and 

applications. The Computational Sensor Network framework provides not only a 

means for scientists and engineers to develop systems which self-calibrate their 

models, but also supports the deployment of autonomous systems which can 

verify and validate their own computational components and physics models. 

Three main DDDAS concepts have been used in this work: 

advances in mathematics and statistical algorithms: methods have been 

developed to exploit Lamb waves in the detection and localization of 

structural defects, and an uncertainty characterization is provided for the 

results of the analysis, 

applications modeling: an overall cloud computing and storage architecture 

is provided which enables heterogeneous computational agents to 

contribute to solving the specific application problem in a coherent way, and 

application measurement systems and methods: validation experiments 

conducted using aluminum plates are presented which involve the detection 

of defects by a custom mobile robot using onboard ultrasound sensors. 

These results demonstrate the feasibility of using Computational Sensor Net- 

works in a wide variety of applications, including structural health monitoring, 

large-scale outdoor surveying (e.g., open mines), nuclear facility inspection, etc. 

Moreover, the cloud-based computational framework has been extended and 

demonstrated in a geospatial analysis system, BRECCIA, to support rational 

decision making based on the fusion of multi-source information (from humans, 

simulations, sensors, etc.). The goal in this case is toThe general framework 

supports (1) the use of both discrete logical processes and continuous models, (2) 

the ability to simulate courses of action that 

• 

• 

• 
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Figure 11: Range Finder Ellipses to Damage (from 5 locations). 

 
 

take into account real-time data, and (3) the ability to automatically and 

continuously plan new optimal data acquisition strategies. 
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