
RockIt: Exploiting Parallelism and Symmetry
for MAP Inference in Statistical Relational Models

Jan Noessner
Data and Web Science Research Group

University of Mannheim
Mannheim, 68131, Germany

Mathias Niepert
Computer Science & Engineering

University of Washington
Seattle, WA 98195-2350, USA

Heiner Stuckenschmidt
Data and Web Science Research Group

University of Mannheim
Mannheim, 68131, Germany

Abstract

ROCKIT is a maximum a-posteriori (MAP) query en-
gine for statistical relational models. MAP inference
in graphical models is an optimization problem which
can be compiled to integer linear programs (ILPs). We
describe several advances in translating MAP queries
to ILP instances and present the novel meta-algorithm
cutting plane aggregation (CPA). CPA exploits local
context-specific symmetries and bundles up sets of lin-
ear constraints. The resulting counting constraints lead
to more compact ILPs and make the symmetry of
the ground model more explicit to state-of-the-art ILP
solvers. Moreover, ROCKIT parallelizes most parts of
the MAP inference pipeline taking advantage of ubiqui-
tous shared-memory multi-core architectures.
We report on extensive experiments with Markov logic
network (MLN) benchmarks showing that ROCKIT
outperforms the state-of-the-art systems ALCHEMY,
MARKOV THEBEAST, and TUFFY both in terms of ef-
ficiency and quality of results. This paper is a short ver-
sion of a AAAI publication of the same name.

Introduction
Maximum a-posteriori (MAP) queries in statistical rela-
tional models ask for a most probable possible world given
evidence. In this paper, we will present novel principles and
algorithms for solving MAP queries in SRL models. MAP
inference (or, alternatively, MPE inference) is an important
type of probabilistic inference problem in graphical mod-
els which is also used as a subroutine in numerous weight
learning algorithms (Lowd and Domingos 2007). Being able
to answer MAP queries more efficiently often translates to
improved learning performance.

Since Markov logic (Richardson and Domingos 2006) is
arguably the most widely used statistical relational learn-
ing (SRL) formalism, we use Markov logic as represen-
tation formalism throughout this paper. However, the pro-
posed approach is also applicable to numerous alternative

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

SRL formalisms. Due to its expressiveness and declarative
nature, numerous real-world problems have been modeled
with Markov logic. Especially in the realm of data man-
agement applications such as entity resolution (Singla and
Domingos 2006), data integration (Niepert, Meilicke, and
Stuckenschmidt 2010; Niepert 2010), ontology refinement
(Wu and Weld 2008), and information extraction (Poon and
Domingos 2007; Kok and Domingos 2008), Markov logic
achieves competitive empirical results.

The main contributions of the presented work are as
follows. First, we present a more compact compilation of
MAP problems to integer linear programs (ILPs) where each
ground clause is modeled by a single linear constraint. Sec-
ondly, we introduce cutting plane aggregation (CPA). CPA
exploits evidence-induced symmetries in the ground model
that lead to context-specific exchangeability of the random
variables. CPA results not only in more compact ILPs but it
also makes the model’s symmetries more explicit to sym-
metry detection heuristics of state of the art ILP solvers.
Thirdly, we parallelize most parts of the MAP query pipeline
so as to leverage multi-core architectures. Finally, we have
designed and implemented the presented theory resulting
in a novel and robust MLN engine ROCKIT that integrates
cutting plane aggregation with cutting plane inference. Nu-
merous experiments on established benchmarks show that
CPA leads to significantly reduced run times. ROCKIT out-
performs the state-of-the-art systems ALCHEMY, MARKOV
THEBEAST, and TUFFY both in terms of running time and
quality of results on each of the MLN benchmarks.

Related Work
MaxWalkSAT (MWS), a random walk algorithm for solv-
ing weighted SAT problems (Kautz, Selman, and Jiang
1997), is the standard inference algorithm for MAP queries
in the Markov logic engine ALCHEMY (Domingos et al.
2012). The system TUFFY (Niu et al. 2011) employs re-
lational database management systems to ground Markov
logic networks more efficiently. TUFFY also runs MWS on
the ground model which it initially attempts to partition into
disconnected components.

37

Statistical Relational Artificial Intelligence: Papers from the AAAI 2013 Workshop

MAP queries in SRL models can be formulated as integer
linear programs (ILPs). In this context, cutting plane infer-
ence (CPI) solving multiple smaller ILPs in several itera-
tions has shown remarkable performance (Riedel 2008). In
each CPI iteration, only the ground formulas violated by the
current intermediate solution are added to the ILP formu-
lation until no violated ground formulas remain. Since CPI
ignores ground formulas satisfied by the evidence, it can be
seen as a generalization of pre-processing approaches that
count the formulas satisfied by the evidence (Shavlik and
Natarajan 2009). In the context of max-margin weight learn-
ing for MLNs (Huynh and Mooney 2009) the MAP query
was formulated as a linear relaxation of an ILP and a round-
ing procedure was applied to extract an approximate MAP
state. ROCKIT’s ILP formulation requires fewer constraints
for ground clauses with negative weights and it combines
CPI with cutting plane aggregation.

There is a large class of symmetry-aware algorithms for
SRL models. Examples of such lifted inference algorithms
include first-order variable elimination (FOVE) (Poole
2003) and some of its extensions (Milch et al. 2008; Kisyn-
ski and Poole 2009) making use of counting and aggre-
gation parfactors. FOVE has also been adapted to solve
MAP problems (FOVE-P) (de Salvo Braz, Amir, and Roth
2006). (Apsel and Brafman 2012) introduced an approach
for MAP inference that takes advantage of uniform assign-
ments which are groups of random variables that have iden-
tical assignments in some MAP solution. Automorphism
groups of graphical models were used to lift variational ap-
proximations of MAP inference (Bui, Huynh, and Riedel
2012). We attempted to compute automorphism groups as
an alternative method for aggregating constraints but ex-
periments showed that calling a graph automorphism algo-
rithm in each CPI iteration dominated the overall solving
time. (Mladenov, Ahmadi, and Kersting 2012) computed ap-
proximate solutions to linear programs by reducing the LP
problem to a pairwise MRF over Gaussians and applying
lifted Gaussian belief propagation. Similar to the approach
of (Bui, Huynh, and Riedel 2012) lifted linear programming
can be used to approximate LP relaxations (Asano 2006) of
the MAP ILP. Contrary to previous work, ROCKIT uses a
more compact ILP formulation with a one-to-one correspon-
dence between ground clauses and linear constraints, tightly
integrates CPI and CPA, and estimates the optimal aggrega-
tion scheme avoiding a costly exact computation in each CPI
iteration. Moreover, contrary to lifted inference approaches
operating solely on the first-order level, ROCKIT exploits
evidence-induced local symmetries on the ground level.

There are several lifted marginal inference approaches
such as lifted message passing (Singla and Domingos 2008;
Kersting, Ahmadi, and Natarajan 2009), variants of lifted
knowledge compilation and theorem proving (Van den
Broeck 2011; Gogate and Domingos 2011), and lifted
MCMC (Niepert 2012; Venugopal and Gogate 2012) ap-
proaches. While there are some generic parallel machine
learning architectures such as GRAPHLAB (Low et al. 2010)
which could in principle be used for parallel MAP inference,
ROCKIT is the first system that parallelizes MAP inference
in SRL models combining CPI and CPA.

Markov Logic
Markov logic is a first-order template language combining
first-order logic with log-linear graphical models. We first
review function-free first-order logic (Genesereth and Nils-
son 1987). Here, a term is either a constant or a variable. An
atom p(t1, ..., tn) consists of a predicate p/n of arity n fol-
lowed by n terms ti. A literal ` is an atom a or its negation
¬a. A clause is a disjunction `1 ∨ ... ∨ `k of literals. The
variables in clauses are always assumed to be universally
quantified. The Herbrand base H is the set of all possible
ground (instantiated) atoms. Every subset of the Herbrand
base is a Herbrand interpretation.

A Markov logic network M is a finite set of pairs
(Fi, wi), 1 ≤ i ≤ n, where each Fi is a clause in function-
free first-order logic and wi ∈ R. Together with a finite set
of constants C = {c1, ..., cn} it defines the ground Markov
logic networkMC with one binary variable for each ground-
ing of predicates occurring in M and one feature for each
grounding of formulas inM with feature weight wi. Hence,
a Markov logic network defines a log-linear probability dis-
tribution over Herbrand interpretations (possible worlds)

P (x) =
1

Z
exp

(∑
i

wini(x)

)
(1)

where ni(x) is the number of satisfied groundings of clause
Fi in possible world x and Z is a normalization constant.

In order to answer a MAP query given evidence E = e
one has to solve the maximization problem

arg max
x

P (X = x | E = e)

where the maximization is performed over possible worlds
(Herbrand interpretations) x compatible with the evidence.

Cutting Plane Aggregation
Each MAP query corresponds to an optimization problem
with linear constraints and a linear objective function and,
hence, we can formulate the problem as an instance of in-
teger linear programming. The novel cutting plane aggrega-
tion approach is tightly integrated with cutting plane infer-
ence (CPI) a meta-algorithm operating between the ground-
ing algorithm and the ILP solver (Riedel 2008). Instead of
immediately adding one constraint for each ground formula
to the ILP formulation, the ILP is initially formulated so as
to enforce the given evidence to hold in any solution. Based
on the solution of this more compact ILP one determines
the violated constraints, adds these to the ILP, and resolves.
This process is repeated until no constraints are violated by
an intermediate solution.

We begin by introducing a novel ILP formulation of MAP
queries for Markov logic networks. In contrast to existing
approaches (Riedel 2008; Huynh and Mooney 2009), the
formulation requires only one linear constraint per ground
clause irrespective of the ground clause being weighted or
unweighted. Moreover, we introduce the notion of context-
specific exchangeability and describe the novel cutting plane
aggregation (CPA) algorithm that exploits this type of local

38

symmetry. Contrary to most symmetry-aware and lifted in-
ference algorithms that assume no or only a limited amount
of evidence, the presented approach specifically exploits
model symmetries induced by the given evidence.

General ILP Formulation
In order to transform the MAP problem to an ILP we have to
first ground, that is, instantiate, the first-order theory speci-
fied by the Markov logic network. Since we are employing
cutting plane inference, ROCKIT runs in each iteration sev-
eral join queries in a relational database system to retrieve
the ground clauses violated by the current solution. Hence,
in each iteration of the algorithm, ROCKIT maintains a set
of ground clauses G that have to be translated to an ILP in-
stance.

Given such a set of ground clauses G, we associate one
binary ILP variable x` with each ground atom ` occurring in
some g ∈ G. For the sake of simplicity, we will often denote
ground atoms and ILP variables with identical names. For a
ground clause g ∈ G let L+(g) be the set of ground atoms
occurring unnegated in g and L−(g) be the set of ground
atoms occurring negated in g. Now, we encode the given ev-
idence by introducing linear constraints of the form x` ≤ 0
or x` ≥ 1 depending on whether the evidence sets the cor-
responding ground atom ` to false or true. For every ground
clause g ∈ G with weight w > 0, w ∈ R, we add a novel
binary variable zg and the following constraint to the ILP:∑

`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≥ zg.

Please note that if any of the ground atoms ` in the ground
clause is set to false by the given evidence, we do not include
it in the linear constraint.

For every g with weight wg < 0, w ∈ R, we add a novel
binary variable zg and the following constraint to the ILP:∑
`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≤ (|L+(g)|+ |L−(g)|)zg.

For every g with weight wg = ∞, that is, a hard clause,
we add the following linear constraint to the ILP:∑

`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≥ 1

If a ground clause has zero weight we do not have to add
the corresponding constraint.

Finally, the objective of the ILP is:

max
∑
g∈G

wgzg,

where we sum over weighted ground clauses only, wg is the
weight of g, and zg ∈ {0, 1} is the binary variable previously
associated with ground clause g. We compute a MAP state
by solving the ILP whose solution corresponds one-to-one
to a MAP state x where xi = true if the corresponding
ILP variable is 1 and xi = false otherwise.

Constraint Aggregation
In this section we optimize the compilation of sets of
weighted ground clauses to sets of linear constraints. More
concretely, we introduce a novel approach that aggregates
sets of ground clauses so as to make the resulting ILP have
(a) fewer variables (b) fewer constraints and (c) its context-
specific symmetries more exposed to the ILP solver’s sym-
metry detection heuristics.

We first demonstrate that evidence often introduces sym-
metries in the resulting sets of ground clauses and, there-
fore, at the level of ILP constraints. The proposed approach
aggregates ground clauses, resulting in smaller constraint
matrices and aiding symmetry detection algorithms of the
ILP solvers. The solvers apply heuristics to test whether the
ILP’s constraint matrix exhibits symmetries in form of per-
mutations of its columns and rows. For a comprehensive
overview of existing principles and algorithms for detecting
and exploiting symmetries in integer linear programs we re-
fer the reader to (Margot 2010; 2003; Ostrowski et al. 2011;
Bödi, Herr, and Joswig 2013). We describe cutting plane ag-
gregation in two steps. First, we explain the aggregation of
ground formulas and, second, we describe the compilation
of aggregated formulas to ILP constraints.
Definition 1 Let G ⊆ G be a set of n weighted ground
clauses and let c be a ground clause. We say that G can be
aggregated with respect to c if (a) all ground clauses in G
have the same weight and (b) for every gi ∈ G, 1 ≤ i ≤ |G|,
we have that gi = `i∨c where `i is a (unnegated or negated)
literal for each i, 1 ≤ i ≤ |G|.

Let G ⊆ G be a set of ground clauses with weight w and
let c be a ground clause. Moreover, let us assume that G can
be aggregated with respect to c, that is, that each g ∈ G
can be written as `i ∨ c. The aggregated feature fG for the
clauses G with weight w maps each interpretation I to an
integer value as follows

fG(I) =

{
|G| if I |= c

|{`i ∨ c ∈ G | I |= `i}| otherwise

}
.

The feature resulting from the aggregation, therefore,
counts the number of literals `i that are satisfied if the
ground clause c is not satisfied and returns the number of
aggregated clauses otherwise. Please note that an encoding
of this feature in a factor graph would require space expo-
nential in the number of ground atoms even though the fea-
ture only has a linear number of possible values. The fea-
ture, therefore, is highly symmetric – each assignment to the
random variables corresponding to the unnegated (negated)
literals that has the same Hamming weight results in the
same feature weight contribution. This constitutes a feature-
specific local form of finite exchangeability (Finetti 1972;
Diaconis 1977) of random variables induced by the evi-
dence. Therefore, we denote this form of finite exchange-
ability as context-specific exchangeability. Please note that
the concept is related to counting formulas used in some
lifted inference algorithms (Milch et al. 2008). While stan-
dard models such as factor graphs cannot represent such
symmetric features compactly, one can encode these count-
ing features directly with a constant number of ILP con-
straints. We now describe this translation in more detail.

39

Figure 1: ROCKIT parallelizes constraint finding, constraint
aggregation, and ILP solving.

As before, for any ground clause c, let L+(c) (L−(c)) be
the set of ground atoms occurring unnegated (negated) in
c. We first show the formulation for clauses with positive
weights. LetG ⊆ G be a set of n ground clauses with weight
w > 0 that can be aggregated with respect to c, that is, for
each g ∈ G we have that g = xi ∨ c or g = ¬xi ∨ c for
some ground atom xi and a fixed clause c. We now add the
following two linear constraints to the ILP:∑

(xi∨c)∈G

xi +
∑

(¬xi∨c)∈G

(1− xi) +

∑
`∈L+(c)

nx` +
∑

`∈L−(c)

n(1− x`) ≥ zg (2)

and
zg ≤ n (3)

Linear constraint (2) introduces the novel integer variable
zg for each aggregation. Whenever a solution satisfies the
ground clause c this variable has the value n and otherwise it
is equal to the number of literals `i satisfied by the solution.
Since constraint (2) alone might lead to values of zg that are
greater than n, the linear constraint (3) ensures that the value
of zg is at most n. However, linear constraint (3) only needs
to be added if clause c is not the constant false.

We describe the aggregation of clauses with negative
weight. Let G ⊆ G be a set of n ground clauses with weight
w < 0 that can be aggregated with respect to c, that is, for
each g ∈ G we have that g = xi ∨ c or g = ¬xi ∨ c for
a ground atom xi and a fixed clause c. We now add the fol-
lowing linear constraints to the ILP:∑

(xi∨c)∈G

xi +
∑

(¬xi∨c)∈G

(1− xi) ≤ zg (4)

and
nx` ≤ zg for every ` ∈ L+(c) (5)

and

n(1− x`) ≤ zg for every ` ∈ L−(c). (6)

Linear constraint (4) introduces an integer variable zg that
counts the number of ground clauses in G that are satisfied.
For each of the integer variables zg representing an aggre-
gated set of clauses we add the term wgzg to the objective
function where wg is the weight of each of the aggregated
clauses. It is not difficult to verify that each solution of the
novel formulation corresponds to a MAP state of the MLN
it was constructed from.

We observed that the computation and aggregation of
the violated constraints often dominated the ILP solving
time. Since, in addition, state-of-the-art ILP solvers such as
GUROBI1 already parallelize their branch and bound based
algorithms we developed an additional method for paral-
lelizing the CPI and CPA phases.

Parallelism
In this section we will briefly explain the parallelization
framework of ROCKIT2.Figure 1 depicts the computational
pipeline of the system. After pre-processing the input MLN
and loading it into the relational database system, ROCKIT
performs CPI iterations until no new violated constraints are
found. The violated constraints are computed with joins in
the relational database system where each table stores the
predicate groundings of the intermediate solutions. In each
CPI iteration, ROCKIT performs CPA on the violated con-
straints. We can parallelize the aggregation steps by pro-
cessing each first-order formula in a separate thread. To
this end, each first-order formula is initially placed on a
stack S. ROCKIT creates one thread per available core and,
when idle, makes each of the threads (i) pop a first-order
formula from the stack S, (ii) compute the formula’s vio-
lated groundings, and (iii) perform CPA on these ground-
ings. The aggregated groundings are compiled into ILP con-
straints and added to the ILP formulation. When the stack
S is empty and all threads idle we solve the current ILP in
parallel, obtain a solution, and begin the next CPI iteration.

Experiments
With the following experiments we assess whether and to
what extent ROCKIT (a) reduces the overall runtime, and
(b) outperforms state-of-the-art MLN systems. We compare
ROCKIT to three MLN systems ALCHEMY (Domingos et
al. 2012), MARKOV THEBEAST (Riedel 2008), and TUFFY
(version 3) (Niu et al. 2011). To ensure a fair comparison, we
made MARKOV THEBEAST also use the ILP solver Gurobi.
In addition, we investigate whether and to what extent (c)
ROCKIT’s performance increases with the number of avail-
able cores of a shared-memory architecture. All experiments
were performed on a standard PC with 8 GB RAM and 2
cores with 2.4 GHz each unless otherwise stated.

We used several established benchmark MLNs for the
empirical evaluation. The entity resolution (ER) MLN ad-
dresses the problem of finding records corresponding to the

1http://www.gurobi.com/
2http://code.google.com/p/rockit/

40

0 40 80 120 160
RC dataset

8
11

43
16

error
0.1

0 40 80 120 160

8
11

43
16

error
0.01

0 40 80 120 160

8
11

43
16

error
0.001

0 40 80 120 160

21
46

122
*

error
10 −

10

0 200 400
PR dataset

13
84

**
398

**
0 200 400

13
84

**
398

**
0 200 400

13
84

**
398

**
0 200 400

13
84

**
*
**

0 20 40 60 80
LP dataset

7
16

40
20

59
0 20 40 60 80

7
16

40
24

*
0 20 40 60 80

*
*
*
*
*

0 20 40 60 80

*
*
*
*
*

0 100 200 300 400
IE dataset

3.6
3.7
11.3

28
340

0 100 200 300 400

3.6
3.7
11.3

28
340

0 100 200 300 400

3.6
3.7
11.3

28
340

0 100 200 300 400

3.6
3.7
11.3

28
340

RockIt w/ CPA
RockIt w/o CPA

TheBeast
Tuffy

Alchemy

0 20 40 60 80
ER dataset

7
13

48
38

60

RockIt w/ CPA
RockIt w/o CPA

TheBeast
Tuffy

Alchemy

0 20 40 60 80

7
13

48
*
*

RockIt w/ CPA
RockIt w/o CPA

TheBeast
Tuffy

Alchemy

0 20 40 60 80

7
13

48
*
*

RockIt w/ CPA
RockIt w/o CPA

TheBeast
Tuffy

Alchemy

0 20 40 60 80

7
13

48
*
*

Figure 2: Running time in seconds of ROCKIT, ALCHEMY, MARKOV THEBEAST, and TUFFY for different gaps (bounds on
the relative error) and with two cores. * gap not reached within 1 hour, ** out of memory, *** did not terminate within 1 hour.

1
C

or
e

2
C

or
es

4
C

or
es

8
C

or
es

5
6

7
8

ru
nt

im
e

in
se

co
nd

s

7.
6

6.
8

6.
2

5.
9

ER

1
C

or
e

2
C

or
es

4
C

or
es

8
C

or
es

3.
0

3.
4

3.
8

4.
2

3.
9

3.
6

3.
4

3.
3

IE

1
C

or
e

2
C

or
es

4
C

or
es

8
C

or
es

4
6

8
10

10
.0

7.
0

5.
9

5.
3

LP

1
C

or
e

2
C

or
es

4
C

or
es

8
C

or
es

8
12

16
20

17
.0

12
.8

12
.2

10
.9

PR

1
C

or
e

2
C

or
es

4
C

or
es

8
C

or
es

6
7

8
9

10

9.
2

8.
0

7.
0

6.
9

RC

Figure 3: Running time of ROCKIT with CPA on varying
number of cores. Due to space considerations we only show
the results for the lowest gap 10−10 for ER, IE, RC, and PR
benchmarks and the gap 0.01 for the LP benchmark.

same real-world entity (Singla and Domingos 2006). The in-
formation extraction (IE) (Poon and Domingos 2007) MLN
was created for the extraction of database records. The link
prediction MLN (LP) was built to predict the relations of
several university departments (Richardson and Domingos
2006). The protein interaction (PR) MLN was designed to
predict interactions between proteins, enzymes, and pheno-
types. The relational classification (RC) MLN performs a
classification on the CORA (McCallum et al. 2000) dataset.
In (Niu et al. 2011) the MLN was used to compare the per-
formance of TUFFY to the ALCHEMY system. The ER, LP,
IE, and RC MLNs were downloaded from the TUFFY web-
site and the PR MLN from the ALCHEMY website. The for-
mula weights were learned with ALCHEMY.

In order to compare the performance of the MLN sys-
tems, we measured the time needed to compute an interpre-
tation whose weight (the sum in equation (1)), has a rela-
tive error of at most ε = 10−τ , τ ∈ {1, 2, 3, 10}, with re-

spect to the optimal weight. To this end, we used ROCKIT
to compute an ILP solution whose objective value has a rel-
ative error of at most 10−10 and computed the actual weight
ω10 of the interpretation corresponding to this ILP solu-
tion. From this value we computed ωτ for τ ∈ {1, 2, 3} by
multiplying ω10 with 1 − 10−τ . The MLN systems were
run, for each τ ∈ {1, 2, 3, 10}, with an increasing num-
ber of MaxWalkSAT flips for ALCHEMY and TUFFY or
with decreasing values of Gurobi’s MIPGAP parameter for
MARKOV THEBEAST and ROCKIT until a parameter con-
figuration achieved an interpretation weight of at least ωτ ,
or until one hour had passed, whichever came first. Thus,
each run was limited to one hour. Figure 2 summarizes the
results for the four different gaps.

Using CPA was always more efficient except for the IE
benchmark where the average running time remained almost
identical. The largest decrease in running time due to CPA,
from 84 to 13 seconds, was observed for the PR dataset.
ROCKIT was more efficient and was often able to compute
a higher objective than TUFFY, MARKOV THEBEAST, and
ALCHEMY. In all cases, ROCKIT was able to compute an in-
terpretation with highest weight in less time. We conjecture
that ROCKIT without CPA is more efficient than MARKOV
THEBEAST because of ROCKIT’s more compact ILP formu-
lation and the parallelization of the CPI phase. For the ER,
PR, and RC dataset TUFFY and ALCHEMY were not able to
achieve the same approximation as ROCKIT. ALCHEMY did
not finish grounding within one hour on the RC dataset and
ran out of memory on the PR dataset. For the LP dataset, no
system was able to achieve a gap of 0.001 or lower.

Figure 3 compares the runtime of ROCKIT with CPA for
different number of cores. For each benchmark, the runtime
decreases when the number of cores increases with a dimin-
ishing reduction in runtime. The LP benchmark has the high-
est relative decrease of about 53% when comparing the run-
ning times on 1 and 8 cores.

41

Conclusions
We presented ROCKIT, a system for parallel MAP infer-
ence in SRL models combining CPI and cutting plane ag-
gregation (CPA). CPA is a novel algorithm that aggregates
symmetric constraints. Extensive experiments showed that
ROCKIT is more efficient than existing MLN systems.

References
Apsel, U., and Brafman, R. 2012. Exploiting uniform as-
signments in first-order mpe. In Proceedings of UAI, 74–83.
Asano, T. 2006. An improved analysis of goemans and
williamson’s lp-relaxation for max sat. Theoretical Com-
puter Science 354(3):339–353.
Bödi, R.; Herr, K.; and Joswig, M. 2013. Algorithms for
highly symmetric linear and integer programs. Mathemati-
cal Programming 137(1-2):65–90.
Bui, H. H.; Huynh, T. N.; and Riedel, S. 2012. Automor-
phism groups of graphical models and lifted variational in-
ference. CoRR abs/1207.4814.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2006. MPE and
partial inversion in lifted probabilistic variable elimination.
In Proceedings of AAAI, 1123–1130.
Diaconis, P. 1977. Finite forms of de finetti’s theorem on
exchangeability. Synthese 36(2):271–81.
Domingos, P.; Jain, D.; Kok, S.; Lowd, D.; Poon,
H.; and Richardson, M. 2012. Alchemy website.
http://alchemy.cs.washington.edu/. last visit: 22.11.2012.
Finetti, B. 1972. Probability, induction and statistics: the art
of guessing. Probability and mathematical statistics. Wiley.
Genesereth, M., and Nilsson, N. 1987. Logical foundations
of artificial intelligence, volume 9. Morgan Kaufmann.
Gogate, V., and Domingos, P. 2011. Probabilistic theorem
proving. In Proceedings of UAI, 256–265.
Huynh, T. N., and Mooney, R. J. 2009. Max-margin weight
learning for markov logic networks. In Proceedings of
EMCL PKDD, 564–579.
Kautz, H.; Selman, B.; and Jiang, Y. 1997. A general
stochastic approach to solving problems with hard and soft
constraints. Satisfiability Problem: Theory and Applications
17.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting
belief propagation. In Proceedings of UAI, 277–284.
Kisynski, J., and Poole, D. 2009. Lifted aggregation in di-
rected first-order probabilistic models. In Proceedings of
IJCAI, 1922–1929.
Kok, S., and Domingos, P. 2008. Extracting semantic net-
works from text via relational clustering. Machine Learning
and Knowledge Discovery in Databases 624–639.
Low, Y.; Gonzalez, J.; Kyrola, A.; Bickson, D.; Guestrin, C.;
and Hellerstein, J. M. 2010. Graphlab: A new framework for
parallel machine learning. In Proceedings of UAI, 340–349.
Lowd, D., and Domingos, P. 2007. Efficient weight learning
for markov logic networks. In Proceedings of ECML PKDD,
200–211.

Margot, F. 2003. Exploiting orbits in symmetric ilp. Math.
Program. 98(1-3):3–21.
Margot, F. 2010. Symmetry in integer linear programming.
In 50 Years of Integer Programming 1958-2008. Springer
Berlin Heidelberg. 647–686.
McCallum, A.; Nigam, K.; Rennie, J.; and Seymore, K.
2000. Automating the construction of internet portals with
machine learning. Information Retrieval 3(2):127–163.
Milch, B.; Zettlemoyer, L. S.; Kersting, K.; Haimes, M.; and
Kaelbling, L. P. 2008. Lifted probabilistic inference with
counting formulas. In Proceedings of AAAI, 1062–1068.
Mladenov, M.; Ahmadi, B.; and Kersting, K. 2012. Lifted
linear programming. Journal of Machine Learning Research
22:788–797.
Niepert, M.; Meilicke, C.; and Stuckenschmidt, H. 2010. A
probabilistic-logical framework for ontology matching. In
Proceedings of AAAI, 1413–1418.
Niepert, M. 2010. A delayed column generation strategy for
exact k-bounded map inference in markov logic networks.
In Proceedings of UAI, 384–391.
Niepert, M. 2012. Markov chains on orbits of permutation
groups. In Proceedings of UAI, 624–633.
Niu, F.; Ré, C.; Doan, A.; and Shavlik, J. 2011. Tuffy: Scal-
ing up statistical inference in markov logic networks using
an rdbms. Proceedings of the VLDB Endowment 4(6):373–
384.
Ostrowski, J.; Linderoth, J.; Rossi, F.; and Smriglio, S. 2011.
Orbital branching. Math. Program. 126(1):147–178.
Poole, D. 2003. First-order probabilistic inference. In Pro-
ceedings of IJCAI, 985–991.
Poon, H., and Domingos, P. 2007. Joint inference in infor-
mation extraction. In Proceedings of AAAI, 913–918.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine learning 62(1):107–136.
Riedel, S. 2008. Improving the accuracy and efficiency of
map inference for markov logic. Proceedings of UAI 468–
475.
Shavlik, J. W., and Natarajan, S. 2009. Speeding up infer-
ence in markov logic networks by preprocessing to reduce
the size of the resulting grounded network. In Proceedings
of IJCAI, 1951–1956.
Singla, P., and Domingos, P. 2006. Entity resolution with
markov logic. In Proceedings of ICDM, 572–582.
Singla, P., and Domingos, P. 2008. Lifted first-order belief
propagation. In Proceedings of AAAI, 1094–1099.
Van den Broeck, G. 2011. On the completeness of first-order
knowledge compilation for lifted probabilistic inference. In
Proceedings of NIPS, 1386–1394.
Venugopal, D., and Gogate, V. 2012. On lifting the gibbs
sampling algorithm. In Proceedings of NIPS. 1664–1672.
Wu, F., and Weld, D. 2008. Automatically refining the
wikipedia infobox ontology. In Proceedings of WWW, 635–
644.

42

