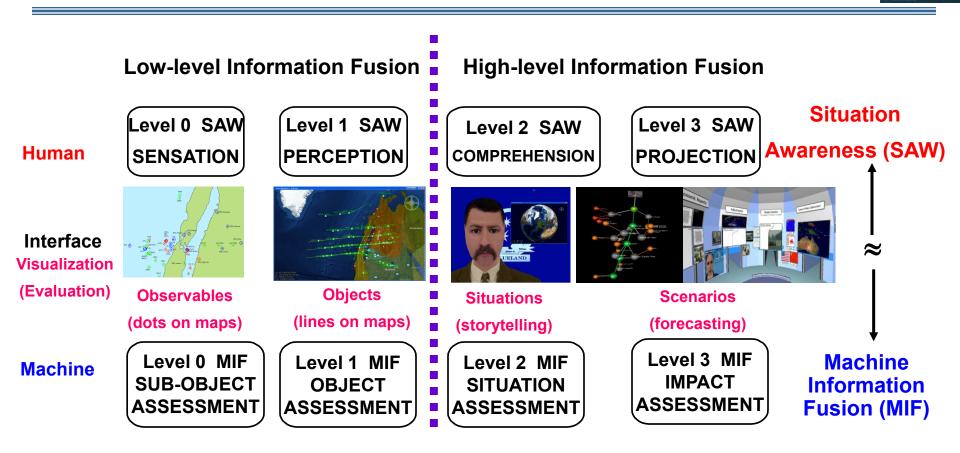

High-Level Information Fusion Management and Systems Design

Lesson 1: HLIF Overview and Motivation



Erik Blasch

erik.blasch@gmail.com

Overview

Decompose problem into elements of LLIF and HLIF

Determine the user (situation awareness) and machine (computation)

Discussion on evaluation/visualization and projection

Erik Blasch – Fusion 15

Overview

BLASCH

BOSSÉ

LAMBERT

Ι

High-level information fusion is the ability of complex systems to capture awareness by utilizing direct sensing exploitations and tacit reports, reasoning over past and future events, and discerning the use-fulness and intention of results to meet system-level goals. This authoritative book serves as a practical reference for researchers, developers, and users of data fusion services that must relate the most recent theory to real-world applications. This unique volume describes alternative theories to represent and model situations, provides methods of information management, and demonstrates design component implementations of information fusion systems. Designers find expert guidance in applying current theories, selecting algorithms and software components, and measuring expected performance of high-level information fusion systems.

Contents Overview:

Part I: Information Fusion Concepts

Situation Assessment and Situation Awareness. The State Transition Data Fusion Model. Formalization of Situational Analysis Through Interpreted Systems Semantics.

Part II: Distributed Information Fusion and Management The Role of Information Fusion Management to Support High-Level Fusion. Coalition Distributed Information Fusion Testbed. Information Fusion and Resource Management Testbed. The Legal Agreement Protocol

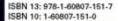
Part III: Human-System Interaction

User Defined Operating Picture (UDOP). User Information Fusion Decision Making Analysis with the Cognitive Observe-Orient-Decide-Act (C-OODA) Model.

Part IV: Scenario-Based Design

Scenario-Based Design for Situation Analysis. A Coalition Approach to Higher-Level Fusion. Operating Condition Scenario Modeling for Information Fusion Assessment.

Part V: Measures of Effectiveness


A Toolbox for the Evaluation of Surveillance Strategies Based on Interpreted Systems. Measuring the Worthiness of Situation Assessment, Measures of Effectiveness for High-Level Information Fusion,

Erik Blasch is an information fusion evaluation engineer at the United States Air Force Research Laboratory, Rome, NY. He holds a Fh.D. in electrical engineering and an MBA from Wright State University, is a graduate of Air War College, and has completed numerous ofter graduate degrees.

Eloi Bossé has served as head of the Decision Support Systems Section at Defence Research and Development Canada Valcartier. He holds a Ph.D. in electrical engineering from Université Laval.

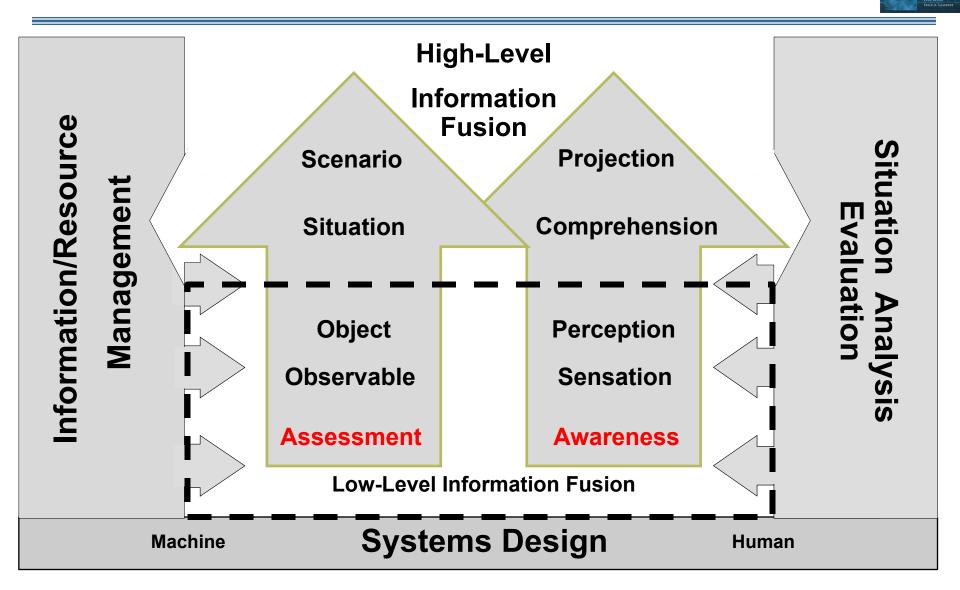
Date A. Lambert is the research leader of intelligence processing and analysis within Australia's Defence Science and Technology Organisation. He holds a Ph.D. in artificial intelligence, a graduate certificate in management, and undergraduate degrees in computer science, philosophy, and mathematics.

Include bar code

ARTECH HOUSE BOSTONILONDON

www.artechhouse.com

IG MANAGEMENT AND Ŧ Г EV m -z FO RMATI SYSTEMS 0N DESIGN П NOISU


HIGH-LEVEL INFORMATION FUSION MANAGEMENT AND SYSTEMS DESIGN

ERIK BLASCH ÉLOI BOSSÉ DALE A. LAMBERT

Erik Blasch – Fusion 15

Final Book Cover

GOALS

Goals:

1) STUDENT

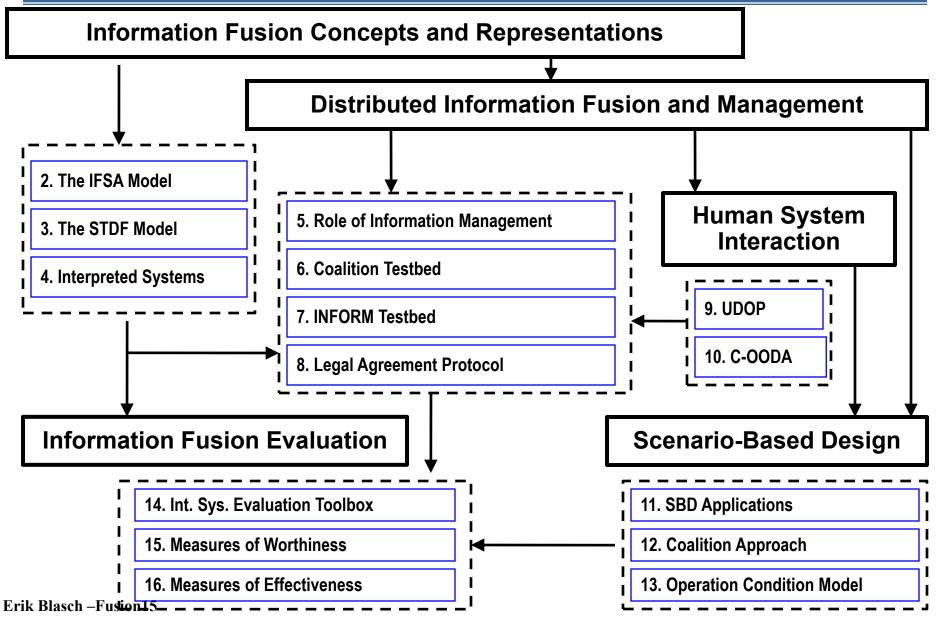
Listen and think about the LLIF-HLIF problem definitions Try to think through "Information fusion reasoning" 2) FACILITATOR Continue to organize and synthesize the material

Develop methods and solutions for High-level Information Fusion

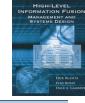
Organize developments in HLIF for future generations

3) COMMUNITY

Collaborate to motivate design/management solutions


Reflect of systems-level issues of information fusion design

HERE IS MY EFFORT TO ORGANIZE THE MATERIAL


Erik Blasch – Fusion 15

HLIF Book Outline

High-Level Information Fusion Management and Systems Design

1. Overview the HLIF problem (~ 1 hour) Architecture, domain, algorithms, purpose (SA Approaches) 2. Methods for Situation Awareness (~ 1 hour) Set up analysis of SAW/SA (functional) **Describe three types of approaches Process, Interpreted, and State Transition** Develop notions of SA Prediction/Projection 3. Develop a IF Management and System Level Design (~ 1 hour) **Present System Management and Testbeds** Human Factors issues (C-OODA, UDOP) 4. Demonstrate HLIF Evaluation and Scenario Design (~ 1 hour)

> Determine the design, testing, scenarios, and operability Evaluation Methods

Erik Blasch – Fusion 15

Caveat

1. Three years of discussion

Focused on the main issues in HLIF

See companion paper in Fusion Panel Studies

See other tutorial on Evaluation

2. Collaboration (SUM)

Sensor Management - HLIF is about different INTs User – HLIF is about a collection of users Mission – HLIF is about focusing on the goal (Top-Down)

3. Each Coordination brought together ideas

Technical panels – C3I, Info Mgt, User, and Testbeds

Countries and perspectives – each had end-to-end solution

4. Developments fostered from the Grand Challenges

Issues to explore in the next decade

Lesson 01: HLIF Overview

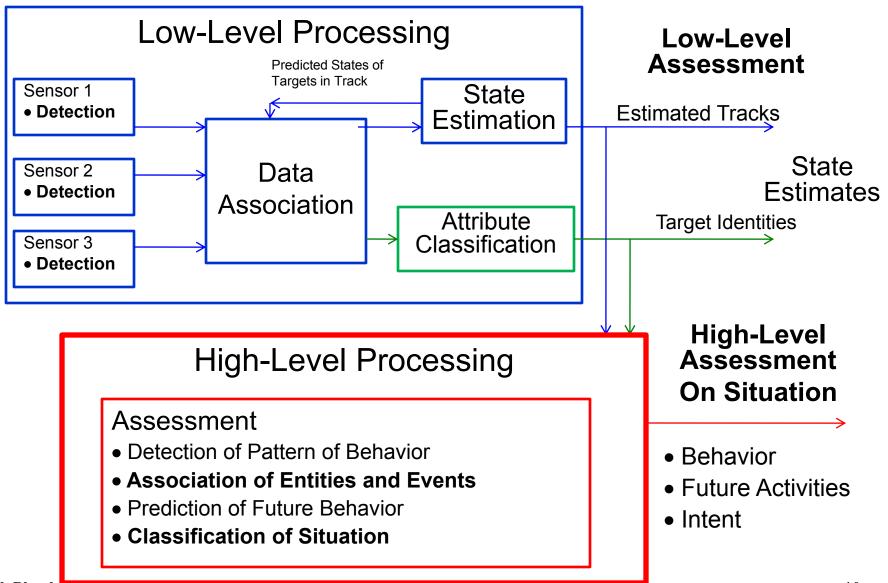
HIGH-LEVEL INFORMATION FUSION BY ANNUAL DESIGN HIGH DE

1. Overview the HLIF problem (~ 1 hour)

HLIF Architectures: JDL to Data Fusion Information Group (DFIG) Grand Challenges

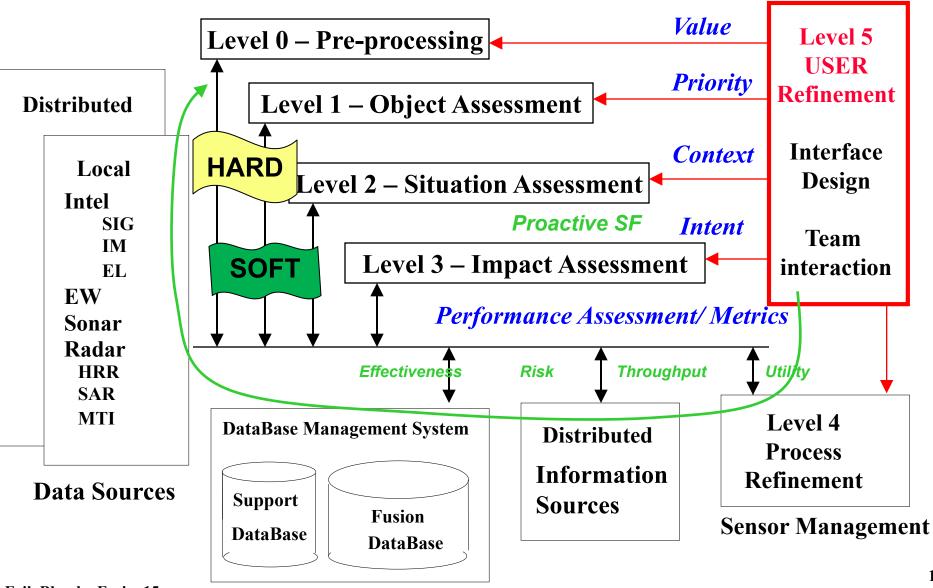
> Paradigm , Semantic , Epistemic : HLIF Purpose Interface, System: HLIF Management Design, Evaluation : HLIF Design Set up analysis of SAW/SA (functional)

SA Approaches

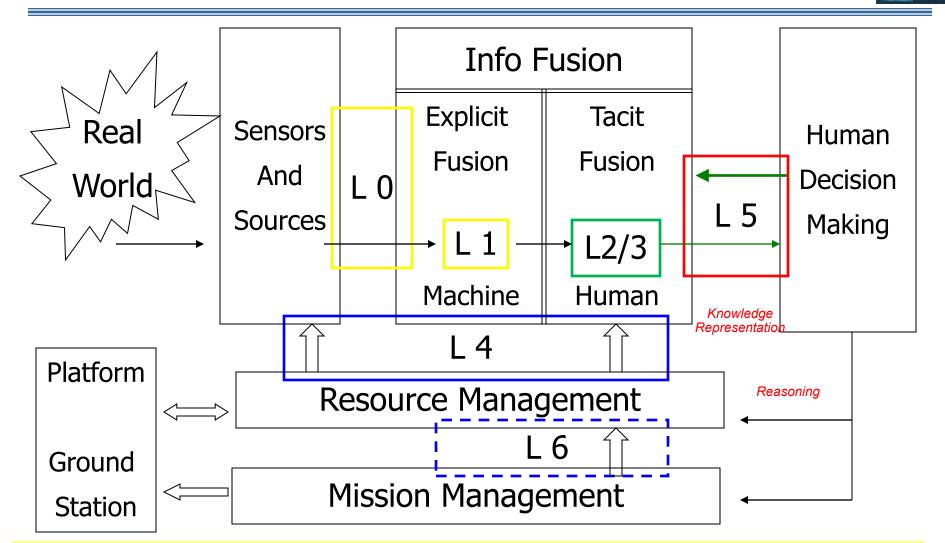

Process (DFIG) – US [Blasch, Salerno, Tangney] Interpreted Systems (IS) /ODDA – Canada [Bosse, Jousselme/Maupin, Valin] State Transition Data Fusion (STDF) – AUS [Lambert]

Common Issues: Metrics, Design, Future Concentrations

- 2. Methods for Situation Awareness (~ 1 hour)
- 3. Develop a IF Management and System Level Design (~ 1 hour)
- 4. Demonstrate HLIF Evaluation and Scenario Design (~ 1 hour)


High Level Fusion

Adapted from E. Waltz and J. Llinas, *Multisensor Data Fusion*, Artech House, Norwood, MA [1990])


User Fusion Model

From E. Blasch and S. Plano, "DFIG Level 5 (User Refinement) issues supporting Situational Assessment Reasoning," *Int. Conf. on Info Fusion - Fusion 05*, July 2005.

DFIG - Fusion Model

(Data Fusion Information Group), Fusion 2006 (from 2004)

E. Blasch, I. Kadar, J. Salerno, M. M. Kokar, S. Das, G. M. Powell, D. D. Corkill, and E. H. Ruspini, "Issues and challenges of knowledge representation and reasoning methods in situation assessment (Level 2 Fusion)", *J. of Advances in Information Fusion*, Dec. 2006.

Erik Blasch – Fusion 15

DFIG - Fusion Model

(Data Fusion Information Group), Fusion 2006 (from 2004)

Low Level Information Fusion (LLIF)

<u>Level 0 – Data Assessment</u>: estimation and prediction of signal/object observable states on the basis of pixel/signal level data association (e.g. information systems collections);

<u>Level 1 – Object Assessment:</u> estimation and prediction of entity states on the basis of data association, continuous state estimation and discrete state estimation (e.g. data processing);

High Level Information Fusion (HLIF)

<u>Level 2 – Situation Assessment:</u> estimation and prediction of relations among entities, to include force structure and force relations, communications, etc. (e.g. information processing);

<u>Level 3 – Impact Assessment:</u> estimation and prediction of effects on situations of planned or estimated actions by the participants; to include interactions between action plans of multiple players (e.g. assessing threat actions to planned actions and mission requirements, performance evaluation);

<u>Level 4 – Process Refinement</u> (an element of Resource Management): adaptive data acquisition and processing to support sensing objectives (e.g. sensor management and information systems dissemination, command/control).

<u>Level 5 – User Refinement</u> (an element of Knowledge Management): adaptive determination of who queries information and who has access to information (e.g. information operations) and adaptive data retrieved and displayed to support cognitive decision making and actions (e.g. human computer interface).

<u>Level 6 – Mission Management</u> (an element of Platform Management): adaptive determination of spatialtemporal control of assets (e.g. airspace operations) and route planning and goal determination to support team decision making and actions (e.g. theater operations) over social, economic, and political constraints.

E. Blasch, I. Kadar, J. Salerno, M. M. Kokar, S. Das, G. M. Powell, D. D. Corkill, and E. H. Ruspini, "Issues and challenges of knowledge representation and reasoning methods in situation assessment (Level 2 Fusion)", *J. of Advances in Information Fusion*, Dec. 2006.

Fusion Model Comparisons

E. Blasch, R. Breton, P. Valin, and E. Bosse, "User Information Fusion Decision Making Analysis with the C-OODA Model," *Int. Conf. on Info Fusion - Fusion11*, 2011.

Activity	DFIG	SAW Model	OODA	C-OODA
Command Execution	Level 6	Resource Tasking	Act	Action Implementation
Decision Making	Level 5	User Control User Refinement	Decide	Recall Evaluate
Sensor Management	Level 4	Decision Making		
Impact Assessment	Level 3	Projection	Orient	Projection
Situation Assessment	Level 2	Comprehension		Comprehension
Object Assessment	Level 1	Object Assessment		Feature Matching
Signal/Info Processing	Level 0	Signal/Feature Processing	Observe	Perception
Data Acquisition		Sensing Registration		Data Gathering

* **DFIG** (Data Fusion Information Group), SA(Situation Assessment) - *J. of Adv. in Info. Fusion*, Dec. 2006.

* **C-OODA** (Cognitive Observe, Orient, Decide, Act) – *Fusion11*, 2011

Erik Blasch – Fusion 15

Lesson 01: HLIF Overview

1. Overview the HLIF problem (~ 1 hour)

HLIF Architectures: JDL to Data Fusion Information Group (DFIG)

Grand Challenges

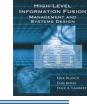
Paradigm , Semantic , Epistemic : HLIF Purpose Interface, System: HLIF Management Design, Evaluation : HLIF Design Set up analysis of SAW/SA (functional)

SA Approaches

Process (DFIG) – US [Blasch, Salerno, Tangney] Interpreted Systems (IS) /ODDA – Canada [Bosse, Jousselme/Maupin, Valin] State Transition Data Fusion (STDF) – AUS [Lambert]

Common Issues: Metrics, Design, Future Concentrations

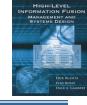
- 2. Methods for Situation Awareness (~ 1 hour)
- 3. Develop a IF Management and System Level Design (~ 1 hour)
- 4. Demonstrate HLIF Evaluation and Scenario Design (~ 1 hour)

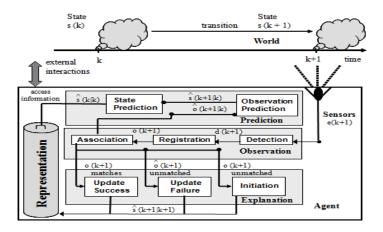

High Level Information Fusion Challenge

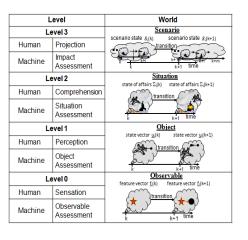
Focus of the text

- Paradigm Challenge: How should the interdependency between the sensor fusion and information fusion paradigms be managed?
- Semantic Challenge: What symbols should be used and how do those symbols acquire meaning?
- **Epistemic Challenge:** What information should we represent and how should it be represented and processed within the machine?
- Interface Challenge: How do we interface people to complex symbolic information stored within machines to provide decision support?
- System Challenge: How should we manage information fusion systems formed from combinations of people and machines?
- **Design Challenge:** How should we design information fusion systems formed from combinations of people and machines?
- **Evaluation Challenge:** How should we evaluate the effectiveness of information fusion systems?

Australia Contributions (1) State Transition Data Eusion (STDE)


State Transition Data Fusion (STDF)

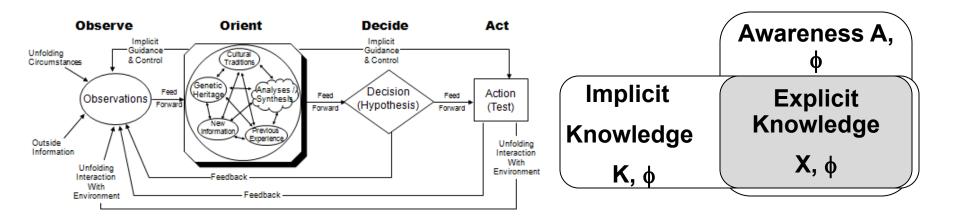

	Conceptual Theory	Theory Representation	Theory Implementation
Paradigm Challenge	State Transition Data Fusion (STDF) Model (Ch 3)	Unifying human and machine functional models across level 0 to level 3 situation awareness and	Signal/Text/Image processing with a distributed multi-agent
		fusion	architecture
Semantic	Mephisto Semantic	Axiomatic semantics in First	Prolog, Racer, FOL
Challenge	Framework ([11])	Order Logics (FOLs) and Description Logics (DLs) covering various metaphysical, environmental, functional, cognitive and social concepts	Meta-Interpreter, FOL Definitions Interpreter
Epistemic Challenge	ATTITUDE ([4]) and ATTITUDE TOO Cognitive Models	Cognitive agents with semantic, epistemic (declarative facts and rules) and episodic (procedural cognitive routines) long-term memories	Prolog, Racer, FOL Meta-Interpreter, FOL Definitions Interpreter
Interface Challenge	Higher Common Operating Pictures (HiCOP) ([4, 12, 13])	Interactive virtual news engaging virtual advisers, virtual battlespace, virtual interactive planning rooms, virtual video, virtual newspapers (web pages), Lexpresso controlled natural language	Commercial and indigenous Natural Language Processing, Text To Speech, Speech to Text, various indigenous animation developments


Australia Contributions (2)

State Transition Data Fusion (STDF)

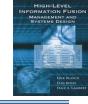
	Conceptual Theory	Theory Representation	Theory Implementation
System	Legal Agreement	Legal agreements between	LAP through agent
Challenge	Protocol (LAP) (Ch 8)	combinations of CDIFT	cognitive routines on
	on the Coalition	connected human and machine	CDIFT using HLA, JBI,
	Distributed	cognitive agents based on formal	CoABS grid, Elvin,
	Information Fusion	semantic theories	XMPP, XACML
	Testbed (CDIFT) (Ch		
	6)		
Design	Synthetic North	Use of synthetic development	Stage, domain
Challenge	Atlantis Environment	environments containing track	knowledge, track data,
	(Ch 12)	data, intelligence reports, and	GIS, Lexpresso reports,
		various domain knowledge	and agents on CDIFT
Evaluation	Evaluation of	Probabilistic propositional set	Mephisto, Prolog
Challenge	Situation Assessment	disparity measures based on	
	([14])	random inference networks	

Canada Contributions (1) Interpreted System (IS) and OODA Agents



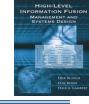
	Conceptual Theory	Theory Representation	Theory Implementation
Paradigm Challenge	Interpreted Systems (Ch 4)	Formal models across level 0 to level 3 fusion	Pursuit-evasion in graphs (Ch 14)
Semantic Challenge	Interpreted Systems (Ch 4)	Axiomatic semantics in Modal Logics covering various metaphysical, environmental, and functional concepts (Ch 4)	Game-theoretical analysis (Ch 14)
Epistemic Challenge	Cognitive Observe, Orient, Decide, Act Model (Ch 10) Interpreted Systems (Ch 4)	User (agent) with semantic, epistemic (facts and rules), and episodic (procedural) interactive goals. Belief Theory (Ch 4, Ch 7, Ch14)	Control theory for semantic interactions (Ch 7), Scenario-Based design (Ch 11), model- checking techniques (Ch 14)
Interface Challenge	Command and Control Graphical User Interface (Ch 7 , Ch 14)	Semantic and symbology presentation, visualization, and interactive sensor and mission management (Ch 6, Ch 7, Ch 9)	UML operational-primed decision making for a defined scenario (Ch 11)
System Challenge	INFORM Testbed (Ch 7)	OODA-based agent (Ch 7), state- space approach, belief networks (Ch 4, Ch 7,Ch 14)	XML, GIS, J2SE

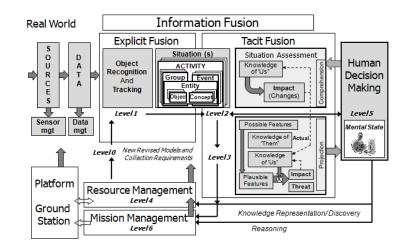
Canada Contributions (2) Interpreted System (IS) and OODA Agents



	Conceptual Theory	Theory Representation	Theory Implementation
Design	Synthetic North	Track data, intelligence reports,	Stage, GIS, agents on
Challenge	Atlantis Environment	various domain knowledge,	CDIFT (Ch 6, Ch12)
	(Ch 11, Ch 12)	simulations (Ch 6, Ch12)	
Evaluation	Theoretical	OODA agents operate in a	Information quality
Challenge	development of	distributed feedback loop (Ch 7)	measures and MOEs
	measures of	Model checking techniques (Ch	(Ch 16), "what-if"
	effectiveness (MOE)	14)	analyses (Ch 7)
	(Ch 14, Ch 16)		

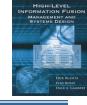
United States Contributions (1)


Information Fusion Situation Awareness (IFSA)


	Conceptual Theory	Theory Representation	Theory Implementation
Paradigm	Information Fusion	Operational process models	Signal/Text/Image
Challenge	Situation Assessment	across level 0 to level 5 fusion	processing with a
	(IFSA) Model (Ch 2)		SA/SAW architecture (Ch 15)
Semantic	Development of IFSA	Operational semantics of	Numeric and Language
Challenge	taxonomy (Ch 2)	computational models to infer	fusion integration in a
		meaning over environmental,	image (Ch 10) and cyber
		functional, cognitive and social	system (Ch 15)
		concepts (Ch 2, Ch13, Ch 15)	
Epistemic	Information	Agents for workflow and service-	Agent routines in CDIFT
Challenge	Management Model	based semantic, epistemic (facts	(Ch 6) using HLA, JBI,
	(Ch 5)	and rules) and episodic	CoABS grid, XML,
		(procedures) information	XACML
		processing (Ch5)	
Interface	User Defined	Visualizations for a Common	Visualization tools to
Challenge	Operating Pictures	Operational Picture (COP) with	support SA for maritime
	(UDOP) (Ch 9) with	symbologies, information	surveillance (Ch 7),
	operational	management, and collaboration	image analysis (Ch 10),
	conditional	tools (Ch 9). User refinement	target classification (Ch
	assessment (Ch 13)	support to fusion methods with	13) and cyber threats
		cognitive theory (Ch10)	(Ch15)

United States Contributions (2)

Information Fusion Situation Awareness (IFSA)



	Conceptual Theory	Theory Representation	Theory Implementation
System	Information	Use of ontologies and	Agent routines in CDIFT
Challenge	Management Model	workflow/service/human agents for	(Ch 6) using HLA, JBI,
	(Ch 5) for the	the CDIFT. Coordination of	CoABS grid, XML,
	Coalition Distributed	user/machine fusion methods	XACML and user
	Information Fusion	based on information needs and	refinement (Ch 10, Ch13,
	Testbed (Ch 6)	tools (Ch10, Ch13, Ch16)	Ch15, Ch16)
Design	Synthetic North	Track data, intelligence reports,	Stage, GIS, agents on
Challenge	Atlantis Environment	various domain knowledge (Ch 6,	CDIFT (Ch 6, Ch12)
	(Ch 12)	Ch12)	
Evaluation	Development of	Bayes networks to measure	Development of MOEs
Challenge	theoretical measures	probabilistic variations from	for cyber analysis,
	of effectiveness	Operational Conditions (Ch 13)	(Ch15) and coastal
	(MOE) (Ch 16)	and derivation of MOEs from	surveillance (Ch 16)
		performance measures (Ch 10)	

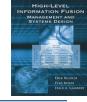
Joint HLIF Contributions

HLIF Perspectives for Paradigm Challenges

	AUS	CAN	US
Paradigm Challenge	Unifying human and machine functional models across level 0 to 3 (STDF Ch3)	Formal models across level 0 to level 3 fusion (IS/ODDA – Ch 04)	Operational process models across level 0 to level 5 fusion (DIFG/IFSA Ch02)
Semantic Challenge	Axiomatic semantics in First Order Logics (FOLs) and Description Logics (DLs) covering various metaphysical, environmental, functional, cognitive and social concepts	Axiomatic semantics in Modal Logics covering various metaphysical, environmental, and functional concepts (Ch 4)	Operational semantics of computational models to infer meaning over environmental, functional, cognitive and social concepts (Ch 2, Ch13, Ch 15)
Epistemic Challenge	Cognitive agents with semantic, epistemic (declarative facts and rules) and episodic (procedural cognitive routines) long-term memories	User (agent) with semantic, epistemic (facts and rules), and episodic (procedural) interactive goals. Belief Theory (Ch 4, 7, Ch14)	Agents for workflow and service-based semantic, epistemic (facts and rules) and episodic (procedures) information processing (Ch5)
Interface Challenge	Interactive virtual news engaging virtual advisers, battlespace, interactive planning rooms, video, & newspapers (web pages), Lexpresso controlled natural language	Semantic and symbology presentation, visualization, and interactive sensor and mission management (Ch 6, Ch 7, Ch 9)	Visualizations for a Common Operational Picture (COP) with symbologies, info.management, and collaboration tools (Ch 9). User refinement support to fusion methods with cognitive theory (Ch10)
System Challenge	Legal agreements between combinations of CDIFT connected human and machine cognitive agents based on formal semantic theories	OODA-based agent (Ch 7), state- space approach, belief networks (Ch 4, Ch 7,Ch 14)	Use of ontologies and workflow/service/human agents for the CDIFT. Coordination of user/machine fusion methods based on information needs and tools (Ch10, Ch13, Ch16)
Design Challenge	Use of synthetic development environments containing track data, intelligence reports, and various domain knowledge	Track data, intelligence reports, various domain knowledge, simulations (Ch 6, Ch12)	Track data, intelligence reports, various domain knowledge (Ch 6, Ch12)
Evaluation Challenge	Probabilistic propositional set disparity measures based on random inference networks	OODA agents operate in a distributed feedback loop (Ch 7) Model checking techniques (Ch 14)	Bayes networks to measure probabilistic variations from Operational Conditions (Cr 13) and derivation of MOEs from MOPs (Ch 10)

HLIF Compare and Contrast (1)

Paradigm Challenge: How should the interdependency between the sensor fusion and information fusion paradigms be managed?


Models: US IFSA framework (Ch 2); the AUS STDF framework (Ch 3); and the Canadian IS framework (Ch 4).

COMMON:

- Promote *situations* as a fundamental construct of the world.
- Utilize the machine interpretation of situations and the machine prediction of situations in the world.
- Represent situations in machines through *states* and *time stepped transitions between states*.

- Situations : represented very formally under the IS and STDF frameworks less formally under the IFSA framework.
- Machine processing of situations is characterized by formal logics under the IS and by functional architecture process models under the STDF and IFSA

HLIF Compare and Contrast (2)

Semantic Challenge: What symbols should be used and how do those symbols acquire meaning?

Meaning: US IFSA framework (Ch 2); the AUS STDF framework (Ch 3); and the Canadian IS framework (Ch 4).

COMMON:

- States are implemented as knowledge representations within the machine.
- Knowledge representations can express sophisticated concepts well beyond sensed characteristics.
- Transitions between states are understood as graphs.

- **Semantics:** IS and IFSA implement state vectors with **operational semantics**, **STDF**: *Mephisto* engages propositional formulae with *axiomatic semantics*.
- State Transitions: IS and IFSA models use directed graphs.
 STDF: graphs, expressed as regular expression cognitive routines with procedural semantics (see Ch 12 for example), but actual state transitions are simply expressed through knowledge base content.

HLIF Compare and Contrast (3)

Epistemic Challenge: What information should we represent and how should it be represented and processed within the machine?

Complexity: Social Relationships

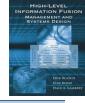
COMMON:

- Processing emphasis shifts from the world to the machine .
 - LLIF processing is machine extracting content from information sensed .
 - HLIF processing is machine *imposing* content on the sensed information.
- HLIF machines are termed **agents**.
 - HLIF agent can only infer that a sensed airborne object poses a threat if it imposes background knowledge about alliances, possible targets, *et cetera*.

- Cognition:
 - **STDF** : ATTITUDE TOO Cognitive Model
 - IS/C-OODA: Cognitive-OODA model (Ch 10)
 - **IFSA**: User refinement composes cognitive refinement (UDOP)

HLIF Compare and Contrast (4)

Interface Challenge: How do we interface people to complex symbolic information stored within machines to provide decision support?


Linking: Human Situation Awareness with Machines

COMMON:

- Pairing involves interfaces across the different levels of fusion
- Interface technology moves beyond the traditional "dots on maps" and "lines on maps" technology of LLIF (UDOP in Ch 9, command and control graphical user interface in Ch 7 and HiCOP in [4, 12, 13]).

- Modeling:
 - IS/C-OODA and STDF same modal logic framework to both people and machines.
 - IFSA introduces additional fusion levels
- Role of Human :
 - **IFAS** : obtaining and utilizing human SAW;
 - IS/C-OODA: directed toward decision support
 - STDF: agnostic toward what is performed by humans and machines.

HLIF Compare and Contrast (5)

System Challenge: How should we manage information fusion systems formed from combinations of people and machines?

Distributed : Collections of humans and clusters of machines: CoABS (Ch 06), IS (Ch 14), and LAP (Ch08)

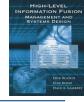
COMMON:

- Information management is deemed fundamental (Ch 5, TTCP C3I TP3).
- **Distributed infrastructure** is used to facilitate interaction between clusters of fusion machines (CDIFT Ch 6 and INFORM Ch 7).
- CDIFT as common HLIF testbed (TP1) support interoperable fusion products.

- Coordination : to manage multi-agent engagements
 - IS/C-OODA and IFAS use a game theoretic model for agent interaction
 - **STDF** : employs an agreement protocol for agent interaction
 - Ch 6 (TP3) Agent-based systems (CoABS) framework (Ch 6) employs the knowledge acquisition in automated specification (KAoS) system to resource constrain distributed agents.

HLIF Compare and Contrast (6)

Design Challenge: How should we design information fusion systems formed from combinations of people and machines?


Content: Role of Agent

COMMON:

- Agent imposing content on the sensed information
- promotion of a scenario-based approach to the development of HLIF
- HLIF design system cannot occur without a rich context of the world in mind.
- Multi-national collaboration.

- Fidelity : to manage various levels of design
 - IS/C-OODA and IFAS use a hierarchical model
 - **IFSA** uses **operational conditions** of sensor, target, and environment
 - **STDF** : employs a similar design across levels for design

HLIF Compare and Contrast (7)

Evaluation Challenge: How should we evaluate the effectiveness of information fusion systems?

Metrics: IFSA (Ch15), IS/C-OODA (Ch 7, Ch14), STDF [14] COMMON:

- Use of goals and missions
- Measures of content similarity or disparity assessments.

- IFSA and IS/C-OODA includes a number of SA measures
 - MOPs: based on activities,
 - Evidential reasoning to measure probabilistic relations,
 - Game theory to measure action tradeoffs, and
 - MOEs: Information theory for situation analysis
- The Australian offering [14] promotes probabilistic measures of the **disparity** between **sets of propositions**.

Lesson 01: HLIF Overview

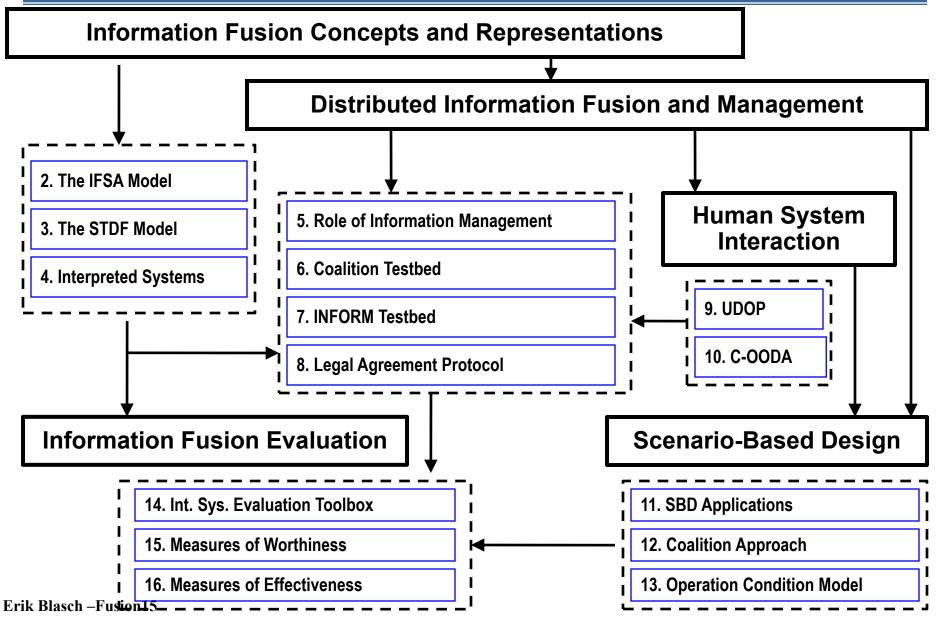
HIGH-LEVEL INFORMATION FUSION BY ANNUAL DESIGN HIGH DE

1. Overview the HLIF problem (~ 1 hour)

HLIF Architectures: JDL to Data Fusion Information Group (DFIG) Grand Challenges

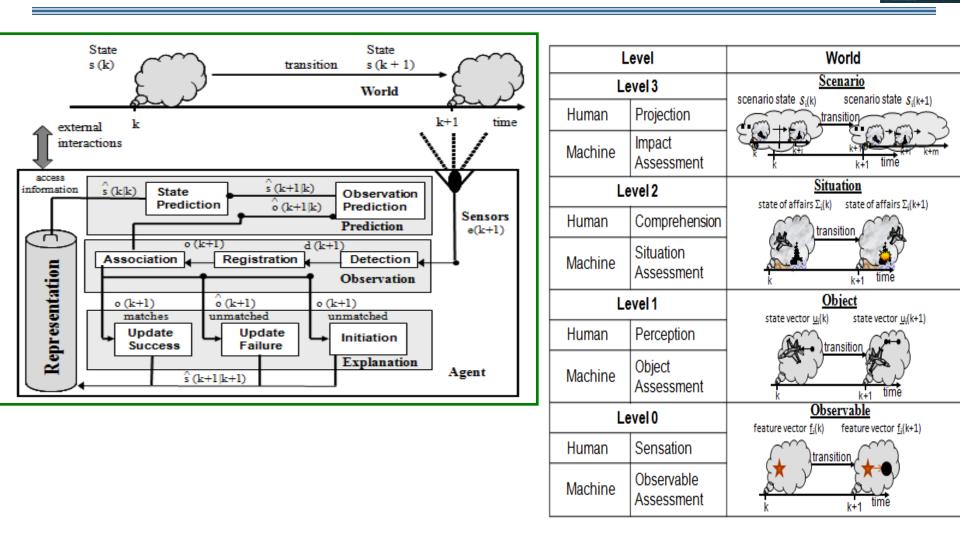
> Paradigm , Semantic , Epistemic : HLIF Purpose Interface, System: HLIF Management Design, Evaluation : HLIF Design Set up analysis of SAW/SA (functional)

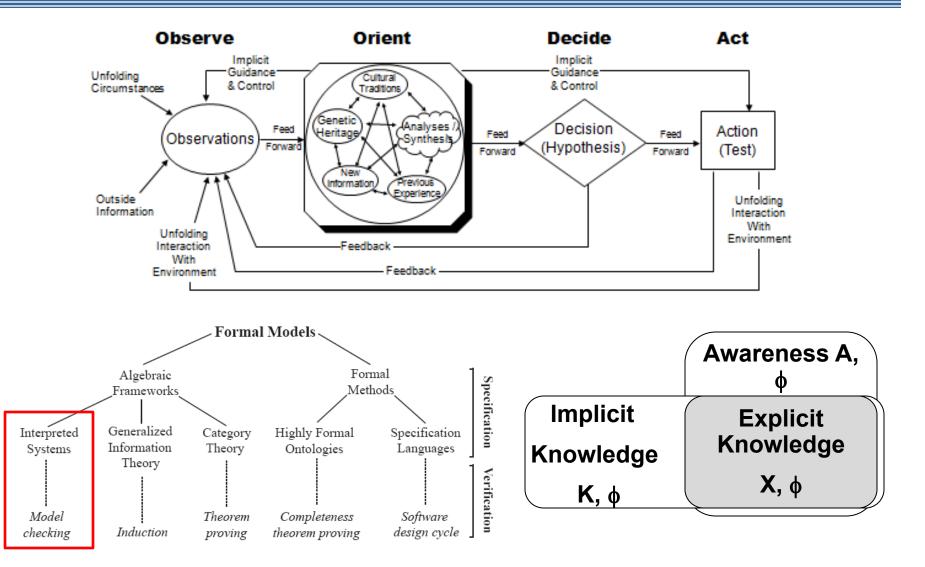
SA Approaches


Process (DFIG) – US [Blasch, Salerno, Tangney] Interpreted Systems (IS) /ODDA – Canada [Bosse, Jousselme/Maupin, Valin] State Transition Data Fusion (STDF) – AUS [Lambert]

Common Issues: Metrics, Design, Future Concentrations

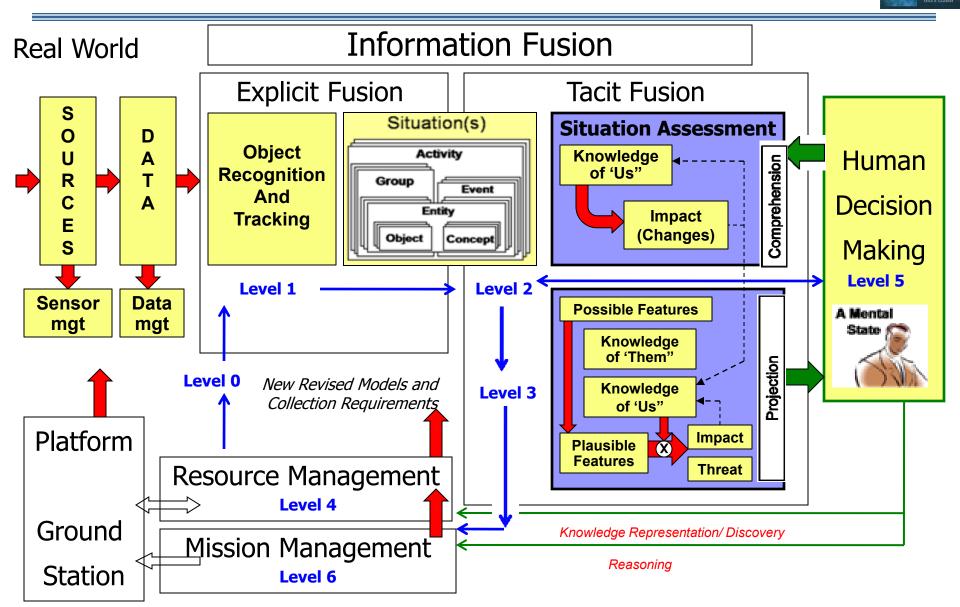
- 2. Methods for Situation Awareness (~ 1 hour)
- 3. Develop a IF Management and System Level Design (~ 1 hour)
- 4. Demonstrate HLIF Evaluation and Scenario Design (~ 1 hour)


HLIF Book Outline


Australia Contributions

State Transition Data Fusion (STDF)

HIGH-LEVEL


Canada Contributions Interpreted System (IS) and OODA Agents

HIGH-LEVEL

Information Fusion Situation Awareness

Data Fusion Information Group and SA Reference Model

Erik Blasch – Fusion 15

issue for book, not intended to be a new model

Lesson 01: HLIF Overview

1. Overview the HLIF problem (~ 1 hour)

HLIF Architectures: JDL to Data Fusion Information Group (DFIG) Grand Challenges

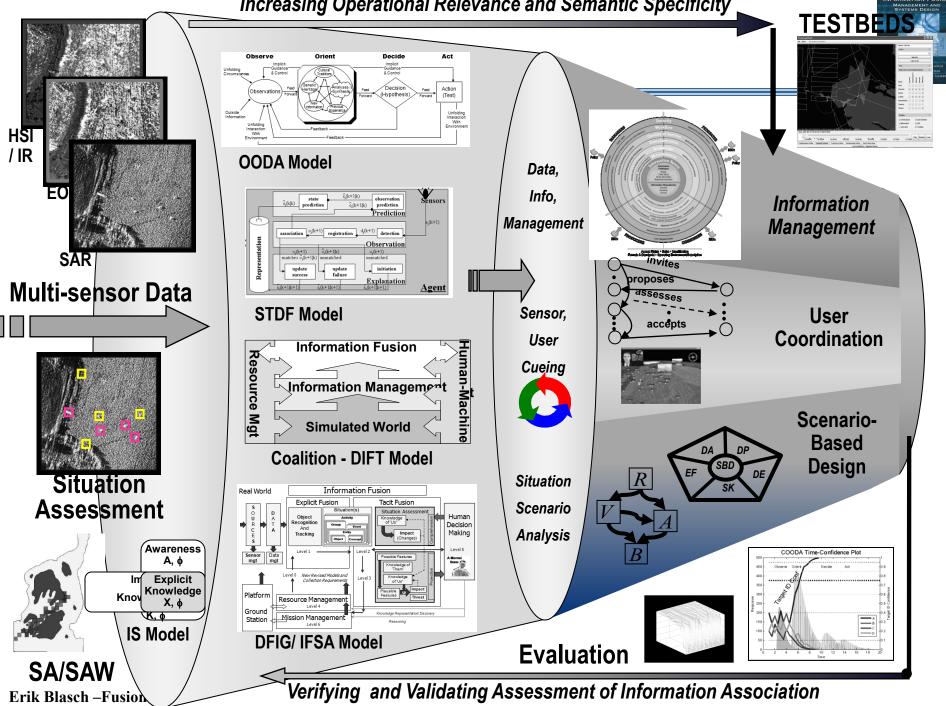
> Paradigm , Semantic , Epistemic : HLIF Purpose Interface, System: HLIF Management Design, Evaluation : HLIF Design Set up analysis of SAW/SA (functional)

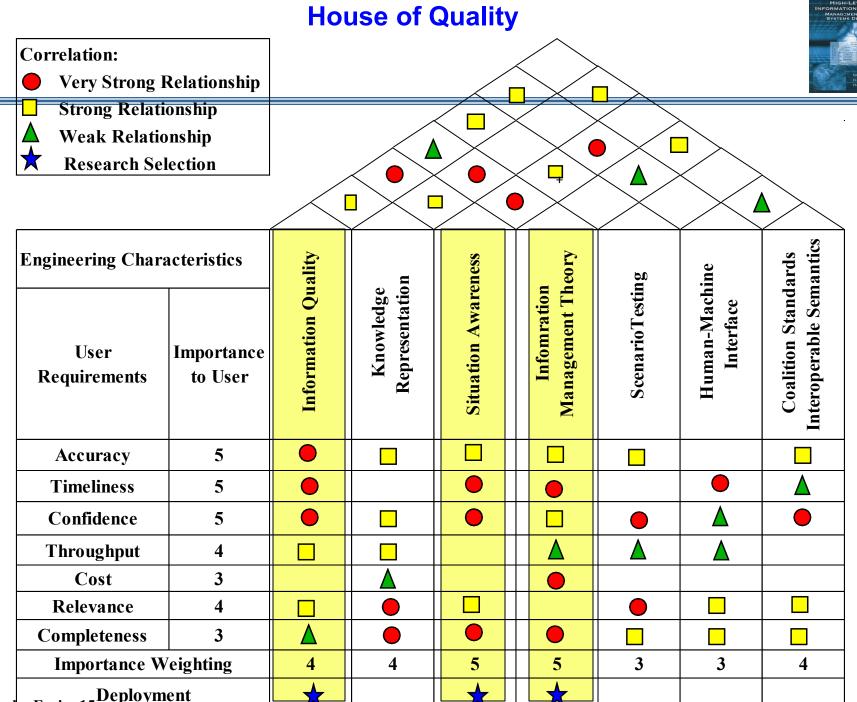
SA Approaches

Process (DFIG) – US [Blasch, Salerno, Tangney] Interpreted Systems (IS) /ODDA – Canada [Bosse, Jousselme/Maupin, Valin] State Transition Data Fusion (STDF) – AUS [Lambert]

Common Issues: Metrics, Design, Future Concentrations

- 2. Methods for Situation Awareness (~ 1 hour)
- 3. Develop a IF Management and System Level Design (~ 1 hour)
- 4. Demonstrate HLIF Evaluation and Scenario Design (~ 1 hour)


SUMMARY 3 E. Blasch, M. Pribilski, B. Daughtery, B. Roscoe, and J. Gunsett, "Fusion Metric Dynamic Situation Analysis", *Proc. of SPIE*, Vol. 5429, April 2004.


IF Quality of Service Performance Measures

COMM	Human Factors	Info Fusion	ATR	TRACK
Delay	Reaction Time	Timeliness	Acquisition /Run Time	Update Rate
Probability of Error	Confidence	Confidence	Prob. (Hit) Prob. (FA)	Probability of Detection
Delay Variation	Attention	Accuracy	Positional Accuracy	Covariance
Throughput	Workload	Throughput	# Images	No. Targets
Cost	Cost	Cost	Collection platforms	No. Assets
Stallings 2002	Wickens, 1992	Blasch, 2003	COMPASE Morrison	Blasch, (DDB) Hoffman 2000

E. Blasch, I. Kadar, J. Salerno, M. M. Kokar, S. Das, G. M. Powell, D. D. Corkill, and E. H. Ruspini, "Issues and challenges of knowledge representation and reasoning methods in situation assessment (Level 2 Fusion)", *J. of Advances in Information Fusion*, Dec. 2006.

Increasing Operational Relevance and Semantic Specificity

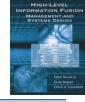
Erik Blasch – Fusion 15 Deployment

Previous Texts

Focus of the text

- [1] Bosse, E., Roy, J., and Wark, S., *Concepts, Models, and Tools for Information Fusion*, Artech House, Inc., Norwood, MA, 2007.
- [2] Lambert, D. A., "Grand Challenges of Information Fusion," *Intl. Conf on Info. Fusion*, 2003.
- [3] Blasch, E. P., Llinas, J., Lambert, D. A., Valin, P., Das, S., Chong, C-Y., Kokar, M. M, and Shahbazian, E., "High Level Information Fusion Developments, Issues, and Grand Challenges Fusion10 Panel Discussion," *Intl. Conf on Info. Fusion*, 2010.
- [4] Lambert, D. A., "A Blueprint for Higher-Level Fusion Systems," *Journal of Information Fusion*, Vol. 10, No. 1, pp. 6 24, 2009.
- [5] Waltz, E., and Llinas, J., *Multisensor and Data Fusion*, Artech House, Norwood, MA, 1990.
- [6] Blackman, S., and Popoli, R., *Design and Analysis of Modern Tracking Systems*, Artech House, Norwood, MA, 1999.
- [7] Das, S., *High-Level Data Fusion*, Artech House, Norwood, MA, 2008.
- [8] Waltz, E., *Knowledge Management in the Intelligence Enterprise*, Artech House, Norwood, MA, 2003.
- [9] Hall, D. L., and Jordan, J. M., *Human-Centered Information Fusion*, Artech House, Norwood, MA, 2010.
- [10] Lambert, D. A., "Unification of Sensor and Higher-Level Fusion," presentation at *Intl. Conf on Info. Fusion*, 2006.

Erik Blasch – Fusion 15


Information Not Included

Focus of the text

- [10] Lambert, D. A., "Unification of Sensor and Higher-Level Fusion," presentation at *Intl. Conf on Info. Fusion*, 2006.
- [11] Lambert, D. A., and Nowak, C., "The **Mephisto Conceptual** Framework," *DSTO Technical Report DSTO-TR-2162*, 2008.
- [12] Wark, S., Lambert, D. A., Nowina-Krowicki, M., Zschorn, A., and Pang, D., "Situational Awareness: Beyond Dots On Maps To Virtually Anywhere," *SimTecT*, Adelaide AUS, 2009.
- [13] Wark, S., and Lambert, D. A., "Presenting The Story Behind The Data: Enhancing Situational Awareness Using Multimedia Narrative," *IEEE MILCOM*, 2007.
- [14] Lingard, D., and Lambert, D. A., "Evaluation of the Effectiveness of Machine-based Situation Assessment," *Fourth Australian Conference on Artificial Life*, Melbourne Australia. 2009.
- [15] Waltz, E., *Human Social Cultural Behavior Modeling and Fusion* Tutorial, Oct. 2011.

Summary

1. Overview the HLIF problem (~ 1 hour)

Architecture, domain, algorithms, purpose (SA Approaches) Utilized the grand challenges to organize the tenets of HLIF Compared and Contrasted three methods of HLIF Set up analysis of SAW/SA (functional)

- HLIF as a Science

Theory: Understanding of Situation Awareness Modeling: Information (versus data) Management Measurement: Metrics of Information Quality Estimation: Develop notions of SA Prediction/Projection

- 2. Methods for Situation Awareness (~ 1 hour)
- 3. Methods for IF Management and System Level Design (~ 1 hour)
- 4. Demonstrate HLIF Evaluation and Scenario Design (~ 1 hour)

Erik Blasch – Fusion 15

Lesson 01 Notes:

