Computation Tree Logic (CTL)

- LTL formulae ϕ are evaluated on paths path formulae
- CTL formulae ψ are evaluated on states ... state formulae

Syntax of CTL well-formed formulae:

$$\psi ::= \mathbf{p}$$

$$| \neg \psi$$

$$| \psi_1 \land \psi_2$$

$$| \psi_1 \lor \psi_2$$

$$| \psi_1 \Rightarrow \psi_2$$

$$| \mathbf{AX}\psi$$

$$| \mathbf{EX}\psi$$

$$| \mathbf{A}[\psi_1 \mathbf{U} \psi_2]$$

$$| \mathbf{E}[\psi_1 \mathbf{U} \psi_2]$$

(Atomic formula $p \in AP$) (Negation) (Conjunction) (Disjunction) (Implication) (All successors) (Some successors) (Until – along all paths) (Until – along some path)

Semantics of CTL

- Assume $M = (S, S_0, R, L)$ and then define:
 - $[p]_M(s)$ $= p \in L(s)$ $\llbracket \neg \psi \rrbracket_M(\mathbf{S}) = \neg (\llbracket \psi \rrbracket_M(\mathbf{S}))$ $\llbracket \psi_1 \wedge \psi_2 \rrbracket_M(s) = \llbracket \psi_1 \rrbracket_M(s) \wedge \llbracket \psi_2 \rrbracket_M(s)$ $\llbracket \psi_1 \lor \psi_2 \rrbracket_M(s) = \llbracket \psi_1 \rrbracket_M(s) \lor \llbracket \psi_2 \rrbracket_M(s)$ $\llbracket \psi_1 \Rightarrow \psi_2 \rrbracket_M(\mathbf{S}) = \llbracket \psi_1 \rrbracket_M(\mathbf{S}) \Rightarrow \llbracket \psi_2 \rrbracket_M(\mathbf{S})$ $[\![\mathbf{AX}\psi]\!]_M(s) = \forall s'. R s s' \Rightarrow [\![\psi]\!]_M(s')$ $[\mathbf{EX}\psi]_M(s) = \exists s'. R s s' \land [\psi]_M(s')$ $[\mathbf{A}[\psi_1 \mathbf{U} \psi_2]]_M(s) = \forall \pi$. Path R s π $\Rightarrow \exists i. \llbracket \psi_2 \rrbracket_M(\pi(i))$ $\forall i. \ i < i \implies \llbracket \psi_1 \rrbracket_M(\pi(j))$ $[\mathbf{E}[\psi_1 \cup \psi_2]]_M(s) = \exists \pi. \text{ Path } R \ s \ \pi$ $\wedge \exists i. \llbracket \psi_2 \rrbracket_M(\pi(i))$ $\forall i. i < i \Rightarrow \llbracket \psi_1 \rrbracket_M(\pi(i))$

The defined operator AF

• Define $\mathbf{AF}\psi = \mathbf{A}[\mathbf{T} \mathbf{U} \psi]$

• AF ψ true at s iff ψ true somewhere on every R-path from s $[\![\mathbf{AF}\psi]\!]_{M}(s) = [\![\mathbf{A}[\mathsf{T} \mathbf{U} \psi]]\!]_{M}(s)$ $= \forall \pi$. Path R s π \Rightarrow $\exists i. \llbracket \psi \rrbracket_M(\pi(i)) \land \forall j. j < i \implies \llbracket T \rrbracket_M(\pi(j))$ $= \forall \pi$. Path R s π \Rightarrow $\exists i. \llbracket \psi \rrbracket_{M}(\pi(i)) \land \forall j. j < i \Rightarrow true$ $= \forall \pi$. Path $R \ s \ \pi \Rightarrow \exists i. \llbracket \psi \rrbracket_{\mathcal{M}}(\pi(i))$

The defined operator **EF**

- Define $\mathbf{EF}\psi = \mathbf{E}[\mathbf{T} \ \mathbf{U} \ \psi]$
- **EF** ψ true at s iff ψ true somewhere on some R-path from s

 $\llbracket \mathbf{E} \mathbf{F} \psi \rrbracket_M(\mathbf{s}) = \llbracket \mathbf{E} [\mathsf{T} \ \mathbf{U} \ \psi] \rrbracket_M(\mathbf{s})$ $= \exists \pi$. Path R s π Λ $\exists i. \llbracket \psi \rrbracket_M(\pi(i)) \land \forall j. j < i \implies \llbracket \mathsf{T} \rrbracket_M(\pi(j))$ $= \exists \pi$. Path R s π Λ $\exists i. [\psi]_M(\pi(i)) \land \forall j. j < i \Rightarrow true$ $= \exists \pi$. Path R s $\pi \land \exists i$. $\llbracket \psi \rrbracket_M(\pi(i))$

• "can reach a state satisfying $p \in AP$ " is **EF** p

The defined operator AG

- Define $AG\psi = \neg EF(\neg \psi)$
- AG ψ true at s iff ψ true everywhere on every R-path from s

$$\begin{bmatrix} \mathbf{A}\mathbf{G}\psi \end{bmatrix}_{M}(s) = \llbracket \neg \mathbf{E}\mathbf{F}(\neg\psi) \rrbracket_{M}(s) \\ = \neg(\llbracket \mathbf{E}\mathbf{F}(\neg\psi) \rrbracket_{M}(s)) \\ = \neg(\exists \pi. \operatorname{Path} R \ s \ \pi \land \exists i. \ \llbracket \neg \psi \rrbracket_{M}(\pi(i))) \\ = \neg(\exists \pi. \operatorname{Path} R \ s \ \pi \land \exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \forall \pi. \ \neg(\operatorname{Path} R \ s \ \pi \land \exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \forall \pi. \ \neg \operatorname{Path} R \ s \ \pi \lor \neg (\exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \forall \pi. \ \neg \operatorname{Path} R \ s \ \pi \lor \forall i. \ \neg \neg \llbracket \psi \rrbracket_{M}(\pi(i)) \\ = \forall \pi. \ \neg \operatorname{Path} R \ s \ \pi \lor \forall i. \ \llbracket \psi \rrbracket_{M}(\pi(i)) \\ = \forall \pi. \ \operatorname{Path} R \ s \ \pi \lor \forall i. \ \llbracket \psi \rrbracket_{M}(\pi(i)) \\ = \forall \pi. \ \operatorname{Path} R \ s \ \pi \lor \forall i. \ \llbracket \psi \rrbracket_{M}(\pi(i)) \\ = \forall \pi. \ \operatorname{Path} R \ s \ \pi \Rightarrow \forall i. \ \llbracket \psi \rrbracket_{M}(\pi(i)) \end{aligned}$$

- $AG\psi$ means ψ true at all reachable states
- $\blacksquare \ \llbracket \mathbf{AG}(p) \rrbracket_M(s) \ \equiv \ \forall s'. \ R^* \ s \ s' \ \Rightarrow \ p \in L(s')$

• "can always reach a state satisfying $p \in AP$ " is AG(EF p)

The defined operator **EG**

• Define $\mathbf{EG}\psi = \neg \mathbf{AF}(\neg \psi)$

EG ψ true at s iff ψ true everywhere on some R-path from s

 $\begin{bmatrix} \mathbf{E}\mathbf{G}\psi \end{bmatrix}_{M}(s) = \llbracket \neg \mathbf{A}\mathbf{F}(\neg\psi) \rrbracket_{M}(s) \\ = \neg(\llbracket \mathbf{A}\mathbf{F}(\neg\psi) \rrbracket_{M}(s)) \\ = \neg(\forall \pi. \operatorname{Path} R \ s \ \pi \Rightarrow \exists i. \ \llbracket \neg \psi \rrbracket_{M}(\pi(i))) \\ = \neg(\forall \pi. \operatorname{Path} R \ s \ \pi \Rightarrow \exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \exists \pi. \ \neg(\operatorname{Path} R \ s \ \pi \Rightarrow \exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \exists \pi. \operatorname{Path} R \ s \ \pi \land \neg (\exists i. \ \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \exists \pi. \operatorname{Path} R \ s \ \pi \land \forall i. \ \neg \neg \llbracket \psi \rrbracket_{M}(\pi(i))) \\ = \exists \pi. \operatorname{Path} R \ s \ \pi \land \forall i. \ \neg \neg \llbracket \psi \rrbracket_{M}(\pi(i))$

The defined operator $\mathbf{A}[\psi_1 \ \mathbf{W} \ \psi_2]$

- $A[\psi_1 W \psi_2]$ is a 'partial correctness' version of $A[\psi_1 U \psi_2]$
- It is true at s if along all R-paths from s:
 - ψ_1 always holds on the path, or
 - ψ_2 holds sometime on the path, and until it does ψ_1 holds
 - Define $\begin{bmatrix} \mathbf{A}[\psi_1 \ \mathbf{W} \ \psi_2] \end{bmatrix}_M(s) = \begin{bmatrix} \neg \mathbf{E}[(\psi_1 \land \neg \psi_2) \ \mathbf{U} \ (\neg \psi_1 \land \neg \psi_2)] \end{bmatrix}_M(s) = \neg \begin{bmatrix} \mathbf{E}[(\psi_1 \land \neg \psi_2) \ \mathbf{U} \ (\neg \psi_1 \land \neg \psi_2)] \end{bmatrix}_M(s) = \neg (\exists \pi. \text{ Path } R \ s \ \pi \\ \land \\ \exists i. \ \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i)) \\ \land \\ \forall j. \ j < i \Rightarrow \ \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j))) \end{bmatrix}$

A[ψ_1 **W** ψ_2] continued (1)

- Continuing:
 - $\neg(\exists \pi. \text{ Path } R \ s \ \pi)$ Λ $\exists i. [\neg \psi_1 \land \neg \psi_2]_M(\pi(i)) \land \forall j. j < i \Rightarrow [\psi_1 \land \neg \psi_2]_M(\pi(j)))$ $= \forall \pi. \neg$ (Path *R* s π Λ $\exists i. [\neg \psi_1 \land \neg \psi_2]_M(\pi(i)) \land \forall j. j < i \Rightarrow [\psi_1 \land \neg \psi_2]_M(\pi(j)))$ $= \forall \pi$. Path R s π \Rightarrow $\neg(\exists i. \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i)) \land \forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j)))$ $= \forall \pi$. Path R s π \Rightarrow $\forall i. \neg \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i)) \lor \neg (\forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j)))$

$A[\psi_1 W \psi_2]$ continued (2)

Continuing:

- $= \forall \pi. \text{ Path } R \text{ } s \pi$ \Rightarrow $\forall i. \neg \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i)) \lor \neg (\forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j)))$ $= \forall \pi. \text{ Path } R \text{ } s \pi$ \Rightarrow $\forall i. \neg (\forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j))) \lor \neg \llbracket \neg \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(i))$ $= \forall \pi. \text{ Path } R \text{ } s \pi$ \Rightarrow $\forall i. (\forall j. j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j))) \Rightarrow \llbracket \psi_1 \lor \psi_2 \rrbracket_M(\pi(i))$
- Exercise: explain why this is $[A[\psi_1 | W | \psi_2]]_M(s)$?
 - this exercise illustrates the subtlety of writing CTL!

Sanity check: $A[\psi W F] = AG \psi$

- ► From last slide: $\begin{bmatrix} \mathbf{A}[\psi_1 \ \mathbf{W} \ \psi_2] \end{bmatrix}_M(s)$ $= \forall \pi. \text{ Path } R \ s \ \pi$ $\Rightarrow \forall i. (\forall j. \ j < i \Rightarrow \llbracket \psi_1 \land \neg \psi_2 \rrbracket_M(\pi(j))) \Rightarrow \llbracket \psi_1 \lor \psi_2 \rrbracket_M(\pi(i))$
- Set ψ_1 to ψ and ψ_2 to F: $\llbracket \mathbf{A} \llbracket \psi \ \mathbf{W} \ \mathbf{F} \rrbracket \rrbracket_M(s)$ $= \forall \pi. \text{ Path } R \ s \ \pi$ $\Rightarrow \forall i. (\forall j. j < i \Rightarrow \llbracket \psi \land \neg \mathbf{F} \rrbracket_M(\pi(j))) \Rightarrow \llbracket \psi \lor \mathbf{F} \rrbracket_M(\pi(i))$
- ► Simplify: $\begin{bmatrix} \mathbf{A}[\psi \ \mathbf{W} \ \mathbf{F}] \end{bmatrix}_{M}(s)$ $= \forall \pi. \text{ Path } R \ s \ \pi \Rightarrow \forall i. \ (\forall j. \ j < i \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(j))) \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(i))$
- ► By induction on *i*: $\llbracket \mathbf{A}[\psi \ \mathbf{W} \ \mathbf{F}] \rrbracket_{M}(s) = \forall \pi. \text{ Path } R \ s \ \pi \Rightarrow \forall i. \llbracket \psi \rrbracket_{M}(\pi(i))$
- Exercises
 - 1. Describe the property: $\mathbf{A}[\mathbf{T} \mathbf{W} \psi]$.
 - 2. Describe the property: $\neg \mathbf{E}[\neg \psi_2 \mathbf{U} \neg (\psi_1 \lor \psi_2)]$.
 - 3. Define $\mathbf{E}[\psi_1 \mathbf{W} \psi_2] = \mathbf{E}[\psi_1 \mathbf{U} \psi_2] \vee \mathbf{E}\mathbf{G}\psi_1$. Describe the property: $\mathbf{E}[\psi_1 \mathbf{W} \psi_2]$?

Mike Gordon

Summary of CTL operators (primitive + defined)

CTL formulae:

(Atomic formula - $p \in AP$)
(Negation)
(Conjunction)
(Disjunction)
(Implication)
(All successors)
(Some successors)
(Somewhere – along all paths)
(Somewhere – along some path)
(Everywhere – along all paths)
(Everywhere – along some path)
(Until – along all paths)
(Until – along some path)
(Unless – along all paths)
(Unless – along some path)

)

Example CTL formulae

• **EF**(Started $\land \neg Ready$)

It is possible to get to a state where Started holds but Ready does not hold

• $AG(Req \Rightarrow AFAck)$

If a request Req occurs, then it will eventually be acknowledged by Ack

AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along every path starting anywhere: i.e. **DeviceEnabled** holds infinitely often along every path

► AG(EFRestart)

From any state it is possible to get to a state for which Restart holds

More CTL examples (1)

• $AG(Req \Rightarrow A[Req U Ack])$

If a request **Req** occurs, then it continues to hold, until it is eventually acknowledged

• $AG(Req \Rightarrow AX(A[\neg Req U Ack]))$

Whenever Req is true either it must become false on the next cycle and remains false until Ack, or Ack must become true on the next cycle Exercise: is the **AX** necessary?

► AG(Req ⇒ (¬Ack ⇒ AX(A[Req U Ack]))) Whenever Req is true and Ack is false then Ack will eventually become true and until it does Req will remain true Exercise: is the AX necessary?

More CTL examples (2)

► AG(Enabled ⇒ AG(Start ⇒ A[¬Waiting U Ack])) If Enabled is ever true then if Start is true in any subsequent state then Ack will eventually become true, and until it does Waiting will be false

► AG(¬Req₁∧¬Req₂⇒A[¬Req₁∧¬Req₂ U (Start∧¬Req₂)]) Whenever Req₁ and Req₂ are false, they remain false until Start becomes true with Req₂ still false

► AG(Req ⇒ AX(Ack ⇒ AF ¬Req))
 If Req is true and Ack becomes true one cycle later, then eventually Req will become false

Some abbreviations

$$\blacktriangleright \mathbf{AX}_{i} \psi \equiv \mathbf{AX}(\mathbf{AX}(\cdots(\mathbf{AX} \psi)\cdots))$$

i instances of **AX** ψ is true on all paths *i* units of time later

► ABF_{*i.j*}
$$\psi \equiv AX_i (\psi \lor AX(\psi \lor \cdots AX(\psi \lor AX \psi) \cdots))$$

j - *i* instances of AX

 ψ is true on all paths sometime between i units of time later and j units of time later

► AG(Req ⇒ AX(Ack₁ ∧ ABF_{1..6}(Ack₂ ∧ A[Wait U Reply]))) One cycle after Req, Ack₁ should become true, and then Ack₂ becomes true 1 to 6 cycles later and then eventually Reply becomes true, but until it does Wait holds from the time of Ack₂

More abbreviations in 'Industry Standard' language PSL

CTL model checking

For LTL path formulae ϕ recall that $M \models \phi$ is defined by:

 $M \models \phi \iff \forall \pi \text{ s. } \mathbf{s} \in S_0 \land \text{Path } R \text{ s } \pi \Rightarrow \llbracket \phi \rrbracket_M(\pi)$

- ► For CTL state formulae ψ the definition of $M \models \psi$ is: $M \models \psi \Leftrightarrow \forall s. \ s \in S_0 \Rightarrow \llbracket \psi \rrbracket_M(s)$
- ▶ *M* common; LTL, CTL formulae and semantics []_M differ
- CTL model checking algorithm:
 - compute $\{s \mid \llbracket \psi \rrbracket_M(s) = true\}$ bottom up
 - check $S_0 \subseteq \{s \mid \llbracket \psi \rrbracket_M(s) = true\}$
 - symbolic model checking represents these sets as BDDs

CTL model checking: p, $AX\psi$, $EX\psi$

- For CTL formula ψ let $\{\psi\}_M = \{s \mid \llbracket \psi \rrbracket_M(s) = true\}$
- When unambiguous will write $\{\psi\}$ instead of $\{\psi\}_M$
- $\{p\} = \{s \mid p \in L(s)\}$
 - scan through set of states S marking states labelled with p
 - {p} is set of marked states
- To compute {AXψ}
 - recursively compute $\{\psi\}$
 - marks those states all of whose successors are in $\{\psi\}$
 - $\{AX\psi\}$ is the set of marked states
- To compute {EXψ}
 - recursively compute $\{\psi\}$
 - marks those states with at least one successor in $\{\psi\}$
 - $\{\mathbf{EX}\psi\}$ is the set of marked states

CTL model checking: $\{ \mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2] \}, \{ \mathbf{A}[\psi_1 \ \mathbf{U} \ \psi_2] \}$

- To compute $\{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}$
 - recursively compute $\{\psi_1\}$ and $\{\psi_2\}$
 - mark all states in $\{\psi_2\}$
 - mark all states in $\{\psi_1\}$ with a successor state that is marked
 - repeat previous line until no change
 - {**E**[ψ_1 **U** ψ_2]} is set of marked states
- ► More formally: $\{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\} = \bigcup_{n=0}^{\infty} \{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}_n$ where: $\{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}_0 = \{\psi_2\}$ $\{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}_{n+1} = \{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}_n$ \bigcup $\{s \in \{\psi_1\} \ | \ \exists s' \in \{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}_n. R \ s \ s'\}$
- $\{A[\psi_1 \cup \psi_2]\}$ similar, but with a more complicated iteration
 - details omitted

Example: checking EF p

► EFp = E[T U p]

holds if ψ holds along some path

- Note {T} = S
- Let $S_n = \{ \mathbf{E}[T \cup p] \}_n$ then:

$$S_0 = \{ E[T \cup p] \}_0 \\ = \{ p \} \\ = \{ s \mid p \in L(s) \}$$

 $\begin{array}{rcl} \mathcal{S}_{n+1} & = & \mathcal{S}_n \ \cup \ \{s \in \{\!\!\![\mathsf{T}\]\} \mid \exists s' \in \{\!\!\![\mathsf{E}[\mathsf{T}\] \mathsf{U}\]p]\}_n. \ R \ s \ s'\} \\ & = & \mathcal{S}_n \ \cup \ \{s \mid \exists s' \in \mathcal{S}_n. \ R \ s \ s'\} \end{array}$

- mark all the states labelled with p
- mark all with at least one marked successor
- repeat until no change
- [EF p] is set of marked states

Example: RCV

Recall the handshake circuit:

- State represented by a triple of Booleans (dreq, q0, dack)
- ► A model of RCV is M_{RCV} where:

$$\begin{split} & \textit{M} = (\textit{S}_{\text{RCV}},\textit{S}_{0_{\text{RCV}}},\textit{R}_{\text{RCV}},\textit{L}_{\text{RCV}}) \\ & \text{and} \\ & \textit{R}_{\text{RCV}} \left(\textit{dreq},\textit{q0},\textit{dack}\right) \left(\textit{dreq}',\textit{q0}',\textit{dack}'\right) = \\ & \left(\textit{q0}' = \textit{dreq}\right) \land \left(\textit{dack}' = \left(\textit{dreq} \land \left(\textit{q0} \lor \textit{dack}\right)\right)\right) \end{split}$$

RCV state transition diagram

Possible states for RCV:

 $\{000, 001, 010, 011, 100, 101, 110, 111\}$ where $b_2b_1b_0$ denotes state dreg = $b_2 \land g_0 = b_1 \land dack = b_0$

Graph of the transition relation:

Computing {EF At111} where At111 $\in L_{RCV}(s) \Leftrightarrow s = 111$

Define:

$$\begin{array}{ll} \mathcal{S}_{0} &= \{ \texttt{s} \mid \texttt{Atlll} \in L_{\texttt{RCV}}(\texttt{s}) \} \\ &= \{ \texttt{s} \mid \texttt{s} = \texttt{111} \} \\ &= \{\texttt{111} \} \\ \\ \mathcal{S}_{n+1} &= \mathcal{S}_{n} \ \cup \ \{\texttt{s} \mid \exists \texttt{s}' \in \mathcal{S}_{n}. \ \mathcal{R}(\texttt{s},\texttt{s}') \} \\ &= \mathcal{S}_{n} \ \cup \ \{\texttt{b}_{2}\texttt{b}_{1}\texttt{b}_{0} \mid \\ &= \exists \texttt{b}'_{2}\texttt{b}'_{1}\texttt{b}'_{0} \in \mathcal{S}_{n}. \ (\texttt{b}'_{1} = \texttt{b}_{2}) \ \land \ (\texttt{b}'_{0} = \texttt{b}_{2} \land (\texttt{b}_{1} \lor \texttt{b}_{0})) \} \end{array}$$

Computing {EF At111} (continued)

Compute:

$$\begin{array}{l} \mathcal{S}_{0} &= \{111\} \\ \mathcal{S}_{1} &= \{111\} \cup \{101, 110\} \\ &= \{111, 101, 110\} \\ \mathcal{S}_{2} &= \{111, 101, 110\} \cup \{100\} \\ &= \{111, 101, 110, 100\} \\ \mathcal{S}_{3} &= \{111, 101, 110, 100\} \cup \{000, 001, 010, 011\} \\ &= \{111, 101, 110, 100, 000, 001, 010, 011\} \\ \mathcal{S}_{n} &= \mathcal{S}_{3} \quad (n > 3) \\ \{ \text{EF Atlll} \} &= \mathbb{B}^{3} = \mathcal{S}_{\text{RCV}} \\ \mathcal{M}_{\text{RCV}} \models \text{EF Atlll} \Leftrightarrow \mathcal{S}_{0\text{RCV}} \subseteq S \end{array}$$

Symbolic model checking

- Represent sets of states with BDDs
- Represent Transition relation with a BDD
- If BDDs of $\{\psi\}$, $\{\psi_1\}$, $\{\psi_2\}$ are known, then:
 - BDDs of {¬ψ}, {ψ₁ ∧ ψ₂}, {ψ₁ ∨ ψ₂}, {ψ₁ ⇒ ψ₂} computed using standard BDD algorithms
 - BDDs of {AXψ}, {EXψ}, {A[ψ₁ U ψ₂]}, {E[ψ₁ U ψ₂]} computed using straightforward algorithms (see textbooks)
- Model checking CTL generalises reachable states Iteration

History of Model checking

- CTL model checking due to Emerson, Clarke & Sifakis
- Symbolic model checking due to several people:
 - Clarke & McMillan (idea usually credited to McMillan's PhD)
 - Coudert, Berthet & Madre
 - Pixley

SMV (McMillan) is a popular symbolic model checker:

```
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
http://nusmv.irst.itc.it/
```

(original) (Cadence extension by McMillan) (new implementation)

Other temporal logics

- CTL*: combines CTL and LTL
- Engineer friendly industrial languages: PSL, SVA