Computation Tree Logic (CTL)

» LTL formulae ¢ are evaluated on paths path formulae

» CTL formulae ¢ are evaluated on states .. state formulae

» Syntax of CTL well-formed formulae:

Mike Gordon

P

p

—)

Y1 A2
W1 Vo
1 = P2
AX1)

EXq)

Al U hy]
E[v1 U 9]

(Atomic formulap € AP)
(Negation)

(Conjunction)
(Disjunction)
(Implication)

(All successors)

(Some successors)
(Until — along all paths)
(Until — along some path)

59 /127

Semantics of CTL
» Assume M = (S, Sp, R, L) and then define:

[PIm(s) = pEL(s)

[-¢Im(s) = ([¥Im(s))

[V Ad2m(s) = [¥alm(s) A [W2dm(s)
[¥1 V ¥2]m(s) = [¥1dm(s) Vv [¥2]m(s)
[Y1 = v2lm(s) = [¥alm(s) = [Walm(s)
[AXy]m(s) = Vs . Rss = [¢Y]u(s)
[EXy]Im(s) = 3".Rss’" A [¢]u(s)
[Alv1 U ¥s]lm(s) = Vr.PathRs

= Ji. [Y2]m(7(i))
A

Vi.i<i = [¢a]m(n(i))
[ElY1 Uollu(s) = 3r.PathRsm
A 3'-£¢2]]M(7T('))

Vi.i<i = [valm(n(j))

Mike Gordon 60 /127

The defined operator AF

> Define AFy = A[T U]

» AR true atsiff b true somewhere on every R-path from s

Mike Gordon

[AFY]M(s)

= [A[T U ¥]lm(s)

= Vr.PathRsr
=

3. [Iwm(x@() A Yi.j<i = [TIu(())

= Vr.PathR s«
=
3i. [¥]m(w(i)) A Vj.j<i = true

= Vr.PathR st = 3i. [¢]m(x(i))

61/127

The defined operator EF
> Define EFy = E[T U ¢]

» EFy true atsiff ¢ true somewhere on some R-path froms

[EF¢Im(s) = [E[T U ¢]lm(s)

= dr.PathR s«
AN

3i. [WIm(x@) A Vi) <i = [TIm(=())

= dr.PathR s«
A
3. [Ym(n(i)) A V). j<i = true

= dr.PathR s A 3i. [¥]u(x(i))

» ‘“can reach a state satisfyingp € AP”is EF p

Mike Gordon 62 /127

The defined operator AG
» Define AGy) = —EF(—v)

» AGq true at s iff ¢ true everywhere on every R-path from s

[AGYTm(s) = [-EF(—%)Im(s)
“([EF(—¥)Im(s))

—(3r. PathR s m A 3i. [-¢]m(7(i
—(3r. Path R s 7 A Ji. =[¢]u (7 (i
vr. ~(Path R s 7w A 3i. =[] (7 (i
vr. —Path R s 7 vV =(3i. =[¢]w (x(i
V. —Path R s 7V Vi. ==[/]m (7 (i
V. —Path R s 7 v Vi. [¥]m(x(i))
Vr. PathR s m = Vi. [¢]m(x(i))

» AGt means) true at all reachable states

» [AG(P)Im(s) = Vs'.R*ss’" = pelL(s)

» “can always reach a state satisfying p € AP” is AG(EF p)

Mike Gordon 63 /127

The defined operator EG

» Define EGy) = —AF(—1)

» EGy true atsiffv true everywhere onsome R-pathfroms

[EGYIm(s) = [AF(=¢)Im(S)
([AF(=¥)Im(s))
—(Vr. Path R s m = 3i. [-¢]u(7(i)))
~(Vr. Path R s 7 = 3i. —[¢]w(x(i)))
Ir. =(Path R s 7 = Ji. =[v]u(x(i)))
dr. Path R s 7 A =(3i. =[¢]m (7 (i)))
dr. Path R s w AVi. == [¢]m(x(i))
Jr. Path R's w A Vi. [¢]m(7(i))

[
)

Mike Gordon 64 /127

The defined operator A[y); W 1]

» A1 W),] is a ‘partial correctness’ version of Ay U 1]
» Itis true at s if along all R-paths from s:
»), always holds on the path, or

» 1, holds sometime on the path, and until it does ¢, holds

» Define
[AlY1 W ¥2]lm(s)
= [E[(¥1A—12) U (1 A=p2)]Tm(S)
= [E[(¢1A792) U (m1 A=92)]Tm (S)
=—(3Ir. PathR s«
VAN
3. [~ A—o]m (7 (i)
VAN
Vi j<i = [iA—eolm(n(j)))

» Exercise: understand the next two slides!

Mike Gordon 65/127

Al1 W 1),] continued (1)

» Continuing:

—(3r. PathR s 7
A
Ji. [7oaA—Pe]u(w(i)) A V. j<i = [aA=d2]m(x())))
= Vr.~(PathR s«
A

3. [~aAelm(n(i)) A Vilj<i = [PiA—e]m(w (i)

= Vr.PathR s«
=

(30 [A)m(w(i) A YL j<i = [viAw]m(7())))

= Vr.PathR s«
=

Vi [~ Aa]m(w(i) vV =(9). j<i = [vaAa]m(n(i)))

Mike Gordon 66 /127

Al1 W 1),] continued (2)

» Continuing:

= Vr.PathR s«
=

Vi. = Abolm(w(i)) V=Y. j<i = [vaA—a]m(n(i)))

= Vr.PathR s«
=

Yi. —\(Vj j<i = |[/lb1/_'¢2]]|\/|(7T(j))) vV _'l[_'l/Jl/_'wz]]M(W(i))
= Vr.PathR s 7
=

Vi. (Vj. j<i = [aA2dm(7())) = [v1Velm(n(i))

» Exercise: explain why this is [A[v1 W ¥2]]m(s)?
» this exercise illustrates the subtlety of writing CTL!

Mike Gordon 67 /127

Sanity check: A[vy W F] = AG
» From last slide:
[Al1 W 2]Im(s)
= Vr.PathRsw
= Vi. (vV]. j<i = [¥1A"d2]m (7 () = [¥1Veelm(x (i)
Set i1 to ¢ and ¢, to F:
[Aly W F]]m(s)
= Vr.PathRsw
= Vi. (vj.j<i = [YA=F]u(x())) = [PVFIu(x(i))
Simplify:
[A[y W F]lu(s)
= Vr.PathR s 7 =Vi. (V). j<i = [¢¥]Im(7(}))) = [¢¥]Im(=(i))
By induction on i:
[Al» W F]]m(s) = Vr.PathR s 7 = Vi. [¢]m(7(i))

Exercises
1. Describe the property: A[T W] .
2. Describe the property: —E[—t, U (11 Vi),)] .
3. Define E[qp]_ W ’(/)2] = E[wl U 1ﬁ2] V EG;.
Describe the property: E[¢; W v,]?

Mike Gordon 68 /127

v

v

v

v

Summary of CTL operators (primitive + defined)

» CTL formulae:

Mike Gordon

p

—\1/)

1 N\ o
1V o

1 = P2
AX)

EXe)

AF)

EFy

AGY

EGy

Alp1 U 1]
Eft1 U 1]
Al W 5]
Ei1 W 93]

(Atomic formula -p € AP)
(Negation)

(Conjunction)

(Disjunction)

(Implication)

(All successors)

(Some successors)
(Somewhere — along all paths)
(Somewhere — along some path)
(Everywhere — along all paths)
(Everywhere — along some path)
(Until — along all paths)

(Until — along some path)
(Unless — along all paths)
(Unless — along some path)

69 /127

Example CTL formulae

» EF(Started N —Ready)

It is possible to get to a state where Started holds
but Ready does not hold

» AG(Req = AFAck)

If a request Req occurs, then it will eventually be
acknowledged by Ack

» AG(AFDeviceEnabled)
DeviceEnabled is always true somewhere along
every path starting anywhere: i.e. DeviceEnabled
holds infinitely often along every path

» AG(EFRestart)

From any state it is possible to get to a state for
which Restart holds

Mike Gordon 70/127

More CTL examples (1)

» AG(Req = A[Req U Ack])
If a request Req occurs, then it continues to hold,
until it is eventually acknowledged

» AG(Req = AX(A[—Req U Ack]))
Whenever Req is true either it must become false
on the next cycle and remains false until Ack, or
Ack must become true on the next cycle

Exercise: is the AX necessary?

» AG(Req = (—Ack = AX(A[Req U Ack])))
Whenever Req is true and Ack is false then Ack
will eventually become true and until it does Req
will remain true

Exercise: is the AX necessary?

Mike Gordon 711127

More CTL examples (2)

» AG(Enabled = AG(Start = A[-Waiting U Ack]))

If Enabled is ever true then if Start is true in any
subsequent state then Ack will eventually become
true, and until it does Waiting will be false

» AG(—Req; A—Req,=A[-Req;/A—Req, U (StartA—Req,)])
Whenever Req; and Req, are false, they remain
false until Start becomes true with Req;, still false

» AG(Req = AX(Ack = AF —Req))

If Req is true and Ack becomes true one cycle
later, then eventually Req will become false

Mike Gordon 721127

Some abbreviations
> AX; b = AX(AX(--- (AX) --))

i instances of AX
1 is true on all paths i units of time later

» ABFi j¢ = AXi (v VAX(¢ V - AX(v V AX) --+))

j — i instances of AX

1 is true on all paths sometime between i units of
time later and j units of time later

» AG(Req = AX(Acky A ABF 1 g(Ack, A A[Wait U Reply])))

One cycle after Req, Ack; should become true,
and then Ack, becomes true 1 to 6 cycles later
and then eventually Reply becomes true, but until
it does Wait holds from the time of Ack,

» More abbreviations in ‘Industry Standard’ language PSL

Mike Gordon 731127

CTL model checking

» For LTL path formulae ¢ recall that M = ¢ is defined by:
’M Eo < VWS.SGSO/\PathRSﬂ':>|[¢]]M(7T)‘

» For CTL state formulae ¢ the definition of M |= ¢ is:
’M 1 & Vs.seSy= [[@“;]]M(s)‘

» M common; LTL, CTL formulae and semantics [| differ

» CTL model checking algorithm:
» compute {s | [¢]m(s) = true} bottom up
» check Sy C {s | [¢]m(s) = true}

» symbolic model checking represents these sets as BDDs

Mike Gordon 741127

CTL model checking: p, AXvy, EX1)
» For CTL formula ¢ let {¢)}y = {s | [¢]u(s) = true}

» When unambiguous will write {¢/} instead of {¢'}y
{p} ={s[peL(s))

» scan through set of states S marking states labelled with p
» {p} is set of marked states

v

» To compute {AXy}

» recursively compute {)}
» marks those states all of whose successors are in {/)}
» {AX1)} is the set of marked states

» To compute {EXv}

» recursively compute {¢)}
» marks those states with at least one successor in {4}
» {EX¢} is the set of marked states

Mike Gordon 751127

CTL model checking: {E[¢1 U 2]]}, {Alv1 U 2]}

» To compute {E[¢1 U 4]}

recursively compute {1} and {i-}

mark all states in {¢»}

mark all states in {);} with a successor state that is marked
repeat previous line until no change

{E[«1 U 4]} is set of marked states

vV vy vy VvVYy

» More formally: {E[1 U 2]} = UpZo{E[¢1 U 2]} where:

{E[¥1Ullo = {2}
{E[v1 U ¥olbnyr = E[JE[% U 92]}n

{s € {tn} | 38" € {E[¢1 U ¥o]}n. R s s’}

» {A[1 U 9]} similar, but with a more complicated iteration
» details omitted

Mike Gordon 761127

Example: checking EF p

» EFp = E[T U p]
» holds if v holds along some path

» Note {T} =S
» Let S, = {E[T U p]}n then:
So = {E[TUpl}o
= {r}
= {s[pelL(s)}

Snt1 = Sn U {sc{T}|3s' c {E[TUDp]}n. Rs s}
Sh U {s|3s’'eS,.Rss'}

» mark all the states labelled with p

» mark all with at least one marked successor
» repeat until no change

» {EF p} is set of marked states

Mike Gordon 771127

Example: RCV

» Recall the handshake circuit:

dreq J— dack

or0

qObar

» State represented by a triple of Booleans (dreq, g0, dack)

» A model of RCV is Mgcy Where:
M = (Srev; Sorevs Rrovs Lrov)
and

Rrev (dreq, g0, dack) (dreq’,q0’,dack’) =
(q0" =dreq) A (dack’ = (dreq A (q0 Vv dack)))

Mike Gordon 781127

RCV state transition diagram

» Possible states for RCV:
{000, 001,010,011, 100,101, 110,111}
where b,b,bg denotes state
dreq=b, A g0 =b; A dack =bg

» Graph of the transition relation:

()

100 110 111

N

011

Mike Gordon 791127

Computing {EF At 111} where At 111 € Lpey(s) < s = 111

NN

011

» Define:
So ={s|At 111 € Lgev(S)}
={s|s =111}
= {111}
Snt1 Sn U {s|3s' €Sy R(s,s")}

Sn U {babibg |

Eblzbibé € Sn. (bi = bz) AN (b(/) =ho A (bl \ bo))}

Mike Gordon

80 /127

Computing {EF At 111} (continued)

N

011

» Compute:

So = {111}

S ={111} u {101,110}
= {111,101, 110}

S, =1{111,101,110} U {100}
= {111,101,110, 100}

S ={111,101,110,100} U {000,001,010,011}
= {111,101, 110, 100, 000, 001,010,011}

S =8 (n>3)

» [EFAt111} = B® = Spoy
» Mpov = EF At 111 < Sppay € S

Mike Gordon

81/127

Symbolic model checking

v

Represent sets of states with BDDs

v

Represent Transition relation with a BDD

v

If BDDs of {¢'}, {¢1}, {¢»} are known, then:

» BDDs of {ﬁ?f/‘}, {1;‘)1 N l,)z}, {1;“)1 V l,)z}, {15)1 = ?/Jz}
computed using standard BDD algorithms

» BDDs of {AX ¢}, {EXy}, {A[v1r U o]}, {E[v1 U 4]}
computed using straightforward algorithms (see textbooks)

v

Model checking CTL generalises reachable states Iteration

Mike Gordon 82 /127

History of Model checking

v

CTL model checking due to Emerson, Clarke & Sifakis
Symbolic model checking due to several people:

» Clarke & McMillan (idea usually credited to McMillan’s PhD)
» Coudert, Berthet & Madre
» Pixley

v

v

SMV (McMillan) is a popular symbolic model checker:

http://ww. cs. crru. edu/ ~nodel check/ snv. ht m (original)
http://ww. kenmemi | . com snv. ht ni (Cadence extension by McMillan)
http://nusnv.irst.itc.it/ (new implementation)

v

Other temporal logics

» CTL*: combines CTL and LTL
» Engineer friendly industrial languages: PSL, SVA

Mike Gordon 83/127

http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
http://nusmv.irst.itc.it/

