
GEO-SAT: A New Approach for Knowledge-Based

Agent Decision Making

Thomas C. Henderson, Amelia Lessen, Ishaan Rajan, Tessa Nishida, Kutay
Eken, Xiuyu Fan, David Sacharny, Amar Mitiche and Thatcher Geary

aUniversity of Utah, School of Computing, Salt Lake City, 84112, UT, USA

Abstract

Logical agents base their action selection decisions on inferences made over a
logical knowledge base. Given a propositional logic knowledge base expressed
in Conjunctive Normal Form (CNF), the knowledge can be converted into a
geometrical format, and subsequent analysis takes place as geometrical oper-
ations on the feasible region in that representation. Two geometric represen-
tations are presented: the n-dimensional hypercube in Euclidean geometry
and the n-dimensional Poincaré disk in non-Euclidean geometry. Based on
these representations, two novel methods are proposed to: (1) find SAT solu-
tions for the knowledge base (i.e., a truth assignment to each logical variable
which makes the CNF sentence true), and (2) find a reasonable approxima-
tion to the atom probabilities given the current set of information. This
allows agents to determine the semantics (truth) of the world as well as to
estimate the probability of truth. The geometric method provides an efficient
heuristic approach to solving SAT for CNF knowledge bases, and provides
polynomial-time solutions of probabilistic SAT for independent variables, and
good PSAT estimates for non-independent logical variables.
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1. Introduction and Background

Given a propositional calculus knowledge base represented in Conjunctive
Normal Form (CNF), an agent can find out information about the world by
finding new sentences that are entailed by the current knowledge. In this
way, an agent can determine proper actions. To do so, it may be useful
to determine whether the CNF sentence has a solution (satisfiable) or not
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(unsatisfiable). This is called the SAT problem (for SATisfiability) problem.
The SAT problem is NP complete [21].

Another aspect of interest to the agent is the probability that a specific
atom (logical variable) is true. For example, for the CNF S = A ∨ B, there
are three solutions, (0, 1), (1, 0), (1, 1), which satisfy S and, assuming equal
likelihood for all solutions, the probability of A is 2/3, and the probability
of B is 2/3 Note that this is the mean of the models (truth assignments to
variables) which satisfy the sentence. One way to determine the atom proba-
bilities is to solve the Probabilistic SAT (PSAT) problem when each conjunct,
Ci, is given a probability, pi [9, 17]. That is, given n logical variables, there
are 2n unique truth assignments (also called models or the complete con-
junction set) to the variables. The set of all models is called Ω, and ωi is
the model with binary assignments corresponding to the binary representa-
tion of i − 1; e.g., ω1 is all zero assignments - all false. The PSAT problem
consists of determining a probability distribution, π : Ω → [0, 1] such that
∑2n

i=1 π(ωi) = 1, and
∑

ωi|=Cj
π(ωi) = pj, for all conjunct probabilities, pi.

The probability of an atom is then found as Prob(A) =
∑

ωi|=A π(ωi). We
have also previously described how to solve the Probabilistic Sentence Sat-
isfiability Problem (PSSAT) [12] which in certain cases provides a PSAT
solution (i.e., given independent variables). The methods we are proposing
differ from standard methods in that we solve linear or nonlinear systems
of equations rather than having to consider the full joint probability distri-
bution over the variables (e.g., like Bayesian networks [18] or Markov Logic
Networks [7]).

The purpose of this study is to investigate Chop-SAT as an alternative
way to answer these questions about SAT and PSAT [13, 15]. Work on the
use of cutting planes started with Gomory [11] who sought integer solutions
for linear programs. Given the semantics of the literals in a disjunction, then
a linear inequality can be formed summing xi for atoms in the clause and
(1 − xi) for negated atoms in the clause and setting this to be greater than
or equal to 1. Next, a {0, 1} solution is sought resulting in an integer linear
programming problem. If a non-{0, 1} solution is found, Gomory proposed a
way to separate (via a cutting plane) that solution from all integer solutions.
This method has been used in finding lower complexity ways to provide
theorems for proving the boundedness of polytopes, cutting plane proofs for
unsatisfiable sentences, pseudo-Boolean optimization, etc. (see [2, 3, 4, 5,
6]). The Chop-SAT method was discovered independently and is based on a
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different set of insights into the nature of the CNF form.
Based on the Chop-SAT approach, the contributions here provide:

1. A method to determine whether a SAT solution exists, and

2. A method to determine an approximation to the atom probabilities.

2. Chop-SAT

A CNF sentence is the conjunction of a set of disjunctions where each
disjunction is a literal (i.e., either an atom or the negation of an atom).
A CNF sentence is then represented as S = C1 ∧ C2 ∧ . . . ∧ Cm, where
Ci = Li,1 ∨Li,2 ∨ . . .∨Li,ki where Li,j = ap or Li,j = ¬ap, and ap is an atom.

The satisfiability of a CNF sentence, S, over n variables can be converted
to a geometric problem as follows. Consider the hypercube of dimension n
centered at [1

2
, 1
2
, . . . , 1

2
]; call itHn. Then each vertex ofHn represents a model

for n variables. The vertexes also represent assignments of probability 0 or
1 for the truth of each variable. Every other point in Hn can be considered
to give a probability on the interval [0, 1] for each variable. E.g., the center
of Hn represents a probability assignment of 1/2 for each atom.

Next, consider a clause, Ci, of S with ki literals. Since it is a disjunction,
there is only one truth assignment over its literals which makes it false:
namely, where the atom of each literal is assigned the value which makes the
literal false. However, every atom not represented by a literal in Ci can take
on either truth value and not change the truth of the clause. Thus, there
is a sub-hypercube of dimension n− ki, that is, a shifted, scaled instance of
Hn−ki , whose vertexes are not solutions for S. It turns out that there is an
(n − 1)-dimensional hyperplane which can be constructed so as to separate
solutions from these non-solutions for Ci. This chopping hyperplane can
be positioned anywhere along the edges connecting Hn−k to the rest of Hn.
Figure 1 shows an example of chopping one vertex, [1,0,1], fromH3. The chop
corresponds to finding the intersection of Hn with the set of points in the
non-negative half-space defined by the hyperplane. Each conjunct provides
a corresponding half-space, and the set of all half-spaces, along with Hn are
intersected to produce the feasible region for solutions.

Once all the chops are made (i.e., the intersection of Hn with the non-
negative half-spaces defined by the hyperplanes), the resulting convex set is
called the feasible region. Note that it is necessary to include hyperplanes
which define the faces of Hn in order to keep the feasible region bounded.
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Figure 1: Example of Chopping [1;0;1] from H3. The chopping hyperplane goes through
the neighbors of [1, 0, 1].

Figure 2 shows a simple 2-D example of the feasible region resulting from
chopping off each corner. The hyperplanes in this case are lines in 2-D. Each
row provides the coefficients a, b, c of the standard form equation of a line:
ax+ by + c = 0:

-0.7071 -0.7071 1.0607

-0.7071 0.7071 0.3536

0.7071 -0.7071 0.3536

0.7071 0.7071 -0.3536

1.0000 0 0

-1.0000 0 1.0000

0 1.0000 0

0 -1.0000 1.0000

where the first four are the corner cuts, and the last four define the faces
(sides) of the square. The chops are made midway along the edges connecting
the vertex to be removed and its neighbors.



3 SOLVING SAT 5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Example 2-D Feasible Region Resulting from Chopping all Corners o H2.

3. Solving SAT

Given a feasible region, F , corresponding to a CNF sentence (or knowl-
edge base), it is possible to probe that region to determine if there is a SAT
solution (i.e., a corner of Hn in F). Note that the feasible region for any

unsatisfiable sentence has no point farther than
√
n−2
2

from the center of Hn.
Our approach takes advantage of the fact that the Maximal Volume In-

scribed Ellipsoid (MVE) of a full-dimensional convex polytope defined by a
finite set of affine inequalities can be found in polynomial time [23], and the
MVE will, in general, have its major semi-axes aligned with the most elon-
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gated parts of F . Moreover, Prof. Zhang provided us with a Matlab function
which produces an ellipsoid representation consisting of x and E, where x is
the center of the ellipsoid and E is the matrix such that the points, P , of the
ellipsoid are defined as:

P = {x+ Es|s ∈ ℜn ∋ ‖s‖ ≤ 1}

The Singular Value Decomposition of E yields the semi-major axes of the
MVE. In order to increase the volume, it is possible to move the hypercube
face constraints outward to allow a larger volume for the ellipsoid. Figure 3
demonstrates this idea in 2-D where there is just one solution ([0;0]), and the
sides of the square have been moved out 10 units.

To test the practicality of this approach, the following experiment was
performed:

• A set of 1000 random knowledge bases over 20 variables was generated.

• The corresponding feasible region was determined for each KB.

• The MVE was found for each feasible region.

• The major semi-axes were found.

• The feasible region boundary points along both directions of the major
semi-axes were found.

• If any point was greater than
√
n−2
2

away from the center, then a solution
is known to exist.

A solution was found in this way for every knowledge base. Note that this is
only a heuristic and is not guaranteed to find a solution. If the Minimal Vol-
ume Circumscribing ellipsoid were found instead, then this would guarantee
a solution, but this problem is NP hard [8].

To see how Chop-SAT relates to standard SAT solvers, consider DPLL.
DPLL is a complete backtracking search algorithm which as its major step
assigns a value to a variable, then determines if there is a solution (i.e.,
it reduces the conjuncts, assigns necessary values to resulting unit clause
variables, and assigns values to pure variables with only one polarity across
all conjuncts). Chop-SAT can be viewed as an alternative geometric approach
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Figure 3: Example 2-D MVE Showing Major Semi-Axis in Direction of Solution.

to this solution determination step only with no need, in general, to be
embedded in a complete search.

Chop-SAT represents the SAT problem as a convex feasible region where
if this region has a corner from the original n-D hypercube, then a solution
exists; if not, then the sentence is unsatisfiable. Chop-SAT works by using
linear programming (linprog in Matlab) to find extremal vertexes by project-
ing the feasible region onto a selected vector. Let F be the feasible region of
a CNF sentence; then linear programming findsx ∈ F which minimizes fTx
such that Ax ≤ b and lb ≤ x ≤ ub, where lb = 0 and ub = 1.

For example, if f = [1, 0, 0]T then the feasible region is projected onto the
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x-axis (in 3-D). Of course, Chop-SAT when embedded in a search algorithm
like DDLL is also complete, but we use it as a one-step algorithm since this
usually finds a solution. Note that we can also make Chop-SAT complete by
projecting onto all the diagonal axes of the n-D hypercube, but our original
hope was that geometry would provide a polynomial time solution. Chop-

SAT can determine that a feasible region is from an unsatisfiable sentence
because of the following property: For every feasible region arising from an
unsatisfiable CNF sentence, there is no point at distance greater than

√
n−1
2

from the center of the hypercube; this means the feasible region can undergo
any rotation about the center of the hypercube and all points of the feasible
region remain within the bounds of the n-D hypercube -– this is not the case
for feasible regions containing solutions.

4. Solving for Atom Probabilities

Another important problem for an agent is to determine the probability
of the state of the world. For example, in the Wumpus World, the agent will
die if it enters a cell with a pit. Here we describe a method to determine such
probabilities using the feasible region arising from a CNF sentence knowledge
base.

For any given satisfiable knowledge base, the atom probabilities are just
the average of the 0/1 truth assignments of the models which make satisfy
the CNF sentence as described in the introduction. However, since it is
too computationally costly to determine all possible solutions and take their
average, we propose the following approximations that can be found within
a feasible region F :

• the analytic center of F .

• the p-center of F .

• the center of the MVE.

• mean of samples from F .

Analytic Center of F
The analytic center of F is defined as:

c = maxy

∏

h

(ah ·
[

y
1

]

)
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where y ∈ F and ah is the hyperplane coefficient vector for hyperplane h.

P-Center of F
The p-center of the feasible region is defined as follows [16]: (1) choose an
initial point x ∈ F ; (2) for each hyperplane constraint find the line normal
to the hyperplane which goes through x; (3) find the two most distant points
in F on this line; (4) Average all the points found this way and assign the
value to x; (5) stop if x does not change significantly.

Chop-SAT Mean Center of F
In this approach, a number of samples are found in the feasible region and
their average determined. For example, solve the following:

minxf
Tx

such that x ∈ F and f is taken as the positive and negative unit vector along
each axis of the n-D space.

MVE Center of F
The MVE provides both the center of the MVE as well as the directions of
the semi-axes. Here, the center of the MVE is used to approximate the atom
probabilities.

4.1. Experimental Study

For this study, 1000 random knowledge bases were generated with 5
atoms, a maximum of 10 clauses, and at most three literals in a clause.
Figure 4 shows the Euclidean distance between the atom probability vector
and the four proposed approximations: (1) the analytic center (has lowest
error), (2) the p-center (next lowest error), (3) the Chop mean center (similar
to p-center error), and (4) the MVE center (has the most error). The center
errors over all trials was 0.25, 0.52, 0.57, and 1.07, respectively.

Figure 5 shows how the centers cluster. Since the vectors are all 5-
dimensional, they are converted to a 2-dimensional representation which
maintains spatial coherence. As can be seen, the analytic centers spread
similarly to the actual atom probabilities, the MVE centers form a tight cen-
tral cluster, the p-centers skew somewhat away (up) from the actual atom
probabilities, while the Chop mean centers skew a good bit away from the
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Figure 4: Error of Approximation Methods: Analytic Center (blue), P-Center (red), Chop
center (mustard), MVE center (purple).

actual probabilities. The experiments indicate that the Analytic Center is
the best approximation to the actual atom probabilities.

5. Wumpus World Experiment

To demonstrate the effectiveness of this approach, agent decision making
was tested in the Wumpus World framework. Wumpus World was proposed
by Yob [22], and has been used as a standard agent testbed for some time
[19]. Wumpus world here is a 4x4 grid of cells; each cell may contain a pit
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Figure 5: The center distributions.

with 20% probability, and if there is a pit it is the only thing in the cell. One
cell contains some gold, and one cell contains a Wumpus (the gold may be
co-located with the Wumpus). An agent starts in cell (1, 1) and explores the
grid in order to find the gold. Each cell neighboring a pit has a breeze, and
each cell neighboring the Wumpus has a stench. Figure 6 shows an example
board with the agent in cell (1, 1) with direction θ = 0, with pits in cells
{(1, 4), (4, 2), (4, 3)}, the Wumpus in cell (2, 3), and the gold in cell (4, 4).

The agent has a set of percepts in a cell (represented as bits): (1) stench,
(2) breeze, (3) glitter, (4) bump, and (5) scream. The glitter percept lets the
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Step 1

Figure 6: An Example Wumpus World Board.

agent know it’s in the cell with the gold. The agent has a state (x, y, θ), where
(x, y) is its location in the grid, and θ is its orientation θ ∈ {0, 90, 180, 270}
degrees. The agent has a set of possible actions: (1) rotate left, (2) rotate
right, (3) forward, (4) grab, (5) shoot, and (6) climb. If the agent moves into
a cell with a pit or the Wumpus, it dies. The agent has one arrow and can
shoot the Wumpus.

The agents here all share a Belief, Desire, Intention cognitive architecture
[10]. The Belief-Desire-Intention architecture is a hierarchical organization
of states and actions (grouped into plans) that was designed specifically for
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agent models. The architecture not only defines the conceptual structure of a
program, but also a process structure that enables dynamic planning. Orga-
nizing the program in this way supports both reasoning by the autonomous
agent as well as reasoning by human operators. The structure of desires,
intentions, beliefs, and plans coincides well with the reasoning of the human
operator. For example, a human observer could ask a BDI agent directly,
“What is your current plan?” and the agent could respond “Located the
Wumpus and pro ceding to kill it.”

In the specific scenario here, the desires are: (1) escape, (2) kill the Wum-
pus, and (3) explore. If it has the gold, its intention will be to escape with
the gold. The agent’s intention will be to kill the Wumpus if its location is
known. Otherwise, its intention is to explore the grid. In order to explore,
the agent selects the lowest probability risk unvisited cell. All agents have
the same BDI architecture and only differ in how they compute the proba-
bilities for risk: (1) a human produced algorithm to assign pit and Wumpus
probabilities, (2) the analytic center, (3) Chop-SAT mean, and (4) Monte
Carlo simulation based on statistics over sample boards satisfying the known
percept information.

The experimental method is to generate 1,000 random Wumpus boards,
run each agent type on the boards, and measure successful escape with the
gold. Note that the Monte Carlo results will be very close to optimal and
serves as the upper bound on success. The results are given in Table 1. As
can be seen, the Chop-SAT based agent performed the best, and this is a
good indication of its efficacy.

Table 1. Results of Wumpus World Experiment.
Number Human Analytic Chop-SAT Monte Carlo

of Boards Center

1000 585 598 608 613.3

These experiments from Wumpus world have 80 logical variables (i.e.,
280 models for the knowledge base!). The point is to see if the probabilis-
tic method provides adequate variable probabilities to help make good (life
preserving) decisions. The baseline of the experiment is given as the Monte
Carlo method for determining these probabilities (i.e., random boards are
generated that satisfy the knowledge acquired during a game and the exact
variable probabilities are estimated from these board configurations). The
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overall statistic is that 1000 random Wumpus boards are generated, and each
algorithm (human, analytic center, Chop-SAT) is compared to the ground
truth approximated by the Monte Carlo method. Thus, there are three
solvers (humans wrote programs to assign probabilities, the analytic center
method provides probabilities, and Chop-SAT provides probabilities) which
are then used to make decisions. Other probabilistic SAT solution methods
were not used because they are all exponential complexity and either won’t
run on this size problem or require max entropy type assumptions which are
not valid here.

A current application under study is the use Chop-SAT as part of a Belief-
Desire-Intention architecture for autonomous Unmanned Aircraft Systems
agents [20]. We are conducting experiments this summer at the US Air
Force Academy where such an architecture for decision making is used.

6. Non-Euclidean Geometry Approach

The Euclidean method described above shows how each disjunction in the
CNF sentence gives rise to a hyperplane which separates the non-solution
vertexes (on the negative side of the hyperplane) of Hn from the solution
vertexes (on the non-negative side of the hyperplane); i.e., the intersection of
the non-negative half-spaces of these hyperplanes results in a convex feasible
region which must contain any solution which exists. The non-Euclidean
method projects Hn onto the n-dimensional unit hypersphere considered as
an n-dimensional Poincaré Disk (see [14]). The advantage of this approach
is that the vertexes of Hn are mapped onto the surface of the disk and are
thus at infinite distance (in terms of hyperbolic geometry) from the center
of the disk. The idea is that this property makes the solutions more readily
identifiable.

The motivation for using non-Euclidean geometry is that it allows us to
put the solutions at a unique location: at infinite distance from the origin in
terms of non-Euclidean distance). That is, SAT is mapped onto the Poincare
Disk as follows (see Figure 7). The corners of the n-dimensional hypercube
are projected onto the n-dimensional hypersphere, Dn, as ideal points (i.e.,
points on the surface of the hypersphere - note that these are not points
in the Poincaré Disk). These ideal points are an infinite distance from the
center of the unit hypersphere. Unlike in Euclidean geometry where the
hyperplane chops usually produce a bounded convex polytope for the feasible
region whether or not a solution exists, in the case of the Poincaré Disk
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Figure 7: The Vertexes of the Hypercube are Projected onto the Hypersphere.

representation, the feasible region is only bounded when no solution is in the
feasible region. Given this fact, the goal is to find low-complexity algorithms
to determine whether or not there exists a sequence of points in the feasible
region such that in the limit their distance from the origin is infinite (in
hyperbolic geometry).

The goal is to provide a representation in terms of the Poincaré Disk
which allows the solution vertexes to be found through efficient geometric
algorithms. To set up this representation, a few basic facts concerning the
Poincaré Disk geometry must be defined.
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6.1. Poincaré Disk Distance

Consider the 2-dimensional Poincaré Disk (Figure 8, upper left circle).
The distance between two points, p and q, in the Poincaré Disk is defined in

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

L
1

L
1

L
1

p

q

Figure 8: The 2D Poincaré Disk; L1 is a line through the center, O = (0, 0), i.e., a
diameter; L2 is a circular arc which is orthogonal to the unit circle.

terms of Euclidean distance on points given as complex numbers:

d(p, q) = ln(
|ap||qb|
|aq||pb|)

where a and b are the intersection points with the unit circle of the unique
circle (Figure 8, lower right circle) through p and q which is orthogonal to
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the unit circle. Moreover, the points are arranged in the order a, p, q and
b along the circle. An alternative formulation which does not require the
orthogonal circle is given by:

d(p, q) = acosh(1 +
2|pq|2|r|2

(|r|2 − |op|2)(|r|2 − |oq|2))

where r = 1 for the unit disk, and |op| and |oq| are the Euclidean distances
of p and q from the origin, respectively.

6.2. The Orthogonal Circle through Two Points

The angle between two circles (defined in Euclidean coordinates) is given
by:

cos(θ) =
r21 + r22 − ‖C1 − C2‖2

2r1r2
where r1 is the radius of the first circle, r2 the radius of the second circle,
and C1 and C2 are the centers of the two circles. Two circles are said to be
orthogonal if θ = π

2
.

Given two points, p and q, in the Poincaré Disk, the straight line (in
hyperbolic terms) through them can be found as follows. If p and q lie on
a diameter of the Poincaré Disk, then the line is just the straight Euclidean
line through the two points. This can be viewed as a circle of infinite radius
through the two points. If p and q do not lie on a diameter line, then there
are two circles to consider: the unit disk with r1 = 1 and C1 = (0, 0), and
the circle through p and q with radius r2 and center C2 = (Cx, Cy). Since
the circles are orthogonal:

cos(θ) = cos(
π

2
) = 0

⇒ 0 = 1 + r22 − ‖C2‖2

⇒ r22 = C2
x + C2

y − 1

Each point, p and q, gives rise to another equation; e.g., for p:

r22 = (px − Cx)
2 + (py − Cy)

2

⇒ r22 = p2x − 2pxCx + C2
x + p2y − 2pyCy + C2

y

and substituting the first into the second:

C2
x + C2

y − 1 = C2
x + C2

y − 2pxCx − 2PyCy + p2x + p2y
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⇒ pxCx + pyCy =
p2x + p2y + 1

2

Likewise:

⇒ qxCx + qyCy =
q2x + q2y + 1

2

This can be solved as a linear system:

A =

[

px py
qx qy

]

b =

[

p2x+p2y+1

2
q2x+q2y+1

2

]

and solving for the center, C:

AC = b

Finally, the radius is found as follows:

r = ‖C − p‖

6.3. Representation of Bounding Faces in the Poincaré Disk

In Euclidean geometry, the SAT problem is posed in terms of removing
vertexes from the hypercube. Each conjunct in the CNF sentence provides a
hyperplane which divides the feasible region from the non-satisfying solutions
for that conjunct. However, in the Poincaré Disk, a way must be found to
represent the original complete set of vertexes, and then some way to chop
non-solutions from the feasible region. One way to go at this is to use a
square like the one shown in Figure 9. The problem arises that this is likely
to suffer from the same problem as the Euclidean representation, namely
that a projection does not readily reveal solution corners.

Another representation that may allow lower complexity discovery of
whether a solution exists or not is given by the feasible region shown in
Figure 10. The 2n (n− 1)-dimensional bounding faces of the hypercube are
represented in the Poincaré Disk in terms of hyperspheres through the cor-
responding face vertexes. The centers of these hyperspheres will lie along
the coordinate axes (one each in the positive and negative directions). Let
v1 be the unit vector from the center of Dn to a vertex of the face, and v2
be the unit vector in the desired axis direction. We seek the center, C and
radius r of the hypersphere through the face vertexes. Given that the desired
hypersphere is orthogonal to the unit disk, then the angle, θ, between v1 and
v2 is given by:

θ = acos(v1 · v2)
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Figure 9: Representing the Complete Feasible Region as a Square in the Poincaré Disk.
The left side is the complete feasible region, while the right side shows the feasible region
when (0, 1) is not a truth assignment that satisfies the CLF sentence.

which means that the distance, xd, along the axis from the origin to C is:

xd =
1

cos(θ)

which gives C. This process is done for the 2n bounding face constraints on
the feasible region.
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Figure 10: Representing the Complete Feasible Region as a Square with corners at infinity
in the Poincaré Disk.

6.3.1. Clause Chops

As has been described, lines in the Poincaré Disk are circular arcs when
viewed in Euclidean geometry, and this allows non-solution vertexes to be
separated from the feasible region by choosing the appropriate side of the
circle which defines the chop. What is required is an algorithm to convert
from a CNF conjunct to the equation of a circle which has the non-solutions
on one side and the remaining possible solutions on the other. This algorithm
is provided below.
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Given clause:
C = L1 ∨ L2 ∨ . . . ∨ Lk

convert to V = [v1, v2, . . . , vn] where n is the number of atoms, and ai is the
ith atom:

vi = −1 if ∃j ∋ ¬ai = Lj

vi = 0 if no literal of ai ∈ C

vi = 1 if ∃j ∋ ai = Lj

Let α = −V and uα = a
‖α‖ . Obtain an Hn vertex to be chopped by substi-

tuting -1 for 0’s, if any, in α: chop pt = α−1←0.
Obtain a non-chopped neighbor, nei pt, by inverting a non-zero element

of chop pt.
Obtain the projection point by sliding along an Hn edge connecting the

chop pt to the nei pt by the desired percentage amount ∆ ∈ (0, 1]; that is:

proj pt = (1−∆)chop pt+∆nei pt

To get the projection point on the Poincaré Disk boundary:

proj pt PD =
proj pt

‖proj pt‖

Then:
θ = acos(ua · proj pt PD)

d =
1

cos(θ)

r2 =
√
d2 − 1

C = dua

Consider the following example. Let C = ¬A ∨ ¬B. Then V = [−1,−1],
α = [1, 1], and µα = [0.7071, 0.7071]. Then chop pt = [1, 1] and nei pt =
[−1, 1]. Let ∆ = 0.9, then proj pt = [−0.8, 1] and proj pt PD = [−0.6247, 0.7809]
resulting in θ = 1.4601 radians (83.66 degrees), and d = 9.0554.

Notice that if single-literal clauses are allowed, then the center of the
chop hypersphere may flip sides to satisfy circle orthogonality. If so, the
feasible side of the hypersphere is the interior. Such clauses can be avoided
by deleting the atom of the literal and substituting its truth value into the
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Figure 11: Examples of Chops in 2D and 3D.

other clause where it appears and then reducing these clauses accordingly.
Figure 11 shows example 2D and 3D chops. Note that this formulation works
in any dimension.

The ∆ parameter determines how far the chop occurs from the non-
solution vertexes which are being cut. Figure 12 shows some example po-
sitions for chops. Figure 13 shows the chops for Modus Ponens, Figure 14
shows three edges chopped, and Figure 15 shows a 3D face chop.
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Figure 12: The Impact of Delta on Chop Distance from Non-Solution Vertexes.

6.4. Method

Given a CNF sentence, the problem solution is found as follows:

• A set of chops are produced for the CNF clauses; these chops are hyper-
planes just like those used in Euclidean geometry. Note that they can
also be viewed as infinite radius hyperspheres through those neighbor
vertexes, however, these hyperspheres are not orthogonal to the unit
disk.

• In addition to the constraint surfaces arising from the chopped ver-
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Figure 13: Chops for Modus Ponens.

texes, it is also necessary to bound the feasible region to be interior
to the transformed unit cube. To this end, a set of face constraint
hyperspheres are added; these hyperspheres are orthogonal to the unit
disk.

• A Barrier Method type algorithm is developed for this constraint set
which moves in the selected projection direction (i.e., maximizes the
projection) using the hypersphere surfaces as barrier constraints. This
is implemented as a force field method and is described in detail below.
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![tbh]

Figure 14: Three Edges Chop.
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Figure 15: 3D Face Chop.

Other forces may also be introduced to ameliorate the convergence;
e.g., a force away from the origin.

• A solution is considered to exist if the convergence point is close enough
to a solution vertex; i.e., in the limit, the distance from the origin of
the points in the sequence grows without limit.

In Euclidean geometry, existing software tools exist to solve linear program-
ming problems (e.g., the Matlab function linprog). However, a variant was
implemented here to handle the mix of hyperplane and hypersphere surfaces.
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6.4.1. Barrier Method

The Barrier Method is formulated as a force field problem as described
by Boyd and Vandenberg [1]. For each point x ∈ F , a barrier force is defined
for each constraint surface:

Fi(x) = ∇(−log(−fi(x))) =
∇fi(x)

fi(x)

where Fi(x) is the force vector at point x from the ith constraint, and fi(x)
is the (minimal) distance function from x to the ith constraint surface. The
projection constraint force (called the forcing direction force) is:

F0(x) = −t∇f0(x)

where F0(x) is the forcing direction force at x and f0(x) is fTx where f is
the direction of the forcing vector.

These forces are based on the logarithmic (barrier) function:

Φ(x) = −
m
∑

i=1

log(−fi(x))

and the distance function for hyperplanes is:

fi(x) = aTi x+ ci

and for hyperspheres:
fi(x) = ‖Ci − x‖ − |ri|

where Ci and ri are the center and radius, respectively, of the hypersphere.
Then the force field model is defined in terms of forces generated by the min-
imization impulse function (to move in a certain direction) and the repulsive
force of the constraint surfaces. Boyd gives the hyperplane forces which in
our representation are:

Fi(x) =
−ai

bi − aTi x

F0(x) = tf

The hypersphere forces are derived as follows:

f0(x) = fTx =
n

∑

i=1

f(i)x(i)
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Therefore:

∇f0(x) =











∂f0
∂x1

∂f0
∂x2

· · ·
∂f0
∂xn











=









f(1)
f(2)
· · ·
f(n)









= f

which implies that:
F0(x) = tf

In addition:

fi(x) = ((C(1)− x(1))2 + · · ·+ (C(n)− x(n))2)1/2 − ri

which means that:

∂fi(x)

∂xj

=
1

2
((Ci(j)− x(j))2)−1/2(2(Ci(j)− x(j)))(−1) =

x(j)− Ci(j)

‖Ci − x‖

and finally:

∇fi(x) =
x− Ci

‖Ci − x‖
and

Fi(x) =
x− Ci

‖Ci − x‖(‖Ci − x‖ − ri)

In order to encourage moving toward the disk boundary, another forcing
function may be defined as:

Fb(x) =
tbx

‖x‖

where tb is a magnitude value.
Given x ∈ F , t(0) > 0, µ > 1, ǫ > 0, then the Barrier Method is:

repeat

1. Centering step: find force equilibrium point x∗(t) of tf0 + Φ

2. Update: Set x to x∗(t)

3. Stopping Criterion: quit if µ/t < ǫ

4. Increase t: Set t to µt
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Figure 16 shows the forces resulting from only constraint surfaces repul-
sion forces (left), an upward external force (middle), and a downward external
force (right). The basic approach is to use the origin as an initial starting
point since the origin is guaranteed to be in the feasible region, and find the
equilibrium point when no force is applied (this corresponds to the analytic
center). Next, starting from the analytic center and using a forcing direction,
follow the resultant forces and move to the equilibrium point for this set of
forces. Choosing different forcing directions results in an exploration of the
feasible region. The problem is to determine an effective and efficient search
strategy.

Figure 17 shows the Barrier Method applied to finding solutions for a 2D
problem with three solutions. A 3-D example path is shown in Figure 18.

7. Conclusions and Future Work

The results of the experiments indicate that this geometric approach
works well at least up to dimension 20, and that the analytic center is the best
approximation to the actual atom probabilities on a random set of knowledge
bases. However, the probabilities provided by the Chop-SAT method per-
formed slightly better in the decision making experiment in Wumpus World,
and both the analytic center and Chop-SAT methods performed better than
a human developed risk probability algorithm. Moreover, the non-Euclidean
geometry also allows the determination of solutions, although since the bar-
rier method is applied to a non-convex set, it is not guaranteed to find a
vertex solution.

In the future, work will be performed in order to:

• test the SAT solver experiments in higher dimensions,

• seek effective ways to exploit the non-Euclidean geometry represen-
tation; e.g., view the feasible region as a domain to be explored by a
geo-bot which has a set of range sensors to help it detect feasible points
far from the Poincaré disk origin.

• use the atom probability approximation in more complex agent deci-
sion making situations (e.g., UAS traffic management) and compare its
effectiveness with other methods.

• use the method as the basis for decision-making in a set of autonomous
Unmanned Aircraf Systems (UAS) agents,
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Figure 16: Example Force Fields: Only constraint surface repulsion forces are present
(left); An added upward force (middle); A downward external force (right).

• explore formal verification of the BDI method.
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Figure 17: The Paths for the Barrier Method finding Solutions in a 2D Problem.
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