
Computation Tree Logic (CTL)

◮ LTL formulae φ are evaluated on paths path formulae

◮ CTL formulae ψ are evaluated on states . . state formulae

◮ Syntax of CTL well-formed formulae:

ψ ::= p (Atomic formulap ∈ AP)
| ¬ψ (Negation)
| ψ1 ∧ ψ2 (Conjunction)
| ψ1 ∨ ψ2 (Disjunction)
| ψ1 ⇒ ψ2 (Implication)
| AXψ (All successors)
| EXψ (Some successors)
| A[ψ1 U ψ2] (Until – along all paths)
| E[ψ1 U ψ2] (Until – along some path)

Mike Gordon 59 / 127

Semantics of CTL
◮ Assume M = (S,S0,R, L) and then define:

[[p]]M(s) = p ∈ L(s)

[[¬ψ]]M(s) = ¬([[ψ]]M(s))

[[ψ1 ∧ ψ2]]M(s) = [[ψ1]]M(s) ∧ [[ψ2]]M(s)

[[ψ1 ∨ ψ2]]M(s) = [[ψ1]]M(s) ∨ [[ψ2]]M(s)

[[ψ1 ⇒ ψ2]]M(s) = [[ψ1]]M(s) ⇒ [[ψ2]]M(s)

[[AXψ]]M(s) = ∀s′. R s s′ ⇒ [[ψ]]M(s′)

[[EXψ]]M(s) = ∃s′. R s s′ ∧ [[ψ]]M(s′)

[[A[ψ1 U ψ2]]]M(s) = ∀π. Path R s π
⇒ ∃i . [[ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1]]M(π(j))

[[E[ψ1 U ψ2]]]M(s) = ∃π. Path R s π
∧ ∃i . [[ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1]]M(π(j))

Mike Gordon 60 / 127

The defined operator AF

◮ Define AFψ = A[T U ψ]

◮ AFψ true at s iffψ true somewhere on every R-path from s

[[AFψ]]M(s) = [[A[T U ψ]]]M(s)

= ∀π. Path R s π
⇒
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∀π. Path R s π
⇒
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ true

= ∀π. Path R s π ⇒ ∃i . [[ψ]]M(π(i))

Mike Gordon 61 / 127

The defined operator EF

◮ Define EFψ = E[T U ψ]

◮ EFψ true at s iffψ true somewhere on some R-path from s

[[EFψ]]M(s) = [[E[T U ψ]]]M(s)

= ∃π. Path R s π
∧
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ [[T]]M(π(j))

= ∃π. Path R s π
∧
∃i . [[ψ]]M(π(i)) ∧ ∀j . j < i ⇒ true

= ∃π. Path R s π ∧ ∃i . [[ψ]]M(π(i))

◮ “can reach a state satisfying p ∈ AP” is EF p

Mike Gordon 62 / 127

The defined operator AG
◮ Define AGψ = ¬EF(¬ψ)

◮ AGψ true at s iffψ true everywhere on every R-path from s

[[AGψ]]M(s) = [[¬EF(¬ψ)]]M(s)
= ¬([[EF(¬ψ)]]M(s))
= ¬(∃π. Path R s π ∧ ∃i . [[¬ψ]]M(π(i)))
= ¬(∃π. Path R s π ∧ ∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬(Path R s π ∧ ∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ¬(∃i . ¬[[ψ]]M(π(i)))
= ∀π. ¬Path R s π ∨ ∀i . ¬¬[[ψ]]M(π(i))
= ∀π. ¬Path R s π ∨ ∀i . [[ψ]]M(π(i))
= ∀π. Path R s π ⇒ ∀i . [[ψ]]M(π(i))

◮ AGψ means ψ true at all reachable states

◮ [[AG(p)]]M(s) ≡ ∀s′. R∗ s s′ ⇒ p ∈ L(s′)

◮ “can always reach a state satisfying p ∈ AP” is AG(EF p)

Mike Gordon 63 / 127

The defined operator EG

◮ Define EGψ = ¬AF(¬ψ)

◮ EGψ true at s iffψ true everywhere on some R-path from s

[[EGψ]]M(s) = [[¬AF(¬ψ)]]M(s)
= ¬([[AF(¬ψ)]]M(s))
= ¬(∀π. Path R s π ⇒ ∃i . [[¬ψ]]M(π(i)))
= ¬(∀π. Path R s π ⇒ ∃i . ¬[[ψ]]M(π(i)))
= ∃π. ¬(Path R s π ⇒ ∃i . ¬[[ψ]]M(π(i)))
= ∃π. Path R s π ∧ ¬(∃i . ¬[[ψ]]M(π(i)))
= ∃π. Path R s π ∧ ∀i . ¬¬[[ψ]]M(π(i))
= ∃π. Path R s π ∧ ∀i . [[ψ]]M(π(i))

Mike Gordon 64 / 127

The defined operator A[ψ1 W ψ2]

◮ A[ψ1 W ψ2] is a ‘partial correctness’ version of A[ψ1 U ψ2]

◮ It is true at s if along all R-paths from s:
◮ ψ1 always holds on the path, or

◮ ψ2 holds sometime on the path, and until it does ψ1 holds

◮ Define

[[A[ψ1 W ψ2]]]M(s)
= [[¬E[(ψ1∧¬ψ2) U (¬ψ1∧¬ψ2)]]]M(s)
= ¬[[E[(ψ1∧¬ψ2) U (¬ψ1∧¬ψ2)]]]M(s)
= ¬(∃π. Path R s π

∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i))

∧
∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

◮ Exercise: understand the next two slides!

Mike Gordon 65 / 127

A[ψ1 W ψ2] continued (1)

◮ Continuing:

¬(∃π. Path R s π
∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. ¬(Path R s π
∧
∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
¬(∃i . [[¬ψ1∧¬ψ2]]M(π(i)) ∧ ∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬[[¬ψ1∧¬ψ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

Mike Gordon 66 / 127

A[ψ1 W ψ2] continued (2)

◮ Continuing:

= ∀π. Path R s π
⇒
∀i . ¬[[¬ψ1∧¬ψ2]]M(π(i)) ∨ ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j)))

= ∀π. Path R s π
⇒
∀i . ¬(∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ∨ ¬[[¬ψ1∧¬ψ2]]M(π(i))

= ∀π. Path R s π
⇒
∀i . (∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ⇒ [[ψ1∨ψ2]]M(π(i))

◮ Exercise: explain why this is [[A[ψ1 W ψ2]]]M(s)?
◮ this exercise illustrates the subtlety of writing CTL!

Mike Gordon 67 / 127

Sanity check: A[ψ W F] = AG ψ
◮ From last slide:

[[A[ψ1 W ψ2]]]M(s)
= ∀π. Path R s π

⇒ ∀i . (∀j . j<i ⇒ [[ψ1∧¬ψ2]]M(π(j))) ⇒ [[ψ1∨ψ2]]M(π(i))
◮ Set ψ1 to ψ and ψ2 to F:

[[A[ψ W F]]]M(s)
= ∀π. Path R s π

⇒ ∀i . (∀j . j<i ⇒ [[ψ∧¬F]]M(π(j))) ⇒ [[ψ∨F]]M(π(i))
◮ Simplify:

[[A[ψ W F]]]M(s)
= ∀π. Path R s π ⇒ ∀i . (∀j . j<i ⇒ [[ψ]]M(π(j))) ⇒ [[ψ]]M(π(i))

◮ By induction on i :
[[A[ψ W F]]]M(s) = ∀π. Path R s π ⇒ ∀i . [[ψ]]M(π(i))

◮ Exercises
1. Describe the property: A[T W ψ] .
2. Describe the property: ¬E[¬ψ2 U ¬(ψ1∨ψ2)] .
3. Define E[ψ1 W ψ2] = E[ψ1 U ψ2] ∨ EGψ1.

Describe the property: E[ψ1 W ψ2]?
Mike Gordon 68 / 127

Summary of CTL operators (primitive + defined)
◮ CTL formulae:

p (Atomic formula -p ∈ AP)
¬ψ (Negation)
ψ1 ∧ ψ2 (Conjunction)
ψ1 ∨ ψ2 (Disjunction)
ψ1 ⇒ ψ2 (Implication)
AXψ (All successors)
EXψ (Some successors)
AFψ (Somewhere – along all paths)
EFψ (Somewhere – along some path)
AGψ (Everywhere – along all paths)
EGψ (Everywhere – along some path)
A[ψ1 U ψ2] (Until – along all paths)
E[ψ1 U ψ2] (Until – along some path)
A[ψ1 W ψ2] (Unless – along all paths)
E[ψ1 W ψ2] (Unless – along some path)

Mike Gordon 69 / 127

Example CTL formulae

◮ EF(Started ∧ ¬Ready)
It is possible to get to a state where Started holds
but Ready does not hold

◮ AG(Req ⇒ AFAck)
If a request Req occurs, then it will eventually be
acknowledged by Ack

◮ AG(AFDeviceEnabled)
DeviceEnabled is always true somewhere along
every path starting anywhere: i.e. DeviceEnabled
holds infinitely often along every path

◮ AG(EFRestart)
From any state it is possible to get to a state for
which Restart holds

Mike Gordon 70 / 127

More CTL examples (1)

◮ AG(Req ⇒ A[Req U Ack])
If a request Req occurs, then it continues to hold,
until it is eventually acknowledged

◮ AG(Req ⇒ AX(A[¬Req U Ack]))
Whenever Req is true either it must become false
on the next cycle and remains false until Ack, or
Ack must become true on the next cycle

Exercise: is the AX necessary?

◮ AG(Req ⇒ (¬Ack ⇒ AX(A[Req U Ack])))
Whenever Req is true and Ack is false then Ack
will eventually become true and until it does Req
will remain true

Exercise: is the AX necessary?

Mike Gordon 71 / 127

More CTL examples (2)

◮ AG(Enabled ⇒ AG(Start ⇒ A[¬Waiting U Ack]))
If Enabled is ever true then if Start is true in any
subsequent state then Ack will eventually become
true, and until it does Waiting will be false

◮ AG(¬Req1∧¬Req2⇒A[¬Req1∧¬Req2 U (Start∧¬Req2)])

Whenever Req1 and Req2 are false, they remain
false until Start becomes true with Req2 still false

◮ AG(Req ⇒ AX(Ack ⇒ AF ¬Req))
If Req is true and Ack becomes true one cycle
later, then eventually Req will become false

Mike Gordon 72 / 127

Some abbreviations
◮ AX i ψ ≡ AX(AX(· · · (AX ψ) · · ·))

︸ ︷︷ ︸

i instances of AX
ψ is true on all paths i units of time later

◮ ABF i..j ψ ≡ AX i (ψ ∨ AX(ψ ∨ · · · AX(ψ ∨ AX ψ) · · ·))
︸ ︷︷ ︸

j − i instances of AX
ψ is true on all paths sometime between i units of
time later and j units of time later

◮ AG(Req ⇒ AX(Ack1 ∧ ABF1..6(Ack2 ∧ A[Wait U Reply])))
One cycle after Req, Ack1 should become true,
and then Ack2 becomes true 1 to 6 cycles later
and then eventually Reply becomes true, but until
it does Wait holds from the time of Ack2

◮ More abbreviations in ‘Industry Standard’ language PSL

Mike Gordon 73 / 127

CTL model checking

◮ For LTL path formulae φ recall that M |= φ is defined by:

M |= φ ⇔ ∀π s. s ∈ S0 ∧ Path R s π ⇒ [[φ]]M(π)

◮ For CTL state formulae ψ the definition of M |= ψ is:

M |= ψ ⇔ ∀s. s ∈ S0 ⇒ [[ψ]]M(s)

◮ M common; LTL, CTL formulae and semantics [[]]M differ

◮ CTL model checking algorithm:
◮ compute {s | [[ψ]]M(s) = true} bottom up

◮ check S0 ⊆ {s | [[ψ]]M(s) = true}

◮ symbolic model checking represents these sets as BDDs

Mike Gordon 74 / 127

CTL model checking: p, AXψ, EXψ
◮ For CTL formula ψ let {[ψ]}M = {s | [[ψ]]M(s) = true}

◮ When unambiguous will write {[ψ]} instead of {[ψ]}M

◮ {[p]} = {s | p ∈ L(s)}
◮ scan through set of states S marking states labelled with p
◮ {[p]} is set of marked states

◮ To compute {[AXψ]}
◮ recursively compute {[ψ]}
◮ marks those states all of whose successors are in {[ψ]}
◮ {[AXψ]} is the set of marked states

◮ To compute {[EXψ]}
◮ recursively compute {[ψ]}
◮ marks those states with at least one successor in {[ψ]}
◮ {[EXψ]} is the set of marked states

Mike Gordon 75 / 127

CTL model checking: {[E[ψ1 U ψ2]]}, {[A[ψ1 U ψ2]]}

◮ To compute {[E[ψ1 U ψ2]]}

◮ recursively compute {[ψ1]} and {[ψ2]}
◮ mark all states in {[ψ2]}
◮ mark all states in {[ψ1]} with a successor state that is marked
◮ repeat previous line until no change
◮ {[E[ψ1 U ψ2]]} is set of marked states

◮ More formally: {[E[ψ1 U ψ2]]} =
⋃∞

n=0{[E[ψ1 U ψ2]]}n where:

{[E[ψ1 U ψ2]]}0 = {[ψ2]}
{[E[ψ1 U ψ2]]}n+1 = {[E[ψ1 U ψ2]]}n

∪
{s ∈ {[ψ1]} | ∃s′ ∈ {[E[ψ1 U ψ2]]}n. R s s′}

◮ {[A[ψ1 U ψ2]]} similar, but with a more complicated iteration
◮ details omitted

Mike Gordon 76 / 127

Example: checking EF p

◮ EFp = E[T U p]
◮ holds if ψ holds along some path

◮ Note {[T]} = S

◮ Let Sn = {[E[T U p]]}n then:

S0 = {[E[T U p]]}0

= {[p]}
= {s | p ∈ L(s)}

Sn+1 = Sn ∪ {s ∈ {[T]} | ∃s′ ∈ {[E[T U p]]}n. R s s′}
= Sn ∪ {s | ∃s′ ∈ Sn. R s s′}

◮ mark all the states labelled with p
◮ mark all with at least one marked successor
◮ repeat until no change
◮ {[EF p]} is set of marked states

Mike Gordon 77 / 127

Example: RCV

◮ Recall the handshake circuit:

dackdreq
q0

q0bar
a0

or0
a1

◮ State represented by a triple of Booleans (dreq,q0,dack)

◮ A model of RCV is MRCV where:

M = (SRCV,S0RCV,RRCV,LRCV)

and
RRCV (dreq,q0,dack) (dreq′,q0′,dack ′) =

(q0′ = dreq) ∧ (dack ′ = (dreq ∧ (q0 ∨ dack)))

Mike Gordon 78 / 127

RCV state transition diagram

◮ Possible states for RCV:

{000, 001, 010, 011, 100, 101, 110, 111}

where b2b1b0 denotes state

dreq = b2 ∧ q0 = b1 ∧ dack = b0

◮ Graph of the transition relation:

000 100 110 111

101

011

001

010

Mike Gordon 79 / 127

Computing {[EF At111]} where At111 ∈ LRCV(s) ⇔ s = 111

000 100 110 111

101

011

001

010

◮ Define:
S0 = {s | At111 ∈ LRCV(s)}

= {s | s = 111}
= {111}

Sn+1 = Sn ∪ {s | ∃s′ ∈ Sn. R(s, s′)}
= Sn ∪ {b2b1b0 |

∃b′

2b′

1b′

0 ∈ Sn. (b′

1 = b2) ∧ (b′

0 = b2 ∧ (b1 ∨ b0))}

Mike Gordon 80 / 127

Computing {[EF At111]} (continued)

000 100 110 111

101

011

001

010

0

1

123

3

3

3

◮ Compute:
S0 = {111}
S1 = {111} ∪ {101,110}

= {111,101,110}
S2 = {111,101,110} ∪ {100}

= {111,101,110,100}
S3 = {111,101,110,100} ∪ {000,001,010,011}

= {111,101,110,100,000,001,010,011}
Sn = S3 (n > 3)

◮ {[EF At111]} = B
3 = SRCV

◮ MRCV |= EF At111 ⇔ S0RCV ⊆ S

Mike Gordon 81 / 127

Symbolic model checking

◮ Represent sets of states with BDDs

◮ Represent Transition relation with a BDD

◮ If BDDs of {[ψ]}, {[ψ1]}, {[ψ2]} are known, then:
◮ BDDs of {[¬ψ]}, {[ψ1 ∧ ψ2]}, {[ψ1 ∨ ψ2]}, {[ψ1 ⇒ ψ2]}

computed using standard BDD algorithms

◮ BDDs of {[AXψ]}, {[EXψ]}, {[A[ψ1 U ψ2]]}, {[E[ψ1 U ψ2]]]}
computed using straightforward algorithms (see textbooks)

◮ Model checking CTL generalises reachable states Iteration

Mike Gordon 82 / 127

History of Model checking

◮ CTL model checking due to Emerson, Clarke & Sifakis
◮ Symbolic model checking due to several people:

◮ Clarke & McMillan (idea usually credited to McMillan’s PhD)
◮ Coudert, Berthet & Madre
◮ Pixley

◮ SMV (McMillan) is a popular symbolic model checker:
http://www.cs.cmu.edu/~modelcheck/smv.html (original)
http://www.kenmcmil.com/smv.html (Cadence extension by McMillan)
http://nusmv.irst.itc.it/ (new implementation)

◮ Other temporal logics
◮ CTL*: combines CTL and LTL
◮ Engineer friendly industrial languages: PSL, SVA

Mike Gordon 83 / 127

http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
http://nusmv.irst.itc.it/

