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1 Preliminary

This article illustrates how to compute the probability in Markov logic network (MLN)
using examples. Also we show how the Markov logic “’softens” the rigorous constraints
in First-order logic but still keep its powerful express ability. From last blog post, we
showed that each first-order logic rule is corresponding to one (actually a series of
grounded) clique in Markov networks, therefore, the following formula is to compute
the satisfiability of the FOL formula from facts.

P(X=z)= %eacp <Z wmz(x)> ()

where n;(z) is “the number of true groundings of FOL formula F; in 2”. One may
ask a question: since the value of X is already assigned, i.e. x, then the truth value
of formula F; is also determined with either TRUE or FALSE, why are there several
different groundings that make F; true? To understand this, we have to understand one
important property of MLN, this is:

”An MLN can be viewed as a template for constructing Markov networks.”

This is an important sentence understanding MLN and the computation of the prob-
ability. It is probably the bridge between first-order logic and Markov networks. This
template MLN (weighted first-order formulas according to my understanding) has dif-
ferent instantiations, each of which is part of X or X’s component. For example, the
FOL formula

w (Vx)Smokes(x) = Cancer(z) )

may have a lot of grounded instances, such as
Smokes(A) = Cancer(A)

Smokes(B) = Cancer(B)

*More can be found at http://guangchun.wordpress.com/
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Smokes(C) = Cancer(C)

Then in equation (EI) the variable X should be like X=(Smokes(A)=1 Cancer(A)=1
Smokes(B)=0 Cancer(B)=1 Smokes(C)=1 Cancer(C)=0,...). We can see that the in-
stantiation (grounding) (Smokes(A), Cancer(A)) becomes part of variable X (first two
components in this case). The same for B and C. Suppose we only have {A, B, C},
then n; = 2 because the formula in is false under (Smokes(C)=1, Cancer(C)=0),
and true under both (Smokes(A)=1, Cancer(A)=1) and (Smokes(B)=0, Cancer(B)=1).

Equipped with these preliminary knowledge, let’s look at how the probability in
equation (T) is computed through three examples. The first one is the simplest with
only one first-order formula and only one constant. The second one deals with more
constants, and the third extends to multiple first-order formulas.

2 Single Formula Single Constant

N

{ Cancer(A)
e

Il_gm okes (A}j
A e

Figure 1: Single Formula Single Constants

In this simple example, we suppose first-order formula (2) is the only rule we have,
and its weight is w. There is only one constant { A}. See ﬁgurefor the corresponding
Markov network. The X in equation (1) is a 2D variable (Smokes(A), Cancer(A)).
Thus there are totally 4 different probability in this world, or say 4 different possible
worlds, or 4 different states of the world: z € {(0, 0), (0,1), (1,0), (1,1)}.

Since we only have one first-order formula, ¢ can only be {1} in equation (1), and
the summation is only for one item. Following this and the discussion in previous
section, we have

1 e 1 e
P(0,0) = —e¥*t = — P(0,1) = —e¥*t = —
(7) Ze Z? (7) Ze Z
1 1 1 ev

P(1 :7’11)*0:7 Pllsz*lz
(?0) Ze Z7 (5) Ze Z

where Z = e + e + € 4 ¢ = 3¢ + 1 is the partition factor. P(1,0) = 5= is
because when Smokes(A)=1, Cancer(A)=0, the truth value of formula (2) is false and
thus n; = 0. But it is true for each of the other three groundings, which gives n; = 1.

This finishes MLLN modeling: get joint distribution P(Smokes(A), Cancer(A))
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Now let’s verify if MLN generalizes (or softens) first-order logic. First, it is obvious
that the probability for (Smokes(A)=1, Cancer(A)=0) is not zero but P(1,0) = ﬁ
So it does “’softens” the canonical first-order logic requirement of either TRUE or
FALSE. Now it gets some in-betweens. Second, when given fact that A smokes
(Smokes(A)=1), the probability A has cancer, using Bayes theory, is

P(Cancer(A) =1, Smokes(A) = 1)

P(Cancer(A) = 1|Smokes(4) = 1) = P(Smokes(A) = 1)

where the marginal probability

1 ev e”+1
P(Smokes(A) =1) = -t 7=
and the joint probability
1 w
P(Cancer(A) =1, Smokes(A) =1) = Ee“’*l = %
Therefore,
P(Cancer(A) = 1|Smokes(A) =1) = we+ T 3)
e
From (3 we can see
wngrrloo P(Cancer(A) = 1|Smokes(A) =1) = i T = 1

which is consistent with first-order logic. The same conclusion can be achieved for
P(Cancer(A) = 1|Smokes(A) = 0) and P(Cancer(A) = 0|Smokes(A) = 0).

3 Single Formula Multiple Constants
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Figure 2: Single Formula Multiple Constants

Suppose we have one more person in our system Bob (B), but still we only have
one rule, the first-order formula@). Now we have two grounded formulas, as shown
in figure 2] Now it may be the best time to understand "An MLN can be viewed as
a template for constructing Markov networks,” because both grounded formulas are
derived from the same first-order formula (2).
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The world we are modelling this time is in 4D: X=(Smokes(A), Cancer(A)Smokes(B),
Cancer(B)). We have to obtain the probability P(Smokes(A), Cancer(A)Smokes(B),
Cancer(B)) through when given different truth value assignments to each of the
four components.

What’s the range of ¢ in equation ? Is it {1,2} because we now have two
grounded formulas ans thus two cliques? NO! Still the ¢ can only be in {1}, not {1, 2}.
Careful readers may have notice that true groundings have already been characterized
in n;, or in order words, the equation can be written as

f ni(z)

P(X=2z)= %acp Z Z w; @
i

where f is the number of first-order formulas (not grounded ones). This formula can be
read as “for each first-order formula, add the weights whenever its grounding is true”.
Pay attention to the order in this sentence.

Since we only look at 4D binary world here, each component of X can only
be 0 or 1, we totally have 2* = 16 different possible states of the world. When
computing P(X), we assume that we don’t have only facts or evidences (such as
Smokes(A) = 0). I think this is equivalently saying: each of the 16 different states
have equal happening probability. If we think in this way, the computation method we
discuss here can be easily extended for inference in MLNs, where the only difference
is not all states happen and the happening probabilities are different—such facts show
up several times while others do not.

First, let’s look at how the probability P(X=(0,0,0,0)) is computed as an example,
i.e. Smokes(A)=0, Cancer(A)=0, Smokes(B)=0, Cancer(B)=0. According to equation
or , how many true groundings of first-order formula (2)) in (0,0,0,0)?

e Smokes(A)=0 and Cancer(A)=0, so Smokes(A) = Cancer(A) is true;
e Smokes(B)=0 and Cancer(B)=0, so Smokes(A) = Cancer(A) is true;

Therefore, there are n;(x) = 2 true grounding of only formula F; (i = 1), i.e.
formula (). We only have one formula, so

1 1 ni(x) 1 2 1
P(0,0,0,0) = - €ap Z Z w; | = —exp Zwl = Eew*Q
i=1 j=1

Similarly, we can get the probabilities of different “possible worlds”, shown in
Table(Z omitted). From Table we can get Z = 9e2% + 6e™ + 1.

Once joint distribution P(X) is obtained, different probabilities such as conditional
probability and marginal probability can be easily computed. For example (C short for
Cancer, S for Smokes)

&)

o~
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Table 1: Probabilities of different worlds

X TLL(I) e (z)*w;
Smokes(A) | Cancer(A) | Smokes(B) | Cancer(B)

0 0 0 0 2 e?w
0 0 0 1 2 e2w
0 0 1 0 1 e
0 0 1 1 2 e2w
0 1 0 0 2 e?w
0 1 0 1 2 e2w
0 1 1 0 1 e
0 1 1 1 2 e2w
1 0 0 0 1 eV
1 0 0 1 1 ev
1 0 1 0 0 1

1 0 1 1 1 ev
1 1 0 0 2 e
1 1 0 1 2 e2w
1 1 1 0 1 ev
1 1 1 1 2 e?w

where the joint probability in the numerator is in Table|l} and the marginal proba-

bility in denominator can be got by adding items in Table[T| where (Smokes(A)=1 and
Smokes(B)=1):

2w 2 1

P(S(A)=1,8(B)=1) = %

Therefore, the probability in (3)) is

62111

P(C(A)=1,C(B)=1|S(4)=1,8(B)=1) = v 2ew 11

Itis 1 when w — +o0.
Similarly, we can get P(C'(A) = 0,C(B) =0|S(A) =1,5(B) =1) = m,
and it is zero when w — +o0.

4 Multiple Formulas Multiple Constants

To keep this article short, we leave this section. The method is the same as the previous,
and the only difference is when computing the probability we have to enumerate ¢ over
1,2,3,....N (N is the number of first-order formulas). But for each 4, the procedure is
totally the same as it is shown ”Single Formula Multiple Constants”. For example, if
we add the following first-order formula, we will get the grounded formulas shown in
figure 3] where different shadows represents different first-order formulas. Note that in
the figure, we do not consider the relationship of Friends(A,A) or Friends(B,B).
Do try it by yourself!
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Figure 3: Multiple Formulas Multiple Constants

5 Summary

Some notes for MLN and computation of the joint probability:

1. MLN is a generative model which models the joint distribution of the predicates
given constants in a system. The representation of MLN is weighted first-order formu-
las, and its reasoning is through converting the first-order logic to Markov network.

2. The ¢ in equation () runs over different first-order formulas, not the grounded
formulas. The Markov network of Markov logic is constructed from the grounded
formulas/predicates, but these formulas are grouped based on which formula (tem-
plate) they are derived from. This is reflected as n;(z) in formula , because those
”grouped” grounded formulas from the same first-order formula have the same weight
w;.

3. In MLN, the predicates are organised in a hierarchical manner: MLN=-FOL
groups=—grounded formulas. The middle layer (i.e. FOL group) is directly related to
the knowledge/rules in first-order logic form.
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