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Abstract— Current advances in technology, sensor collection, data 
storage, and data distribution have afforded more complex, 
distributed, and operational information fusion systems (IFSs). IFSs 
notionally consist of low-level (data collection, registration, and 
association in time and space) and high-level information fusion 
(user coordination, situational awareness, and mission control), 
which require a common ontology for effective communication and 
data processing. In this paper, we describe the ontology reference 
model developed as part of the uncertainty representation and 
reasoning evaluation framework (URREF). The URREF ontology is 
intended to provide guidance for defining the actual concepts and 
criteria that together comprise the comprehensive uncertainty 
evaluation framework being developed by the Evaluation of 
Technologies for Uncertainty Representation Working Group 
(ETURWG).  

Keywords: Component, Information Fusion, Performance 
Evaluation, Uncertainty Reasoning, Knowledge Representation, 
Ontology, Measures of Effectiveness. 

I.  INTRODUCTION  
The evaluation of how uncertainty is dealt with within a 

given IF system is distinct from, although closely related to, the 
evaluation of the overall performance of the system. Metrics 
for evaluating the overall performance of IF systems are more 
encompassing in scope than those focused on the uncertainty 
handling within the system.   The metrics for the overall system 
include the effects of the uncertainty representation, but there 
are also effects of other aspects of the fusion system that can 
affect the performance of the system.   

For example, fusion-system-level metrics include time-
liness (how quickly the system can come to a conclusion within 
a specified precision level), accuracy (where can an object be 
found for a specified localization level) and confidence (what 
level of a probability match for a defined recall level).Clearly, 
different choices in uncertainty representation approaches will 
affect the achievable timeliness, accuracy, and confidence of a 
system, and therefore must be considered when evaluating both 
the system’s performance as a whole and the specific impact of 
the uncertainty handling approach. Yet, when evaluating 
timeliness (or any other system-level metrics), one will likely 
find some factors not directly related to the handling of 
uncertainty itself1, such as object tracking and identification 

                                                             
1  This holds at least at a higher level of abstraction.  There might be 
interactions between the uncertainty representation approach and 

report updates (i.e., Level 1 fusion), situation and threat 
assessment relative to scenario constraints (i.e., Level 2/3 
fusion), overall system architecture (e.g. centralized, 
distributed, etc.), data management processes and feedback / 
input control processes (i.e., Level 4 fusion considerations), 
and user-machine coordination based on operating systems 
(i.e., Level 5 fusion), and others.  

In an ideal situation, evaluating how the management of 
uncertainty affects the overall performance of a fusion system 
would be just a matter of isolating the directly related aspects. 
Unfortunately, real-life information fusion systems are usually 
too complex to allow for such a clear-cut separation, and most 
of the aspects considered in system-wide performance are 
entangled with or influenced by uncertainty representation 
considerations to some degree. Isolating the impact of 
uncertainty handling in an IF system is thus a matter of 
understanding how intertwined the choice of an uncertainty 
representation and reasoning approach is to the major 
performance metrics used to evaluate the IF system itself.  

The basic premise of the ETURWG is that achieving a level 
of understanding that supports an unbiased evaluation of the 
impact of uncertainty in an IF system is a task by itself 
complex enough to warrant status as an open research area.  
Understanding what the distinctions are between fusion 
system-level performance criteria and fusion uncertainty 
representation performance criteria is the focus of the group. 
This paper presents one of the initial results of the ETURWG, 
the URREF ontology, and addresses how it is being currently 
used to support the development of an unbiased uncertainty 
reasoning evaluation framework.  

The paper is divided as follows. Section II explores the 
main ideas currently at the state of the art on evaluation of IF 
systems. Section III introduces some of the aspects of the 
impact of uncertainty representation and reasoning with some 
examples from the World Wide Web. Section IV follows with 
a discussion on the scope of the uncertainty representation and 
reasoning evaluation framework. Section V presents the main 
aspects of the URREF ontology, which is the basis to ensure 
that the framework can be used in different setups without 
losing consistency of its meaning.  

                                                                                                           
these system factors, but we begin with a presumption that they are 
not significant.   



	
  
Figure 1 – Elements of Information Fusion 

II. EVALUATION OF IF SYSTEMS 
The objective of this paper is to present the main concepts 

that support the ETURWG work on evaluating the impact of 
uncertainty in IF systems. Before addressing evaluation from a 
broader perspective, it is important do emphasize the different 
aspects involved in evaluating low-level information fusion 
(LLF) and high-level information fusion (HLF) systems, since 
the appropriate set of effectiveness metrics for high-level 
information fusion (HLF) evaluation is not necessarily standard 
within the fusion community. We suggest that HLF 
effectiveness has three parts: information gain, quality, and 
robustness, each of which requires higher fidelity analysis and 
characterization for uncertainty evaluation. The distinction 
between high-level and low-level fusion has propagated from 
the 1980’s discussions surrounding the needs and the relevant 
processes for information fusion. The Joint Director of the 
Lab’s (JDL) model and its subsequent revisions formed the 
high-low level distinction [1-5].  

Figure 1 shows the elements of an information fusion 
model.  LLF, including the physical-based parameters, lends 
itself naturally to quantifiable evaluation techniques. Current 
directions in measures of effectiveness (MOEs) for information 
fusion systems (IFSs) [6] need to address approaches beyond 
estimation (determining parameters from measured data) and 
fusion rules [7]. 

Low-level IFSs typically rely on standard metrics for 
evaluation such as timeliness, accuracy, and confidence.  Given 
the broader use of IFSs, it is also important to look at high-
level fusion processes and determine a set of metrics to test 
IFSs, such as workload, throughput, and cost. Three types of 
measures (measures of performance MOP, measures of 
effectiveness MOE, and measures of merit MOM) are 
summarized in the literature.  In this paper, we seek to describe 
MOEs that relate to uncertainty for HLF which have been 
developed from Quality of Service (QOS) and Quality of 
Information (QOI) or Information Quality (IQ) standards that 
support the user and the machine, respectively. 

Evaluating an information fusion system is not new. There 
is a large set of literature associated with measures of 
performance (MOP), MOEs, and measures of force 
effectiveness (MOFEs) based in estimation. Two excellent 
summaries include Ch11 from Waltz and Llinas [8] and Ch 20 
from Llinas [9]. The compiled information from [8, 9] 

represent a comprehensive assessment of methods in estimation 
MOP/MOEs and discussion of HLF issues. However, 
addressing fusion process MOEs [10] as a system highlights 
the need for additional discussion on HLF performance metrics 
in real systems [11]. Systems perform well if they (1) support 
mission goals [12], (2) enhance operator work tasks [13, 14], 
and (3) reduce uncertainty [15, 16].   

Effectiveness relates to a system’s capability to produce an 
effect.  Many benefits of fusion include providing locations of 
events, extending coverage, and reducing ambiguity and false 
alarms [17].  The goal for the IFS is to support users in their 
tasks whether providing refined information, reducing time 
pressures, or determining completeness, accuracy, and quality 
in task completion. Effectiveness includes [18]: 
• efficiency: doing things in the most economical way 

(good input to output ratio)  
• efficacy: getting things done, i.e. meeting targets  
• correctness: doing "right" things, i.e. setting right 

targets to achieve an overall goal (the effect)    

Inherent in the definition of effectiveness is a level of 
performance needed to accomplish a goal. While a large 
number of ideas and metrics could be postulated; all having 
their merits and limitations, we focus on three: 
• Information Gain = valued added from which two pieces 

of information provide more content than individual 
pieces of information alone 

• Quality = Measures of Performance that include accuracy, 
reduction in uncertainty, confidence, credibility and 
reliability 

• Robustness = consistent over testing and application 
domains 

Together, these definitions form the basis of “effectiveness” 
in (1) presenting high quality data, (2) being derived from more 
than one source, and (3) being consistent and reliable over the 
situation.  These operating conditions from the object, sensor, 
and environment form a strategy for looking at effectiveness. 
Blasch [18] postulated a general HLF MOE as: 

     Effectiveness = InfoGain * Quality * Robustness 
which is one formulation that requires updating based on a 
unified ontology framework. A taxonomy of other metrics 
could be expanded upon, in order to create an evaluation 
standard for MOEs. However, different environments would 
necessitate adaptive metrics tailored for the situation [18, 19, 
20, 21]. 

IFSs include the technology, algorithms, and environment 
of operation (to include the people). Moving from LLF to the 
abstract reasoning requires integrating the user into the 
analysis, such as for command and control. For a system to be 
operational, it needs to verified (LLF question) and validated 
(HLF question); described briefly as: 
• Verification:  "Am I measuring the IFS correctly?"  
• Validation:    "Am I measuring the correct IFS?" 

For instance, in an example of operational maintenance; the 
normalized timeliness metrics are separated to verify individual 
machine performance as:  



Overall Equipment Effectiveness % =  

Available % × Perf. Efficiency % × Quality Rate % 

As per a baseline definition of effectiveness, we bring to 
light the need for information gain in establishing the 
timeliness, accuracy, and confidence associated with an IFS’s 
ability to help the user reason over data, make decisions, and 
act on the information. Evaluation of uncertainty management 
considers the quality of information provided by an IFS. The 
ETURWG is bringing various contributions from the IF 
community to bear on this problem. 

To address the MOEs for high and low-level fusion, we 
need to look at the quality measures being developed over 
various domains and reasoning methods. Industry standard 
definitions are Quality of Service (QOS) 2  and Quality of 
information (QOI)3. In Fusion 2005, Johnson and Chang [19] 
proposed QOI for data fusion in net centric “publish and 
subscribe” architecture to “update clients in a QOI paradigm 
rather than a QOS paradigm”.  They varied the message length 
in a QOI system versus fixed time metrics in a QOS system. To 
facilitate end user’s needs in a net-centric environment, a QOI 
was used because of sensor-web enabled ontology 
development. They applied the QOI/QOS method to a target-
tracking example in which they generalized the end user’s 
needs for QOI parameters from which the tracking system 
conferred the QOS capabilities over state and covariance 
information. Yu and Sycara [20] addressed the QOI in a 
distributed decision fusion system by learning the parameters. 
They applied the technique to determine the QOI information 
on target reliabilities (or better termed confidences) from a 
Dempster-Shafer method. Quality of information impacts 
fusion decisions [18, 21]. 

Quality of Information is still an emerging topic as 
information is different for different users and systems. QOI 
integrity measures whether the data has not been manipulated 
as it impacts the shared situational awareness [22]. For 
example, QOI includes: Accuracy, Timeliness, Certainty, and 
Integrity [23]. There is a need to develop principals and 
relations between information management and sensor fusion 
[24]. 

Closely related to QOI, is quality of service (QOS) as it 
relates to the information flow and availability. QOS has been 
well vetted in the communications literature as including 
throughput, delay, error, and jitter.   

QOI/QOS requires comparisons of: 

• Usability versus Usefulness  
• Accuracy versus Precision 
• Verification versus Validity 

from which we address information gain, quality, and 
robustness, respectively.  As MOPs come from rigorous 
standard metrics to determine such things as accuracy, there is 
a need for pragmatic metrics to determine the validity of 
information aggregation for useful decision making. In the next 

                                                             
2 http://en.wikipedia.org/wiki/Overall_equipment_effectiveness 
3 http://en.wikipedia.org/wiki/Information_quality 

section we will look at the IF-related literature that addresses 
issues of information service and type to advance the 
discussion in HLIF metrics. 

III. THE UNCERTAINTY REPRESENTATION PROBLEM 
The Information Fusion community envisions effortless 

interaction between humans and computers, seamless 
interoperability and information exchange among applications, 
and rapid and accurate identification and invocation of 
appropriate services. As work with semantics and services 
grows more ambitious, there is increasing appreciation of the 
need for principled approaches to representing and reasoning 
under uncertainty. Here, the term "uncertainty" is intended to 
encompass a variety of aspects of imperfect knowledge, 
including incompleteness, inconclusiveness, vagueness, 
ambiguity, and others. The term "uncertainty reasoning" is 
meant to denote the full range of methods designed for 
representing and reasoning with knowledge when Boolean 
truth-values are unknown, unknowable, or inapplicable. 
Commonly applied approaches to uncertainty reasoning 
include probability theory, fuzzy logic, subjective logic, 
Dempster-Shafer theory, DSmT, and numerous other 
methodologies. 

To illustrate the challenges of evaluating uncertainty 
representation and reasoning in information systems, we 
consider below a few reasoning challenges faced within the 
World Wide Web domain that could be addressed by reasoning 
under uncertainty [25]. 

Uncertainty is an intrinsic feature of many of the required 
tasks, and a full realization of the World Wide Web as a source 
of processable data and services demands formalisms capable 
of representing and reasoning under uncertainty. 

• Automated agents are used to exchange Web information 
that in many cases is not perfect. Thus, a standardized 
format for representing uncertainty would allow agents 
receiving imperfect information to interpret it in the same 
way as were intended by the sending agents. 

• Uncertainty-laden data. Examples include weather 
forecasts or gambling odds. Canonical methods for 
representing and integrating such information are 
necessary for communicating it in a seamless fashion. 

• Non-sensory collected information is also often incorrect or 
only partially correct, raising issues related to trust or 
credibility. Uncertainty representation and reasoning 
helps to resolve tension amongst information sources 
having different confidence and trust levels. 

• Dynamic composability of Web Services will require 
runtime identification of processing and data resources 
and resolution of policy objectives. Uncertainty reasoning 
techniques may be necessary to resolve situations in 
which existing information is not definitive. 

• Information extracted from large information networks such 
as the World Wide Web is typically incomplete. The 
ability to exploit partial information is very useful for 
identifying sources of service or information. For 
example, that an online service deals with greeting cards 



 
Figure 2 - Boundaries of the Uncertainty Representation and Reasoning Evaluation Framework. 

may be evidence that it also sells stationery. It is clear 
that search effectiveness could be improved by 
appropriate use of technologies for handling uncertainty. 

These problems are all related with information fusion, 
involve both LLIF and HLIF, and can be easily extrapolated to 
represent the more general classes of problems found in the 
sensor, data, and information fusion domain. 

IV. THE UNCERTAINTY EVALUATION FRAMEWORK 
This section is an initial attempt at determining the 

distinctions between evaluating the performance of an IF 
system and evaluating the impact of uncertainty on it. This 
would then allow us to establish an evaluation framework 
capable of supporting unbiased assessment of how the choice 
of uncertainty representation and reasoning impacts the 
performance of an IF system.  The basic idea behind the 
framework is to analyze an abstract fusion system and define 
its input data and output products.  In a futuristic prototypical 
information fusion system, the uncertainty representation 
approach would be “plug-and-playable.”  That is, one can run it 
with a Bayesian approach, then switch out the Bayesian 
approach for a Dempster-Shafer approach, then for a Fuzzy 
Random Set approach or have a combination of uncertainty 
reasoning methods.  The input data are the same in each case, 
as are the output products (but not necessarily the values in the 
output products). Figure 2 below depicts the boundaries of the 
uncertainty representation and reasoning evaluation framework 
(URREF). 

There are two elements in the picture that are exogenous to 
the evaluation framework, named in the picture as “World 
being sensed” and “World being reported.” Between these two 
external elements, the boundary of the evaluation framework 
encompasses the way uncertainty is handled when data is input 
to the system, during the processes that occur within it, as well 
as when the final product is delivered to the IF system’s users. 

The first external element refers to the events of interest to 
the IF system that happen in the world and are perceived by the 
system sources. Note that the implicit definition of sources in 

this case encompasses anything that can capture information 
and send it to the system. That is, both hard sources (e.g. 
imaging, radar, video, etc.) and soft sources (HUMINT reports, 
software alerts, etc.) are considered external to the evaluation 
system with respect to their associated sensorial capabilities, 
while the way they convey their information is within the scope 
of the system [26, 27, 28]. 

This is an important distinction between the evaluation of 
an IF system, which usually encompasses the sensitivity of its 
sensors, and the evaluation of its handling of uncertainty, 
which focuses only on how the uncertainty embedded in the 
sensors’ information is captured. The latter comprises what is 
called in the picture as the Input step, which involves assessing 
the system’s ability to represent uncertainty as an intrinsic part 
of the information being captured.  As an example, information 
regarding trust on the input from a given sensor is an important 
item to evaluate how the overall system handles uncertainty, 
although it might not be as critical for its overall performance.  
A key question for evaluating uncertainty representation is 
what the uncertainty characteristics of the input data are, and 
how they affect the use of different uncertainty schemes. 

In the ideal system model, having the appropriate data 
characteristics is critical.  If the characteristics do not span the 
range of uncertainty techniques, then the model may not give 
meaningful results about the operationally significant 
differences between the techniques.  Correctly identifying the 
desired input data characteristics will shape the future 
development of use cases and modeling data sets for those use 
case.    

Once information is in the IF system, it will be processed to 
generate the system’s deliverable that requires uncertainty 
characterization and reporting in the Output step. This process 
involves fusion techniques and algorithms that are directly 
affected by the uncertainty handling technique being used, and 
its impact on the system’s inferential process. In this case, the 
URREF criteria focus on aspects that are specific to the way 
uncertainty is considered and handled within the fusion 
process.  This is not an evaluation of the system’s performance 
as a whole. We want to understand how the uncertainty 



 
Figure 3 – The URREF ontology main classes. 

	
  
Figure 4 – URREF Ontology: Uncertainty Nature Class. 

	
  
Figure 5 – URREF Uncertainty Derivation Class. 

representation affects system performance, and whether 
different uncertainty representation schemes are more or less 
robust to variations in the remaining parts of the IF system 
architecture. But we want to focus specifically on the 
uncertainty representation aspects, and attempt, as best as 
possible, to separate those aspects from overall system 
performance and architecture issues. 

After the information is fused and properly treated, then it 
is conveyed to the system’s users.  In the figure, these are 
represented by an image depicting decision-makers who would 
likely be supported by the IF system in their daily tasks.  The 
URREF output step involves the assessment of how 
information on uncertainty is presented to the users and, 
therefore, how it impacts the quality of their decision-making 
process. 

V. THE URREF ONTOLOGY 
Within the URREF, a major task is to formally identify the 

concepts that are pertinent to the evaluation of uncertainty of an 
IF system, which is a means to ensure that all evaluations 
follow the same semantic constraints and abide by the same 
principles of mathematical soundness. The URREF ontology, 
whose main concepts are depicted in Figure 3 below, is a first 
step towards this goal and is meant to capture the main aspects 
to be considered in each step of the evaluation process. The 
core of the ontology is the Criteria class, which is were the bulk 
of the development work was focused on. The Uncertainty 
Classes were either taken or adapted from the Uncertainty 
Ontology developed by the W3C’s URW3-XG [25]. The 
ontology must also be used as a high-level reference for 
defining the actual evaluation criteria items that will comprise a 
comprehensive uncertainty evaluation framework. 

Information in its most restricted technical sense is an 
ordered sequence of symbols that can be interpreted as a 
message. Information can be recorded as signs, or transmitted 
as signals. Information is any kind of event that affects the state 

of a dynamic system. Conceptually, information is the message 
(utterance or expression) being conveyed. 

A. Source Class 
A source is the origin of the information. A physical sensor is 
one important example of a source; natural language input from 
a human is another. 

B. Sentence Class 
Information  is an expression in some logical language that 
evaluates to a truth-value (formula, axiom, assertion). It is 
assumed that information will be presented in the form of 
sentences. So uncertainty will be associated with sentences. 

C. Uncertainty Nature Class 
This class captures the information about the nature of the 
uncertainty, i.e., whether the uncertainty is inherent in the 
phenomenon expressed by the sentence or it is the result of lack 
of knowledge of the agent. Figure 4 depicts the Uncertainty 
Nature class and its subclasses. 

1) Epistemic Subclass: Uncertainty Nature is considered 
epistemic when it is caused by lack of complete 
knowledge. That is, the event itself might be completely 
deterministic, but there is uncertainty about it due to 
missing information. 

2) Aleatory Subclass: Uncertainty Nature is considered 
aleatory when it comes from the world; that is, 
uncertainty is an inherent property of the world. In 
contrast with Epistemic Uncertainty, which is due to the 
lack of complete knowledge. 

D. Uncertainty Derivation Class 
Uncertainty derivation refers to the way it can be assessed. 
That is, how the uncertainty metrics can be derived. Figure 5 
depicts the Uncertainty Derivation class and its subclasses. 

1) Objective Subclass: Uncertainty derivation is considered 
as objective when it can be assessed in an observer-
independent, factual way, e.g., via a repeatable 
derivation process. 

2) Subjective Subclass: Uncertainty Derivation is considered 
subjective when it is assessed via a subjective judgment, 



	
  
Figure 6 – URREF Ontology: Uncertainty Type Class. 

e.g., a subject matter expert's (SME’s) estimation, a 
gambler's guess, etc. Note that even though one might 
use formal methods for this assessment, it is the 
assessment itself that defines the Uncertainty Derivation 
as subjective. For example, a meteorologist may follow a 
formal procedure to establish a weather forecast, but if 
the numbers ultimately are derived from his judgment 
then it is a subjective uncertainty derivation. 

E. Uncertainty Type Class 
Uncertainty Type is a concept that focuses on underlying 
characteristics of the information that make it uncertain. Its 
subclasses are Ambiguity, Incompleteness, Vagueness, 
Randomness, and Inconsistency, all depicted in Figure 6 below. 
These subclasses were based on the large body of work on 
evidential reasoning by David Schum [29]. 

F. Uncertainty Model Class 
The Uncertainty Model class contains information on the 
mathematical theories for the representing and reasoning with 
the uncertainty types. The specific types of theories include, 
but are not limited to, the subclasses FuzzySets, 
BeliefFunctions, RoughtSets, ProbabilisticTheory, and 
RandomSets. 

G. Criteria Class 
This is the main class of the URREF ontology, and it is meant 
to encompass all the different aspects that must be considered 
when evaluating LLIF and HLIF uncertainty handling in multi-
sensor fusion systems. Figure 7 depicts the Criteria class and its 
subclasses. 

1) Input Criteria: This general concept encompasses the 
criteria that directly affect the way evidence is input to the 
system. It mostly focuses on the source of input data or 
evidence, which can be tangible (sensing or physical), 
testimonial (human), documentary, or known missing [29]. 

• Relevance to Problem assess how a given uncertainty 
representation is able to capture how a given input is 
relevant to the problem that was the source of the data 
request. This is a criterion specific to HLIF fusion 
systems that work at levels 3 and above of the JDL and 
the Data Information Fusion Group (DFIG) model [5]. 

• Weight or Force of Evidence assess how a given 
uncertainty representation is able to capture by the 

degree to which a given input can affect the processing 
and output of the fusion system. Ideally, this should be 
an objective assessment and the representation 
approach must provide a means to measure the degree 
of impact of an evidence item with a numerical scale. 
This criterion is especially useful for determining the 
value of information in systems that must trade-off 
their ability to capture more evidence with active 
sensors with the need to avoid being observed. That is, 
this criterion is especially important to systems that 
rely on value of information [24]. 

• Credibility, also known as believability, mainly 
comprises the aspects that directly affect a sensor (soft 
or hard) in its ability to capture evidence. Its subclasses 
are Veracity, Objectivity, Observational Sensitivity, and 
SelfConfidence. 

2) Representation Criteria: This general concept encompasses 
the criteria that directly affect the way information is 
captured by and transmitted through the system. These 
criteria can also be called interfacing or transport criteria, as 
they relate to how the representational model transmits 
information within the system.  

• Evidence Handling is a subclass of representation criteria 
that apply particularly to the ability of a given 
representation of uncertainty to capture specific 
characteristics of incomplete evidence that are available 
to or produced by the system.  The main focus is on 
measuring the quality of the evidence by assessing how 
well this evidence is able to support the development of a 
conclusion. It has subclasses Conclusiveness, 
Ambiguousness, Completeness, Reliability, and 
Dissonance. 

• Knowledge Handling encompasses criteria intended to 
measure the ability of a given uncertainty representation 
technique to convey knowledge. Its subclasses are 
Compatibility and Expressiveness (which is further 
divided into the subclasses Assessment, Adaptability, and 
Simplicity) 

 3) Reasoning Criteria: This general concept encompasses the 
criteria that directly affect the way the system transforms its 
data into knowledge. These can also be called process or 
inference criteria, as they deal with how the uncertainty 
model performs operations with information. It has the 
following subclasses: 

• Correctness is a measure of the ability of the inferential 
process to produce correct results. In cases where there is 
no ground truth to establish a correct answer (including a 
simulated ground truth), the representation technique can 
still be evaluated in terms of how its answers align with 
what is expected from a gold standard (e.g. SMEs, 
documentation, etc.). 

• Consistency is a measure of the ability of the inferential 
process to produce the same results when given the same 
data under the same conditions. 

• Scalability is a measure of how a representational technique 
performs on a class of problems as the amount of data or 



	
  
Figure 7 – URREF Ontology: Criteria Class. 

the problem size grows very large. Scalability could be 
broken down into additional sub-criteria. 

• Computational Cost is a measure of the amount of 
computational resources required by a given 
representational technique to produce its results. 

• Performance include metrics to assess the contributino of 
the representational model toward meeting the functional 
requirements of an information fusion system. Other 
system architecture factors also affect these metrics. This 
criterion is divided into subclasses Timeliness and 
Throughput. 

4) Output Criteria are usually related to the system’s results 
and its ability to communicate it to its users in a clear 
fashion. It has the following subclasses: 

• Quality is a group of criteria meant to assess the 
informational quality of the system’s output. It includes 
Accuracy and Precision as subclasses. It is common to 
see in the literature the same concepts with different 
names. For example, accuracy sometimes is used as a 
synonym of precision; sometimes the terms are used 
with different meanings. Indeed, accuracy and 
precision can be inversely related. As one makes the 
granularity coarser, one can expect that the system will 
have a better accuracy. Precision can also be used to 
put bounds on the certainty of the reported result.4 

• Interpretation refers to the degree to which the 
uncertainty representation and reasoning can be used to 
guide assessment, to understand the conclusions of the 

                                                             
4 http://en.wikipedia.org/wiki/Accuracy_and_precision 

system and use them as a basis for action, and to 
support the rules for combining and updating measures 
(adapted from [30]). 

The above concepts are being explored within the 
ETURWG, which is making use of this ontology to support the 

development of uncertainty evaluation criteria for a set of 
information fusion use cases. The interested reader should refer 
to the group’s website5 for more specific details. Note that the 
URREF ontology is not supposed to be a definitive reference 
for evaluation criteria, but simply an established baseline that is 
coherent and sufficient for its purposes. This approach 
privileges the pragmatism of having a good solution against 
having an “ideal” but usually unattainable solution. For 
instance, a definitive reference would involve having 
universally accepted definitions and usage for terms such as 
"Precision." This is clearly infeasible. The approach also takes 
into consideration that more important than naming a concept 
is to ensure that it is represented clearly and distinctly within 
the ontology so to ensure the consistency of the latter.  

To assure utility and acceptability of the URREF ontology, 
most of its concepts have been drawn from seminal work in 
related areas such as uncertainty representation [28], evidential 
reasoning [29], performance evaluation [30, 31]). The ontology 
has built on the URW3 uncertainty ontology [25]. Also, the 
structure and viewpoint adopted in the ontology development 
have been tuned to addressing the uncertainty evaluation 
problem and its associated perspective (e.g. how information is 
handled within a fusion system). Finally, it is a goal of the 

                                                             
5http://eturwg.c4i.gmu.edu. Registration is required. 



ETURWG to have standardized uncertainty ontology upon 
which to build for community acceptance. 

VI. DISCUSSION 
Although not a new research topic, the evaluation of IF 

systems presents various challenges due to the complexity of 
fusion systems and the sheer number of variables influencing 
their performance. [32] In LLF systems, the impact of 
uncertainty representation is well understood, and generally 
quantifiable. However, at higher levels of IF the approach 
chosen for representing uncertainty has an overall impact on 
system performance that is hard to quantify or even to assess 
from a qualitative viewpoint. This issue was recognized by the 
Fusion community when creating the ETURWG, with the main 
goal of providing an unbiased framework for evaluating the 
impact of uncertainty in IF systems. From the beginning, it 
became clear that the various approaches and technical 
considerations demand a common understanding that is only 
achievable by a formal specification of the semantics involved. 
As a result, the group developed the URREF ontology 
presented in this paper. The ontology is now being employed to 
support the development of more specific requirements to 
evaluate a set of use cases and associated data sets designed by 
the group and accessible through our webpage 
[http://eturwg.c4i.gmu.edu]. Although it is clear that the 
URREF ontology is not a definitive reference for these types of 
activities, its use has proven to be a major asset in developing a 
common framework. We invite all interested practitioners, 
developers, and researchers to particapte in the ETURWG.  
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