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Abstract—The detection of anomalies has a critical role in
situational assessment. In this paper, we break down the concept
of anomaly in the maritime domain into different levels and relate
them to the JDL fusion model. We also show how uncertain con-
text knowledge can be encoded through Markov Logic Networks
(MLNs) which offer a convenient framework leveraging both
the expressive power of first order logic and the probabilistic
uncertainty management of Markov networks. Every formula in
the knowledge base is assigned a weight indicating its confidence.
Different types of knowledge with associated uncertainty can
therefore be fused together within MLNs and on-line inference
can be performed as input data is processed by the system, and
the formulas are grounded in the knowledge base. Promising
examples are demonstrated on a sample set of rules for maritime
event and anomaly detection.

I. INTRODUCTION

Maritime event recognition, threat assessment and, gener-
ally, situational awareness (SA) have recently become hot
topics in the research community, considering the increasing
interest for a timely, updated, comprehensive and accurate
situation picture for threat detection, crime prevention, security
of citizens, anti-terrorism countermeasures, as well as disaster
relief management.

Up to now, low-level sensor-based data is the main source of
information to understand the evolving scenario and to raise an
alarm; in particular, maritime surveillance relies on Automatic
Identification System (AIS), coastal radars, Synthetic-Aperture
Radar (SAR) imagery, and other sensors, to form a picture on
which the operator can recognize complex patterns and make
decisions [1], [2]. Low-level context injection approaches
can be found in the literature, as in [3], where low-level
contextual information is encoded for improving tracking
performance, High-level information, in the form of context
or domain expert knowledge, is instead poorly integrated, if
not absent, in current fusion systems for SA, even if the
richness and completeness of this contextual information is
extremely useful to properly interpret the available stream of
raw sensor data. In fact, the main goal of a reasoning engine
or probabilistic inference system is to associate a posterior
probability distribution to a set of queries [4], given some
observed evidence. The incorporation of abductive/inductive
and deductive inferencing is a vital element in an automated

fusion system, and it represents a fundamental base for situ-
ational awareness. How this involvement can be obtained, on
both theoretical and applicative levels, is a crucial point, and
is subject of ongoing research. Expert systems were one of
the first knowledge representation tools [5]. Though simple,
intuitive and easy to code, they present many shortcomings,
mainly because they are rigid structures that do not handle
uncertainty.

Dealing with uncertainty is one of the most desirable charac-
teristics for a fusion system, as uncertain data affects decisions
and the quality of the estimates [6]. Probability theory provides
a way to overcome and represent the uncertainty introduced
from ignorance of the observed world; on this side, Bayesian
Networks (BN) and Hidden Markov Models (HMM) are exten-
sively used in surveillance domain (see [7] for a recent survey).
In [8] BN have been used for assesing the threat probability
obtained by the combination of five types of anomalies or
abnormal behaviours in a maritime scenario. Despite being
so largely used, they have strong disadvantages, including the
fact that they allow reasoning about the same fixed number of
attributes, as their nature is essentially propositional: the set
of random variables is fixed and finite, and each has a limited
domain [4]. As a result, their application to complex problems
lacks flexibility. Ontologies are another popular means to
encode knowledge and represent relationship among entities
[9], [10]. They are effective tools for representing taxonomies
and relations but not rule-knowledge. Anomaly detectors or
event recognition systems are presented in [11], [12], [1], [13],
[8], but no uncertainty modelling is explicitly provided.

A much more powerful tool is offered by first-order logic
(FOL), which, in contrast to propositional logic, is expressive
enough to represent complex environment in a concise way.
A combination between FOL and graphical models (Markov
Networks), that fuses statistical and logical reasoning, are
the Markov Logic Networks (MLN) [14]. MLN are a new
promising technique that are constituted of a knowledge base
of first-order formulas with associated weights. The main idea
is that, if the knowledge base is violated by an interpretation
(which provides grounding to the formulas and assigns truth
values to the predicates), then that world is less probable,
but not impossible. Already applied to video surveillance



systems for event detection [15], we show their potential
as a powerful fusion tool for SA systems which can be
effectively used to combine observations coming from multiple
heterogeneous (hard and soft [16]) sources of information,
integrate contextual and a priori knowledge in a maritime
scenario.

II. ANOMALIES, EVENTS AND JDL LEVELS

State-of-the-art situation assessment systems (e.g. an au-
tomatic surveillance system [17]) are able to deal with vast
amounts of data and information also of a heterogeneous kind.
Their goal is to provide a constantly updated situational picture
about the observed environment or set of entities to an operator
in order to facilitate human decision making. Updating the
current system representation of the situation is generally
performed by acquiring, through sensors or other sources
of information, new observations which provide a possibly
incomplete and uncertain view. More specifically, following
the JDL model [18] terminology, an observation could be
more or less refined, or processed, and could thus provide
input to the system at different levels. Very briefly, data from
raw signals from sensors are considered Level 0, features (e.g.
position, class, identity, etc.) of detected targets are Level
1, relations among entities are considered Level 2, which
eventually conveys the state of the observed environment:
actions, interactions and intentions of detected entities. Level 3
deals with the future impacts that may result from the present
situation as depicted by Level 2. Level 4 is dedicated to the
fusion process itself and the ways to optimize the performance
of the system according to mission goals. In the following, the
term level will be used as per this JDL terminology.

A. Events

Building a situational picture requires a system to be able
to assess the current state of the observed environment. More
specifically for security purposes, the system should be able
to detect and recognize events. An event can be considered a
“significant occurrence” and can be subdivided in simple and
complex. Simple events can be considered as the variation
of a quantity or state, while complex events are made of
component events. An event modelling framework is presented
in [19], where a counterpiracy example is presented with
the intent of facilitating the decision making process, with a
graphical representation of events, but no automated reasoner
is associated with this representation.

1) Simple Events: A simple event, also called primitive
or atomic in the literature, is any significant variation of
input data, at any level, discernible by the system. Therefore,
variations of input signals (Level 0), of a target’s state (e.g.
speed, direction, etc. , Level 1), or of a target’s relation with
other entities (Level 2), are all examples of simple events.
They can be directly observable or not (e.g. inferable from
other indicators), but the common property is that they cannot
be further decomposed into simpler constituting events. Within
the framework described in Section III, a simple event will be
described by a predicate.

2) Complex Events: Complex events are composed of a
combination of two or more component events (simple or com-
plex) that can be arbitrarily combined through logic operators
(∧, ∨, ¬) according to domain knowledge. Complex events can
also be triggered by a specific time-ordered sequence of com-
ponent events, or be just an unordered collection depending on
contextual information. It should be noted here that a complex
event can be composed of a heterogeneous combination of
events generated by data at different levels. This is further
discussed in Section II-E. In this work, complex events will
again be described by predicates, the difference being that
they cannot be directly observable and should therefore only
be inferred from component events.

B. Anomalies

Input data, whichever its nature, can be expected to assume
certain values e.g. by taking into account past values up to
current time t and predicting next ones at time t + 1 as
done by filtering algorithms. This holds for both numerical
and non-numerical data, such as labels. Even considering
fluctuations due to process or measurement noise, whenever
the expected input falls beyond a certain threshold then it
can be considered unexpected or anomalous thus raising an
exception. An example could be a vehicle or vessel detected
exceeding a certain speed or the position of a target crossing
into a forbidden area. Thresholds, provided by domain experts
or learned automatically by the system from data, are therefore
used to immediately spot an anomalous condition. However,
anomalies provide no notion whatsoever on the meaning of the
exceptional input. Just like in programming languages, when-
ever an exception is thrown, it should be handled properly. In a
Situation Assessment system, the knowledge base is consulted
to infer a possible conclusion from the anomalous condition.

Anomalies can therefore be considered critical events to
which the system is required to respond. In the specific case
of situation assessment, anomaly or abnormal event detection
is the primary goal of the system. A significant taxonomy of
anomalies in maritime domain can be found in [11].

C. Explicit event modelling

Another distinction can be made on the way events are
modelled in the system: explicitly or implicitly. In the for-
mer case the system has a complete description of what an
anomalous event is. The detection of such patterns can identify
a potentially dangerous situation that the system should try
to identify for prevention, or at least reaction. Events are
defined explicitly in the sense that they are encoded directly
in the system exploiting expert and contextual knowledge.
Historically, explicit modelling is used in expert systems [20]
where the knowledge base assumes the form of a set of rules
that fire upon the realization of the preconditions.

A common issue associated with this approach is that it
can detect only known patterns. In other words, the oper-
ator has to manually specify all the events of interest or
anomalies. Another aspect is the lack of flexibility in defining
the knowledge base. Rules are generally imposed as hard



constraints: the preconditions have to be fully satisfied for the
rules to be activated. It should be noted that this problem is
not mitigated by the introduction of fuzzy definitions of the
preconditions. Fuzzy sets allow to convert numerical input to
labels corresponding to data intervals. This does not really
account for a proper encoding of a degree of uncertainty in
the rules as instead will be the case for the framework adopted
here (Section III).

D. Implicit event modelling

Within this event modelling paradigm patterns of activities
are learned automatically by the system in order to detect
the most common (and therefore hopefully “normal”) ones.
This is therefore an unsupervised approach where an anomaly
is defined as any behaviour differing from learned models
and that automatically detected as a deviation from common
patterns of activity. Therefore, while explicit models directly
encode expert knowledge and anomalies in the knowledge
base, here the system automatically builds and maintains
models of “normality”.

This approach, generally implemented by machine learning
techniques, has the advantage of not requiring an extensive
manual definition of all possible anomalous conditions as in
the previous case. It is also adaptable to varying patterns in
the observed environments thus allowing a continuous update
of the models through learning algorithms. The downside
is that no expert or contextual knowledge can be directly
injected into the system. This is particularly true in the case
of complex events. While relations between simple events
can be learned, there is no way of specifying a well-known
anomaly to domain experts without combining this approach
with explicit modelling.

E. Levels and events

“High (low)-level events” or “High (low)-level anomalies”
are something often informally discussed in the scientific
community, but, to our knowledge, never really formalized.
This is particularly true in communities (e.g. video surveil-
lance) other than Fusion, where a reference data or process
model is lacking. Following the description given in the above
sections taking into account JDL levels, our position here is
that whenever the system detects any appreciable variation of
input data at any level, a corresponding event is generated.

It is not true however, that this event must be flagged as
an anomalous situation, and must necessarily be transmitted
up through the levels following increasing processing and
refinement steps.

III. MARKOV LOGIC NETWORKS

We here provide essential background notions of Markov
Logic Networks, but the reader is advised to refer to [14] for
further details. Markov Logic Networks (MLN) are a powerful
tool for combining logical and probabilistic reasoning. While
a knowledge base (KB) of logic formulas can be satisfied only
by those worlds (truth values of atomic formulas) in which it
is true, a MLN relaxes this hard constraint by associating a

probability value to the worlds that do not fully satisfy the
KB. Therefore, the fewer formulas a given world violates the
more probable it is [14].

An MLN is then a set L of pairs (Fi, wi) where Fi is
a first order logic formula and wi its corresponding real-
valued weight. The set of all formulas Fi in L constitutes
the KB while the weight wi associated to each Fi reflects
how strongly the constraint imposed by the formula is to be
respected. This directly impacts the probability assignment:
worlds which satisfy a high weight formula are going to be
much more probable than those that do not.

A Markov Logic Network L together with a finite set of
constants C defines a Markov network ML,C that models the
joint distribution of the set of random (binary) variables X =
(X1, X2, ..., Xn) ∈ X . Each variable of X is a ground atom
(predicate whose arguments contain no variables) and X is the
set of all possible worlds, that is the set of all possible truth
value assignments of n binary variables. Clearly, |X | = 2n

where |.| is the cardinality operator. The network is built as
follows:
• ML,C contains one (binary) node for each possible

ground atom given L and C
• An edge between two nodes indicates that the corre-

sponding ground atoms appear together in at least one
grounding of one formula in L. Ground atoms belonging
to the same formula are connected to each other thus
forming cliques.

• A feature fi is associated for each possible grounding
of a formula Fi in L. Each fi assumes value 1 if the
corresponding ground formula is true and 0 otherwise.

The probability distribution over X taking values x ∈ X
specified by ML,C is given by:

P (X = x) =
1
Z

exp

 |L|∑
i=1

wini(x)

 (1)

where |L| indicates the cardinality of L, thus counting the
number of formulas of the knowledge base, and ni(x) is the
number of true groundings of Fi in the world x.

Z =
∑

x′∈X
exp

 |L|∑
i=1

wini(x′)

 (2)

is a normalizing factor often called partition function.
According to the definitions given in Section II, a MLN

provides an explicit way of encoding knowledge. However,
both rule weights and the rules themselves can be be learned
from data [14]. These capabilities make MLNs a powerful
tool that combines the benefits of both implicit and explicit
modelling.

IV. KNOWLEDGE REPRESENTATION

The creation of a knowledge base (KB) implies the use of
a representation formalism to capture and code the Subject
Matter Expert’s (SME) knowledge into formulas.



Fig. 1. Entities and relations of the proposed maritime example scenario.

A. Maritime scenario

We start defining a knowledge base that will model our
domain, with entities and their relationship to depict a very
simple scenario in which a cargo ship heads toward a harbour.
A general ontology of the example is illustrated in Figure 1.

We create a predicate isA(v, vtype) for describing
that a certain vessel (vessel(v)) is of type vtype =
{Cargo, F ishingBoat, Tanker, P leasure}. We introduce
also the predicate that states that cargo ships are motivated by
profit(v). Another predicate tells us that the vessel is head-
ing (isHeadingTo(v, h)) toward a harbour h (harbour(h)),
that can be commercial or not (isCommercial(h)) and
capable or not to handle a particular type of cargo
(isEquipped(h, vtype)).

A simple low-level anomaly detector cannot classify a cargo
entering in a small harbour as an anomalous event. However,
additional information provided by context can help to raise a
flag. Context can be represented by other facts such that
• The ship has changed direction without any apparent

motivation. It is known that fishing vessels can change
the estimated port of arrival, as they may want to sell
their goods for a better deal in another location. A
cargo, as well, can have many reasons for which the
new destination can be appropriate, from an engine failure
to environmental or geopolitical conditions, from better
prices for the goods is carrying to human factors. A
deviation from a routine behaviour can be a response to
external factors and not necessarily a threat indicator.

• The ship is heading toward a port that can not handle
its content, that is not classified as commercial harbour
and does not have the appropriate equipment to handle a
cargo. As a cargo ship is motivated by profit, this situation
raises an anomaly. This data is provided a priori, as it
describes the port and its facilities.

• Members of the crew have a criminal record or are
suspected.

• The harbour is classified as sensitive target or high-risk
zone, as it is a restricted area, or it is built, for instance,
close to a chemical plant or to sensitive objectives.

The sensitivity of the harbour is defined as
riskLevel(h, hlevel), while other predicates define the
fact that the ship changed route (changedRoute(v)) and thus
destination port, maybe because of a reported problem, as an
engine failure, (reportedProblem(v)), or hosts a suspected

crew member (isCrewSuspected(v)).
The domain knowledge is specified in Table I, where the

higher the weight the more confident the statement. The
weights are expressed as fractions of the maximum weight
ω which expresses a hard constraint [15]. A subject matter
expert can help hand coding the rules that are reasonable
for the domain. We state that a cargo ship or a fishing
boat are motivated by profit (2.), that implies that the vessel
heads toward a harbour equipped to handle its content (3.).
If the harbour is not commercial, is must not be equipped
with facilities to handle cargo ships or fishing boats (5.). As
general rules, a suspected crew member, a sudden change
of destination or a reported issue alone are mild anomalies
that alert the operator to pay attention to the ship (6.). If
combined (7.), the probability of an alarm rises. If a ship is
heading toward a commercial harbour, it is because of profit
(8.). Anomalies occur when a cargo ship is heading toward
a non commercial port (9.), or a cargo has changed route,
even if the crew is not suspicious (10.). From theses rules,
we can infer that if a harbour is considered commercial, it is
equipped to handle either cargos and fishing boats and if a ship
is heading toward it, the ship is motivated by profit with strong
confidence. An alarm implies (with low confidence) that the
ship will not make profit (13.) Other complex events refer to
a cargo ship heading toward a high-risk harbour with a crew
member that is not clear (11.), or toward a harbour that is not
properly equipped (12.).

V. GROUNDING AND RESULTS

This section aims to describe contextual and observed
evidences that are used to ground the network, and to provide
an example to clarify the Markov Logic Networks application
to a maritime domain. Also, we want to demonstrate that MLN
work in presence of partial evidence as well.

A. Contextual information

Some contextual information, for instance the type of har-
bour (commercial or passengers), its risk level (high, medium
or low), or the fact that it is equipped to handle the content
of a cargo ship, must be provided as a priori information.
In general, a static entity and the associated resources or
characteristics can be described a priori by a human operator,
and this knowledge can be updated in time when some of these
features may vary. On the contrary, evidence about moving or
non-static objects is created on-the-fly, and it is not permanent



TABLE I
KNOWLEDGE BASE IN FOL WITH ASSOCIATED WEIGHTS

Rule Weight
1. isA(v, Cargo) ∧ isHeadingTo(v, h)⇒ harbour(h) 1/5 ω
2. isA(v, Cargo) ∨ isA(v, F ishingBoat)⇒ profit(v) 4/5 ω
3. isA(v, vtype)⇒ isHeadingTo(v, h) ∧ isEquipped(h, vtype) ∧ profit(v) 4/5 ω
4. isEquipped(h, Cargo)⇒ harbour(h) ω
5. ¬isCommercial(h)⇒ ¬isEquipped(h, Cargo) ∧ ¬isEquipped(h, F ishingBoat) 4/5 ω
6. isCrewSuspected(v) ∨ changedRoute(v) ∨ reportedProblem(v)⇒ alarm(v) 4/5 ω
7. isCrewSuspected(v) ∧ changedRoute(v) ∧ reportedProblem(v)⇒ alarm(v) 5/6 ω
8. isCommercial(h) ∧ isHeadingTo(v, h)⇒ profit(v) 3/5 ω
9. isA(v, Cargo) ∧ isHeadingTo(v, h) ∧ ¬isCommercial(h)⇒ alarm(v) ω
10. isA(v, Cargo) ∧ ¬isCrewSuspected(v) ∧ changedRoute(v)⇒ alarm(v) 2/5 ω
11. isA(v, Cargo) ∧ isHeadingTo(v, h) ∧ riskLevel(h, High) ∧ isCrewSuspected(v)⇒ alarm(v) 4/5 ω
12. isA(v, Cargo) ∧ isHeadingTo(v, h) ∧ ¬isEquipped(h, Cargo)⇒ alarm(v) 4/5 ω
13. alarm(v)⇒ ¬profit(v) 2/5 ω

TABLE II
CONTEXTUAL INFORMATION PROVIDED A PRIORI

harbour(Harbour1)
riskLevel(Harbour1, Low)

isEquipped(Harbour1, Cargo)
isEquipped(Harbour1, F ishing)

isCommercial(Harbour1)
harbour(Harbour2)

riskLevel(Harbour2, High)
isEquipped(Harbour2, Cargo)

isEquipped(Harbour2, F ishing)
isCommercial(Harbour2)

harbour(Harbour3)
riskLevel(Harbour3, Low)
¬isEquipped(Harbour3, vtype)
¬isCommercial(Harbour3)

harbour(Harbour4)
riskLevel(Harbour4, High)
¬isEquipped(Harbour4, Cargo)
isEquipped(Harbour4, F ishing)
¬isCommercial(Harbour4)

as it can vary over time. For this reason, we must distinguish
between given evidence, i.e. contextual (static) information,
and observed evidence that refers to a specific vessel of interest
in a certain instant of time.

In our examples, we specified four types of harbours with
different characteristics:
• Harbour1, defined as a commercial harbour, equipped to

handle cargo and fishing ships.
• Harbour2, defined as a commercial harbour which is

classified as high risk, as there is a chemical plant nearby.
• Harbour3, described as a non commercial harbour which

has low risk.
• Harbour4, a passenger harbour that is a sensitive area.

It is important that this information is the most complete as
possible, to depict with fidelity the scenario and its entities.

B. Observed evidence

We provide observable evidence (derived from sensory data)
and ground the MLN predicates in Table III. Five entities are
involved in this example:
• Cargo1, a cargo ship that delivers its content to

Harbour1 harbour. It represents a condition of normalcy.

• Cargo2, a cargo ship that heads toward Harbour4, that
is a non commercial harbour.

• Cargo3, a ship that hosts a suspected crew member
and is going toward Harbour2 harbour after a route
change. Harbour2 is considered a commercial harbour
but classified as high-risk.

• Cargo4, it is a cargo heading toward a non commercial
harbour after changing route. No information on crew
members is available. This is an interesting case to
demonstrate how the reasoning engine works also when
parts of evidence are missing.

• Fishing1, that is a fishing ship that is heading toward a
non commercial harbour.

• Fishing2, that is a fishing vessel heading toward a
commercial harbour (high-risk); this case is not classified
as suspicious.

C. Results

We tested our scenario using Alchemy1 and probCog2. Due
to the complexity of the domain, instead of exact inference
(that is computationally #P-hard) we used MCMC (Gibbs
sampling) with 5000 steps. For our experiments we empirically
set the knowledge base weights as in Table I. When a large
database of known patterns is available, Alchemy allows us to
learn the weights from data.

The results of Table IV are obtained from the queries
P (alarm(v)|ML,C) and P (profit(v)|ML,C) representing the
probability for the predicates alarm and profit being true for
a given vessel v, where ML,C is the Markov Network created
groundings the set formulas L shown in Table I, C is the set
of constants as defined in Section V-B, and contextual and
sensory evidence is provided according to Tables II and III
respectively.

As expected, Cargo2, Cargo3 and Fishing2 raised an
anomaly, while Cargo4 has a suspicious behaviour but with a
medium-high confidence, that a human operator can interpret
as a possible alert. Cargo1 and Fishing2 have a very low
probability of violating normalcy conditions. The profit, on
another side, is inversely proportional to the alarm probability,

1http://alchemy.cs.washington.edu/
2http://wwwbeetz.informatik.tu-muenchen.de/probcog-wiki/index.php



TABLE III
EVIDENCE EXTRACTED FROM SENSORY DATA

isA(Cargo1, Cargo)
isHeadingTo(Cargo1, Harbour1)
¬isCrewSuspected(Cargo1)
¬reportedProblem(Cargo1)
¬changedRoute(Cargo1)

isA(Cargo2, Cargo)
isHeadingTo(Cargo2, Harbour4)
¬isCrewSuspected(Cargo2)
¬reportedProblem(Cargo2)
¬changedRoute(Cargo2)

isA(Cargo3, Cargo)
isHeadingTo(Cargo3, Harbour2)

isCrewSuspected(Cargo3)
¬reportedProblem(Cargo3)

changedRoute(Cargo3)
isA(Cargo4, Cargo)

isHeadingTo(Cargo4, Harbour3)
¬reportedProblem(Cargo4)

changedRoute(Cargo4)
isA(Fishing1, F ishingBoat)

isHeadingTo(Fishing1, Harbour3)
¬isCrewSuspected(Fishing1)
¬reportedProblem(Fishing1)
¬changedRoute(Fishing1)

isA(Fishing2, F ishingBoat)
isHeadingTo(Fishing2, Harbour2)
¬isCrewSuspected(Fishing2)
¬reportedProblem(Fishing2)
¬changedRoute(Fishing2)

TABLE IV
ALARM PROBABILITY ASSOCIATED TO EVIDENCE OF TABLE III

Ship Alarm probability Profit probability
Cargo1 0.001 0.998
Cargo2 0.993 0.002
Cargo3 1.000 0.001
Cargo4 0.733 0.261
Fishing1 1.000 0.001
Fishing2 0.001 1.000

as a suspicious vessel is flagged as not business-oriented when
showing an anomalous behaviour.

Although being a preliminary study on the application of
Markov Logic Networks in maritime domain, the results are
promising and encouraging further developments on more
complex or routine scenarios.

VI. CONCLUSIONS

In this paper we examined the concept of anomaly in the
maritime domain from the point of view of the JDL fusion
model. Events and anomalies are fundamental concepts to
build a situational picture about the observed environment or
set of entities to facilitate human decision making.

Furthermore we presented the Markov Logic Networks as
an efficient and robust tool that leverages both the expressive
power of first order logic and the probabilistic uncertainty
management of Markov networks. In our example, observed
(incomplete) evidence is fed into an on-line inference engine
that allows reasoning under uncertainty. The set of formulas in
the knowledge base is grounded with the empirical evidence,
and reasoning is performed exploiting high-level contextual

information. In our case, context is represented by formulas
previously provided by a SME, and by a priori contextual
evidence that is used to ground the MLN.
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