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Abstract

SAT can be posed as a geometric problem[8, 9, 7]. The 2n SAT models are represented as the ver-

texes of the n−D hypercube, Hn. Each disjunction in a Conjunctive Normal Form sentence defines

a set of models which falsifies the sentence; the set of corresponding excluded vertexes comprises

a sub-hypercube of Hn. A hyperplane can be defined which separates this sub-hypercube from the

other vertexes. The intersection of the non-negative half-spaces of these hyperplanes produces a

convex polytope called the feasible region, F , which if satisfiable contains vertexes of Hn

The hyperplanes generated from the disjunctions are (n − 1)-dimensional constraint faces for F ,

and each solution vertex is the intersection of some subset of these. A high-level description of the

Constraint Face MVE Method is as follows:

For each constraint face, create a parallel constraint face very close to it and with

opposite normal; find the new feasible region, F ′, with this constraint face. Now find

the MVE for F ′ – the ellipsoid axes can be used pairwise to trace a set of boundary

points on F . If there is a solution vertex, some point in this trace will be close enough

to the vertex to determine that there is a SAT solution. If no such point is found from

the traces of any constraint face, then the CNF sentence is not satisfiable.
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1 Introduction

SAT can be defined as follows: Given a logical sentence over n variables, determine if there is

an assignment of truth values to the variables which makes the sentence true. Note that for an

n-variable sentence, there are 2n possible complete truth assignments (also called models). The

complete set of models (or complete conjunction set) can be mapped onto the vertexes of a unit

n-dimensional hypercube, called Hn in a straightforward way: the truth assignment values serve

as the coordinates in n-dimensional space. Assume the logical sentences are represented as CNF

sentences, i.e., a conjunction of disjunctions of literals. Then any assignment of truth values which

makes a disjunction false renders the CNF sentence false. If the disjunction has k literals, then there

is one truth assignment to the atoms of these literals which makes the disjunction false; however,

the variables not in the disjunction can take on either truth value, and so there are 2n−k complete

conjunctions which make the sentence false. This set is in fact a sub-hypercube of Hn.

The method presented here shows how each disjunction in the CNF sentence gives rise to a hyper-

plane which separates the non-solution vertexes (on the negative side of the hyperplane) of Hn from

the solution vertexes (on the non-negative side of the hyperplane); i.e., the intersection of the non-

negative half-spaces of these hyperplanes results in a convex feasible region which must contain any

solution which exists.

2 Background

For a detailed discussion of the SAT problem and its complexity, see [10]. Related work on a

geometric approach started with Gomory [6] who sought integer solutions for linear programs.

Given the semantics of the literals in a disjunction, a linear inequality can be formed summing xi for

atoms in the clause and (1−xi) for negated atoms in the clause and setting this to be greater than or

equal to 1. Next, a {0, 1} solution is sought resulting in an integer linear programming problem. If a

non-{0, 1} solution is found, Gomory proposed a way to separate (via a cutting plane) that solution

from all integer solutions. This method has been used in finding lower complexity ways to provide

theorems for proving the boundedness of polytopes, cutting plane proofs for unsatisfiable sentences,

pseudo-Boolean optimization, etc. (see [1, 2, 3, 4, 5]). The Chop-SAT method has been proposed

as a way to solve SAT and PSAT [8, 9, 7]. The Chop-SAT method was developed independently of

Gomory and Chvatal’s work, and is based on fundamentally different geometric insights.
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3 The Geometric Approach

In the earlier work cited above, SAT is cast as a linear programming problem:

Minimize f
Tx

Subject to: Ax ≤ c

where each constraint is given by:

−αi · x ≤ ci

A solution for the SAT sentence exists iff a solution exists for the LP problem such that every

component of x has a value equal to 0 or 1.

Given a set of m conjuncts, Ci, i = 1 : m, each conjunct is used to produce a hyperplane of

dimension n − 1 which separates the solutions (i.e., some subset of vertexes of Hn) from non-

solutions. The hyperplane for the ith conjunct is:

α(i) · x+ c = 0

Each of these hyperplanes produces an inequality:

−α(i) · x ≤ ci

for which the signed distance of a point is used to separate solution from non-solution vertexes. A

matrix, A, is produced where each row is the 1 × n-tuple α(i), the unit normal to the hyperplane.

An n× 1 vector, c, is constructed where the ith element of c is ci. The original (n− 1) −D faces

of Hn are added to the set of constraints to ensure boundedness.

The way these hyperplanes are constructed, it is now possible to run the interior-point method for

linear programming to find feasible points which minimize fTx for x ∈ F , where F is the feasible

region and f is a unit vector in the desired projection direction. Note that if neither of the projection

onto the positive and negative directions of some basis vector results in a 0 or 1 value, respectively,

then the CNF has no solution. However, there are feasible regions for unsatisfiable sentences which

do have such 0,1 projections, so this is a sufficient but not necessary condition.

4 Chop-SAT

Given m conjuncts, Ci, i = 1 . . .m, then let:

Ci = L1 ∨ L2 ∨ . . . ∨ Lk

Note that any complete truth assignment with ¬L1 ∧ ¬L2 ∧ . . . ∧ ¬Lk makes Ci false.

Observe that:
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• If k = n, then this eliminates 1 solution (H0 ≡ 0-D vertex).

• If k = n− 1, then this eliminates 2 solutions (H1 ≡ 1-D segment).

• If k = n− 2, then this eliminates 4 solutions (H2 ≡ 2-D square).

• . . .

• If k = 1, then this eliminates half the solutions in the hypercube (Hn−1).

The individual hyperplane is determined as follows. Let A = {1, 2, . . . , n} indicate the atoms, and

I ⊆ A. Given Ci = L1 ∨ L2 ∨ . . . ∨ Lk, then define αi, the hyperplane normal vector, as follows.

∀ij ∈ I, αi(ij) = 1 if Lj is an atom aij , else − 1

∀m /∈ I, αi(m) = 0

αi =
αi

‖ αi ‖

In order to get the constant for the hyperplane equation, a point must be found on the hyperplane.

This is selected so that the hyperplane cuts the edges of the hypercube at a distance ξ from the

non-solution vertex. This distance depends on the number k of literals:

d =‖ ξ
bk

k
‖

where bk is a k-tuple of 1’s. Next:

∀ij ∈ I, p(ij) = 0 if Li is an atom, else 1

∀m /∈ I, p(m) = 0

Then p is a non-solution vertex. To find a point, q, on the hyperplane:

q = p+ dαi

This allows a solution for the constant, c, in the hyperplane:

ci = −(αi · q)

This yields the hyperplane equation:

αi · x+ c = 0

and the resulting inequality:

−αi · x ≤ c
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5 Conclusions and Future Work

The Geo-SAT approach has been extended to non-Euclidean geometry, and first results indicate that

solutions can be found. However, a number of things remain to be done:

1. Determine the convergence properties of the Barrier method in non-Euclidean space.

2. Perform a systematic study of solutions finding behavior in dimensions higher than 3.

3. Explore methods to speed up the discovery of a solution; e.g., as a force path is followed,

project the path points onto the appropriate constraint surfaces and determine whether the

direction of motion of the projected points can be used to move to a solution vertex more

rapidly.
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