Computation Tree Logic (CTL)

- LTL formulae ϕ are evaluated on paths path formulae
- CTL formulae ψ are evaluated on states .. state formulae
- Syntax of CTL well-formed formulae:

$\psi::=$| p | (Atomic formula $p \in A P$) |
| :--- | :--- |
| $\neg \psi$ | (Negation) |
| $\psi_{1} \wedge \psi_{2}$ | (Conjunction) |
| $\psi_{1} \vee \psi_{2}$ | (Disjunction) |
| $\psi_{1} \Rightarrow \psi_{2}$ | (Implication) |
| $\mathbf{A X} \psi$ | (All successors) |
| $\mathbf{E X} \psi$ | (Some successors) |
| $\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$ | (Until - along all paths) |
| $\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$ | (Until - along some path) |

Semantics of CTL

- Assume $M=\left(S, S_{0}, R, L\right)$ and then define:

$$
\begin{aligned}
& \llbracket p \rrbracket_{M}(s) \\
& =p \in L(s) \\
& \llbracket \neg \psi \rrbracket_{M}(s) \\
& =\neg\left(\llbracket \psi \rrbracket_{M}(s)\right) \\
& \llbracket \psi_{1} \wedge \psi_{2} \rrbracket_{M}(s)=\llbracket \psi_{1} \rrbracket_{M}(s) \wedge \llbracket \psi_{2} \rrbracket_{M}(s) \\
& \llbracket \psi_{1} \vee \psi_{2} \rrbracket_{M}(s)=\llbracket \psi_{1} \rrbracket_{M}(s) \vee \llbracket \psi_{2} \rrbracket_{M}(s) \\
& \llbracket \psi_{1} \Rightarrow \psi_{2} \rrbracket_{M}(s) \quad=\llbracket \psi_{1} \rrbracket_{M}(s) \Rightarrow \llbracket \psi_{2} \rrbracket_{M}(s) \\
& \llbracket \mathbf{A X} \psi \rrbracket_{M}(s) \quad=\forall s^{\prime} . R s s^{\prime} \Rightarrow \llbracket \psi \rrbracket_{M}\left(s^{\prime}\right) \\
& \llbracket \mathbf{E X} \psi \rrbracket_{M}(s) \quad=\exists s^{\prime} . R s s^{\prime} \wedge \llbracket \psi \rrbracket_{M}\left(s^{\prime}\right) \\
& \llbracket \mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]_{M}(s)=\forall \pi \text {. Path R } s \pi \\
& \Rightarrow \exists i . \llbracket \psi_{2} \rrbracket_{M}(\pi(i)) \\
& \forall j . j<i \Rightarrow \llbracket \psi_{1} \rrbracket_{M}(\pi(j))
\end{aligned}
$$

$\llbracket \mathbb{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right] \rrbracket_{M}(s)=\exists \pi$. Path $R s \pi$

$$
\begin{aligned}
& \wedge \exists i . \llbracket \psi_{2} \rrbracket_{M}(\pi(i)) \\
& \forall j . j<i \Rightarrow \llbracket \psi_{1} \rrbracket_{M(\pi(j))}
\end{aligned}
$$

The defined operator AF

- Define AF $\psi=\mathbf{A}[\mathbf{T} \mathbf{U} \psi]$
- AF ψ true at s iff ψ true somewhere on every R-path from s

$$
\begin{aligned}
\llbracket \mathbf{A F} \psi \rrbracket_{M}(s)= & \llbracket \mathbf{A}[\mathrm{T} \mathbf{U} \psi] \rrbracket_{M}(s) \\
= & \forall \pi . \text { Path } R s \pi \\
& \Rightarrow \\
& \exists i . \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \mathrm{~T} \rrbracket_{M}(\pi(j)) \\
= & \forall \pi . \\
& \Rightarrow \\
& \exists i . \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \text { true } \\
= & \forall \pi . \text { Path } R s \pi \Rightarrow \exists i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

The defined operator EF

- Define $\mathbf{E F} \psi=\mathbf{E}[\mathrm{T} \mathbf{U} \psi]$
- EF ψ true at s iff ψ true somewhere on some R-path from s

$$
\begin{aligned}
\llbracket \mathbf{E F} \psi \rrbracket_{M}(s)= & \llbracket \mathbf{E}[\mathrm{T} \mathbf{U} \psi] \rrbracket_{M}(s) \\
= & \exists \pi . \text { Path } R s \pi \\
& \wedge \\
& \exists i . \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket T \rrbracket_{M}(\pi(j)) \\
= & \exists \pi . \\
& \text { Path } R s \pi \\
& \wedge i . \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \text { true } \\
= & \exists \pi . \text { Path } R s \pi \wedge \exists i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

- "can reach a state satisfying $p \in A P$ " is EF p

The defined operator AG

- Define $\mathbf{A G} \psi=\neg \mathbf{E F}(\neg \psi)$
- AG ψ true at s iff ψ true everywhere on every R-path from s

$$
\begin{aligned}
\llbracket \mathbf{A G} \psi \rrbracket_{M}(s) & =\llbracket \neg \mathbf{E F}(\neg \psi) \rrbracket_{M}(s) \\
& =\neg\left(\llbracket \mathbf{E F}(\neg \psi) \rrbracket_{M}(s)\right) \\
& =\neg\left(\exists \pi . \text { Path } R s \wedge \exists i . \llbracket \neg \psi \rrbracket_{M}(\pi(i))\right) \\
& =\neg\left(\exists \pi . \text { Path } R s \pi \wedge \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\forall \pi . \neg\left(\text { Path } R s \pi \wedge \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\forall \pi . \neg \text { Path } R s \pi \vee \neg\left(\exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\forall \pi . \neg \text { Path } R s \pi \vee \forall i . \neg \neg \llbracket \psi \rrbracket_{M}(\pi(i)) \\
& =\forall \pi . \neg \text { Path } R s \pi \vee \forall i . \llbracket \psi \rrbracket_{M}(\pi(i)) \\
& =\forall \pi . \text { Path } R s \pi \Rightarrow \forall i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

- AG ψ means ψ true at all reachable states
- $\llbracket \mathrm{AG}(p) \rrbracket_{M}(s) \equiv \forall s^{\prime} . R^{*} s s^{\prime} \Rightarrow p \in L\left(s^{\prime}\right)$
- "can always reach a state satisfying $p \in A P$ " is $A G(E F p)$

The defined operator EG

- Define $\mathbf{E G} \psi=\neg \mathbf{A F}(\neg \psi)$
- EG ψ true at s iff ψ true everywhere on some R-path from s

$$
\begin{aligned}
\llbracket \mathbf{E G} \psi \rrbracket_{M}(s) & =\llbracket \neg \mathbf{A F}(\neg \psi) \rrbracket_{M}(s) \\
& =\neg\left(\llbracket \mathbf{A F}(\neg \psi) \rrbracket_{M}(s)\right) \\
& =\neg\left(\forall \pi . \text { Path } R s \pi \Rightarrow \exists i . \llbracket \neg \psi \rrbracket_{M}(\pi(i))\right) \\
& =\neg\left(\forall \pi . \text { Path } R s \pi \Rightarrow \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\exists \pi . \neg\left(\text { Path } R s \pi \Rightarrow \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\exists \pi . \text { Path } R s \pi \wedge \neg\left(\exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\exists \pi . \text { Path } R s \pi \wedge \forall i . \neg \neg \llbracket \psi \rrbracket_{M}(\pi(i)) \\
& =\exists \pi . \text { Path } R s \pi \wedge \forall i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

The defined operator $\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$

- A $\left[\psi_{1} \mathbf{W} \psi_{2}\right]$ is a 'partial correctness' version of $\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$
- It is true at s if along all R-paths from s :
- ψ_{1} always holds on the path, or
- ψ_{2} holds sometime on the path, and until it does ψ_{1} holds
- Define

$$
\begin{aligned}
& \llbracket \mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right] \rrbracket_{M}(s) \\
& =\llbracket \neg \mathbf{E}\left[\left(\psi_{1} \wedge \neg \psi_{2}\right) \mathbf{U}\left(\neg \psi_{1} \wedge \neg \psi_{2}\right)\right] \rrbracket_{M}(s) \\
& =\neg \llbracket \mathbf{E}\left[\left(\psi_{1} \wedge \neg \psi_{2}\right) \mathbf{U}\left(\neg \psi_{1} \wedge \neg \psi_{2}\right)\right] \rrbracket_{M}(s) \\
& =\neg \neg(\exists \pi \text {. Path } R s \pi
\end{aligned}
$$

$$
\begin{aligned}
\exists i . & \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \\
& \wedge \\
& \left.\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
\end{aligned}
$$

- Exercise: understand the next two slides!

$\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$ continued (1)

- Continuing:
$\neg(\exists \pi$. Path $R s \pi$
\wedge
$\left.\exists i . \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)$
$=\forall \pi$. \neg (Path R s π

$$
\left.\exists i . \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket M(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket M(\pi(j))\right)
$$

$=\forall \pi$. Path $R s \pi$

$$
\begin{aligned}
& \Rightarrow \\
& \neg\left(\exists i . \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
\end{aligned}
$$

$=\forall \pi$. Path $R s \pi$

$$
\begin{aligned}
& \Rightarrow \\
& \forall i . \neg \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \vee \neg\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
\end{aligned}
$$

$\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$ continued (2)

- Continuing:
$=\forall \pi$. Path $R s \pi$

$$
\begin{aligned}
& \Rightarrow \text { i. } \neg \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \vee \neg\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
\end{aligned}
$$

$=\forall \pi$. Path $R s \pi$

$$
\begin{aligned}
& \Rightarrow \\
& \forall i . \neg\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right) \vee \neg \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i))
\end{aligned}
$$

$=\forall \pi$. Path R s π

$$
\begin{aligned}
& \Rightarrow \\
& \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi_{1} \vee \psi_{2} \rrbracket_{M}(\pi(i))
\end{aligned}
$$

- Exercise: explain why this is $\llbracket \mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right] \rrbracket_{M}(s)$?
- this exercise illustrates the subtlety of writing CTL!

Sanity check: $\mathbf{A}\left[\psi \mathbf{W}_{F}\right]=\mathbf{A G} \psi$

- From last slide:
$\llbracket \mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right] \rrbracket_{M}(s)$
$=\forall \pi$. Path $R s \pi$

$$
\Rightarrow \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi_{1} \vee \psi_{2} \rrbracket_{M}(\pi(i))
$$

- Set ψ_{1} to ψ and ψ_{2} to F :
$\llbracket \mathbf{A}[\psi \mathbf{W} \mathrm{F}] \rrbracket_{M}(\boldsymbol{s})$
$=\forall \pi$. Path $R s \pi$

$$
\Rightarrow \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi \wedge \neg F \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi \vee F \rrbracket_{M}(\pi(i))
$$

- Simplify:
$\llbracket \mathbf{A}[\psi \mathbf{W} \mathbf{F}] \rrbracket_{M}(s)$
$=\forall \pi$. Path R s $\pi \Rightarrow \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(i))$
- By induction on i :

$$
\llbracket \mathbf{A}\left[\psi \mathbf{W}_{\mathrm{F}}\right] \rrbracket_{M}(s)=\forall \pi \text {. Path } R s \pi \Rightarrow \forall i . \llbracket \psi \rrbracket_{M}(\pi(i))
$$

- Exercises

1. Describe the property: $\mathbf{A}[\mathrm{T} \mathbf{W} \psi]$.
2. Describe the property: $\neg \mathbf{E}\left[\neg \psi_{2} \mathbf{U} \neg\left(\psi_{1} \vee \psi_{2}\right)\right]$.
3. Define $\mathbf{E}\left[\psi_{1} \mathbf{W} \psi_{2}\right]=\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right] \vee E \mathbf{E} \psi_{1}$. Describe the property: $\mathbf{E}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$?

Summary of CTL operators (primitive + defined)

- CTL formulae:

p	(Atomic formula - $p \in A P$)
$\neg \psi$	(Negation)
$\psi_{1} \wedge \psi_{2}$	(Conjunction)
$\psi_{1} \vee \psi_{2}$	(Disjunction)
$\psi_{1} \Rightarrow \psi_{2}$	(Implication)
$\mathbf{A X} \psi$	(All successors)
$\mathbf{E X} \psi$	(Some successors)
$\mathbf{A F} \psi$	(Somewhere - along all paths)
$\mathbf{E F} \psi$	(Somewhere - along some path)
$\mathbf{A} \mathbf{G} \psi$	(Everywhere - along all paths)
$\mathbf{E G} \psi$	(Everywhere - along some path)
$\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$	(Until - along all paths)
$\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$	(Until - along some path)
$\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$	(Unless - along all paths)
$\mathbf{E}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$	(Unless - along some path)

Example CTL formulae

- EF(Started $\wedge \neg$ Ready)

It is possible to get to a state where Started holds but Ready does not hold

- $\mathbf{A G}($ Req $\Rightarrow \mathbf{A F A c k})$

If a request Req occurs, then it will eventually be acknowledged by Ack

- AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along every path starting anywhere: i.e. DeviceEnabled holds infinitely often along every path

- AG(EFRestart)

From any state it is possible to get to a state for which Restart holds

More CTL examples (1)

- $\mathbf{A G}(R e q \Rightarrow \mathbf{A}[R e q \mathbf{U} A c k)$

If a request Req occurs, then it continues to hold, until it is eventually acknowledged

- $\mathbf{A G}(R e q \Rightarrow \mathbf{A X}(\mathbf{A}[\neg R e q \cup A c k]))$

Whenever Req is true either it must become false on the next cycle and remains false until Ack, or Ack must become true on the next cycle
Exercise: is the AX necessary?

- $\mathbf{A G}(R e q \Rightarrow(\neg$ Ack $\Rightarrow \mathbf{A X}(\mathbf{A}[$ Req \mathbf{U} Ack $])))$

Whenever Req is true and Ack is false then Ack will eventually become true and until it does Req will remain true
Exercise: is the $\mathbf{A X}$ necessary?

More CTL examples (2)

- $\mathbf{A G}($ Enabled $\Rightarrow \mathbf{A G}($ Start $\Rightarrow \mathbf{A}[\neg$ Waiting \mathbf{U} Ack $]))$ If Enabled is ever true then if Start is true in any subsequent state then Ack will eventually become true, and until it does Waiting will be false
- $\mathbf{A G}\left(\neg R^{2} q_{1} \wedge \neg R_{2} \Rightarrow \mathbf{A}\left[\neg R e q_{1} \wedge \neg R e q_{2} \mathbf{U}\left(\right.\right.\right.$ Start $\left.\left.\left.\wedge \neg R e q_{2}\right)\right]\right)$ Whenever $R e q_{1}$ and $R e q_{2}$ are false, they remain false until Start becomes true with Req2 still false
- $\mathbf{A G}(R e q \Rightarrow \mathbf{A X}($ Ack $\Rightarrow \mathbf{A F} \neg R e q))$

If Req is true and Ack becomes true one cycle later, then eventually Req will become false

Some abbreviations

- $\mathbf{A X}_{i} \psi \equiv \underbrace{\boldsymbol{A X}(\mathbf{A X}(\cdots(\mathbf{A X} \psi) \cdots))}_{i \text { instances of } \mathbf{A X}}$
ψ is true on all paths i units of time later
- $\mathbf{A B F}_{i . . j} \psi \equiv \mathbf{A} \mathbf{X}_{i} \underbrace{(\psi \vee \mathbf{A X}(\psi \vee \cdots \mathbf{A X}(\psi \vee \mathbf{A X} \psi) \cdots))}_{j-i \text { instances of } \mathbf{A X}}$
ψ is true on all paths sometime between i units of time later and j units of time later
- $\mathbf{A G}\left(R e q \Rightarrow \mathbf{A X}\left(\right.\right.$ Ack $_{1} \wedge \mathbf{A B F}_{1 . .6}\left(\right.$ Ack $_{2} \wedge \mathbf{A}[$ Wait U Reply] $\left.\left.)\right)\right)$

One cycle after Req, Ack ${ }_{1}$ should become true, and then Ack ${ }_{2}$ becomes true 1 to 6 cycles later and then eventually Reply becomes true, but until it does Wait holds from the time of Ack 2

- More abbreviations in 'Industry Standard' language PSL

CTL model checking

- For LTL path formulae ϕ recall that $M \models \phi$ is defined by:

$$
M \models \phi \Leftrightarrow \forall \pi s . s \in S_{0} \wedge \text { Path } R s \pi \Rightarrow \llbracket \phi \rrbracket_{M}(\pi)
$$

- For CTL state formulae ψ the definition of $M \models \psi$ is:

$$
M \models \psi \Leftrightarrow \forall s . s \in S_{0} \Rightarrow \llbracket \psi \rrbracket_{M}(s)
$$

- M common; LTL, CTL formulae and semantics $\llbracket \rrbracket_{M}$ differ
- CTL model checking algorithm:
- compute $\{s \mid \llbracket \psi \rrbracket M(s)=$ true $\}$ bottom up
- check $S_{0} \subseteq\left\{s \mid \llbracket \psi \rrbracket_{M}(s)=\right.$ true $\}$
- symbolic model checking represents these sets as BDDs

CTL model checking: $\mathrm{p}, \mathbf{A X} \psi, \mathbf{E X} \psi$

- For CTL formula ψ let $\{\psi\}_{M}=\left\{s \mid \llbracket \psi \rrbracket_{M}(\boldsymbol{s})=\right.$ true $\}$
- When unambiguous will write $\{\psi\}$ instead of $\{\psi\}_{M}$
- $\{p\}=\{s \mid p \in L(s)\}$
- scan through set of states S marking states labelled with p
- $\{p\}$ is set of marked states
- To compute $\{\mathbf{A X} \psi\}$
- recursively compute $\{\psi\}$
- marks those states all of whose successors are in $\{\psi\}$
- $\{\mathbf{A} \mathbf{X} \psi\}$ is the set of marked states
- To compute $\{\mathbf{E X} \psi\}$
- recursively compute $\{\psi\}$
- marks those states with at least one successor in $\{\psi\}$
- $\{\mathbf{E X} \psi\}$ is the set of marked states

CTL model checking: $\left\{\mathbb{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\},\left\{\left\{\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}\right.$

- To compute $\left\{\mathbb{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}$
- recursively compute $\left\{\psi_{1}\right\}$ and $\left\{\psi_{2}\right\}$
- mark all states in $\left\{\psi_{2}\right\}$
- mark all states in $\left\{\psi_{1}\right\}$ with a successor state that is marked
- repeat previous line until no change
- $\left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}$ is set of marked states
- More formally: $\left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}=\bigcup_{n=0}^{\infty}\left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}_{n}$ where:

$$
\begin{aligned}
\left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}_{0}= & \left\{\psi_{2}\right\} \\
\left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right]_{n+1}= & \left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}_{n} \\
& \cup\left\{s \in\left\{\psi_{1}\right\} \mid \exists s^{\prime} \in\left\{\mathbb{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}_{n .} R s s^{\prime}\right\}
\end{aligned}
$$

- \{ $\left\{\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}$ similar, but with a more complicated iteration
- details omitted

Example: checking EF p

- $\mathbf{E F} p=\mathbf{E}[\mathbf{T} \mathbf{~} p]$
- holds if ψ holds along some path
- Note $\{T\}=S$
- Let $\mathcal{S}_{n}=\{\mathbb{E}[\mathbf{T} \mathbf{U}]\}_{n}$ then:
$\mathcal{S}_{0} \quad=\{\mathbf{E}[\mathbf{T} \mathbf{U}]]_{0}$

$$
=\{p\}
$$

$$
=\{s \mid p \in L(s)\}
$$

$\mathcal{S}_{n+1}=\mathcal{S}_{n} \cup\left\{s \in\{\mathrm{~T}\} \mid \exists s^{\prime} \in\{\mathbf{E}[\mathrm{T} \mathbf{U} p]\}_{n} . R s s^{\prime}\right\}$ $=\mathcal{S}_{n} \cup\left\{s \mid \exists s^{\prime} \in \mathcal{S}_{n} . R s s^{\prime}\right\}$

- mark all the states labelled with p
- mark all with at least one marked successor
- repeat until no change
- \{EF p\} is set of marked states

Example: RCV

- Recall the handshake circuit:

- State represented by a triple of Booleans (dreq, q0, dack)
- A model of RCV is $M_{\text {RCV }}$ where:

```
M = (S SCV
and
    R
        (q0' = dreq) ^ (dack' = (dreq }\wedge(q0\vee dack)))
```


RCV state transition diagram

- Possible states for RCV:
$\{000,001,010,011,100,101,110,111\}$
where $b_{2} b_{1} b_{0}$ denotes state

$$
\text { dreq }=b_{2} \wedge q 0=b_{1} \wedge \text { dack }=b_{0}
$$

- Graph of the transition relation:

Computing $\{\mathbf{E F}$ At 111$\}$ where At111 $\in L_{\mathrm{RcV}}(s) \Leftrightarrow s=111$

- Define:

$$
\begin{aligned}
\mathcal{S}_{0} \quad & =\left\{s \mid A t 111 \in L_{\mathrm{RCV}}(s)\right\} \\
= & \{s \mid s=111\} \\
= & \{111\} \\
\mathcal{S}_{n+1}= & \mathcal{S}_{n} \cup\left\{s \mid \exists s^{\prime} \in \mathcal{S}_{n} \cdot \mathcal{R}\left(s, s^{\prime}\right)\right\} \\
= & \mathcal{S}_{n} \cup\left\{b_{2} b_{1} b_{0} \mid\right. \\
& \left.\quad \exists b_{2}^{\prime} b_{1}^{\prime} b_{0}^{\prime} \in \mathcal{S}_{n} \cdot\left(b_{1}^{\prime}=b_{2}\right) \wedge\left(b_{0}^{\prime}=b_{2} \wedge\left(b_{1} \vee b_{0}\right)\right)\right\}
\end{aligned}
$$

Computing \{EF At111\} (continued)

- Compute:

$$
\begin{aligned}
\mathcal{S}_{0} & =\{111\} \\
\mathcal{S}_{1} & =\{111\} \cup\{101,110\} \\
& =\{111,101,110\} \\
\mathcal{S}_{2} & =\{111,101,110\} \cup\{100\} \\
& =\{111,101,110,100\} \\
\mathcal{S}_{3} & =\{111,101,110,100\} \cup\{000,001,010,011\} \\
& =\{111,101,110,100,000,001,010,011\} \\
\mathcal{S}_{n} & =\mathcal{S}_{3} \quad(n>3)
\end{aligned}
$$

- $\{\mathbf{E F}$ At111 $\}=\mathbb{B}^{3}=S_{\text {RCV }}$
- $M_{\mathrm{RCV}} \models \mathrm{EF}$ At $111 \Leftrightarrow S_{0_{\mathrm{RCV}}} \subseteq S$

Symbolic model checking

- Represent sets of states with BDDs
- Represent Transition relation with a BDD
- If BDDs of $\{\psi\},\left\{\psi_{1}\right\},\left\{\psi_{2}\right\}$ are known, then:
- BDDs of $\{\neg \psi\},\left\{\psi_{1} \wedge \psi_{2}\right\},\left\{\psi_{1} \vee \psi_{2}\right\},\left\{\psi_{1} \Rightarrow \psi_{2}\right\}$ computed using standard BDD algorithms
- BDDs of $\left.\{\mathbf{A X} \psi\},\left\{\operatorname{EX} \mathbf{X}_{\psi}\right\},\left\{\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\},\left\{\mathbb{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right]\right\}$ computed using straightforward algorithms (see textbooks)
- Model checking CTL generalises reachable states Iteration

History of Model checking

- CTL model checking due to Emerson, Clarke \& Sifakis
- Symbolic model checking due to several people:
- Clarke \& McMillan (idea usually credited to McMillan's PhD)
- Coudert, Berthet \& Madre
- Pixley
- SMV (McMillan) is a popular symbolic model checker:

```
http://www.cs.cmu.edu/~modelcheck/smv.html (original)
http://www.kenmcmil.com/smv.html (Cadence extension by McMillan)
http://nusmv.irst.itc.it/
```

(Cadence extension by McMillan)
(new implementation)

- Other temporal logics
- CTL*: combines CTL and LTL
- Engineer friendly industrial languages: PSL, SVA

