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Abstract. Logical agents base their action selection decisions on in-
ferences made over a logical knowledge base. Given a propositional logic
knowledge base expressed in Conjunctive Normal Form (CNF), the knowl-
edge can be converted into a geometrical format, and subsequent analysis
takes place as geometrical operations on the feasible region in that repre-
sentation. Two geometric representations are presented: the n-dimensional
hypercube in Euclidean geometry and the n-dimensional Poincaré disk in
non-Euclidean geometry. Based on these representations, two novel meth-
ods are proposed to: (1) find SAT solutions for the knowledge base (i.e., a
truth assignment to each logical variable which makes the CNF sentence
true), and (2) find a reasonable approximation to the atom probabilities
given the current set of information. This allows agents to determine the
semantics (truth) of the world as well as to estimate the probability of
truth. The geometric method provides an efficient heuristic approach to
solving SAT for CNF knowledge bases, and provides polynomial-time so-
lutions of probabilistic SAT for independent variables, and good PSAT
estimates for non-independent logical variables.

1 Introduction and Background

Given a propositional calculus knowledge base represented in Conjunctive Nor-
mal Form (CNF), an agent can find out information about the world by finding
new sentences that are entailed by the current knowledge. In this way, an agent
can determine proper actions. To do so, it may be useful to determine whether
the CNF sentence has a solution (satisfiable) or not (unsatisfiable). This is called
the SAT problem (for SATisfiability) problem. The SAT problem is NP complete
[21].

Another aspect of interest to the agent is the probability that a specific
atom (logical variable) is true. For example, for the CNF S = A ∨ B, there
are three solutions, (0, 1), (1, 0), (1, 1), which satisfy S and, assuming equal
likelihood for all solutions, the probability of A is 2/3, and the probability of B
is 2/3 Note that this is the mean of the models (truth assignments to variables)
which satisfy the sentence. One way to determine the atom probabilities is to
solve the Probabilistic SAT (PSAT) problem when each conjunct, Ci, is given



a probability, pi [9, 17]. That is, given n logical variables, there are 2n unique
truth assignments (also called models or the complete conjunction set) to the
variables. The set of all models is called Ω, and ωi is the model with binary
assignments corresponding to the binary representation of i−1; e.g., ω1 is all zero
assignments - all false. The PSAT problem consists of determining a probability

distribution, π : Ω → [0, 1] such that
∑

2
n

i=1
π(ωi) = 1, and

∑
ωi|=Cj

π(ωi) = pj ,
for all conjunct probabilities, pi. The probability of an atom is then found as
Prob(A) =

∑
ωi|=A π(ωi). We have also previously described how to solve the

Probabilistic Sentence Satisfiability Problem (PSSAT) [12] which in certain cases
provides a PSAT solution (i.e., given independent variables). The methods we
are proposing differ from standard methods in that we solve linear or nonlinear
systems of equations rather than having to consider the full joint probability
distribution over the variables (e.g., like Bayesian networks [18] or Markov Logic
Networks [7]).

The purpose of this study is to investigate Chop-SAT as an alternative way
to answer these questions about SAT and PSAT [13, 15]. Work on the use of
cutting planes started with Gomory [11] who sought integer solutions for lin-
ear programs. Given the semantics of the literals in a disjunction, then a linear
inequality can be formed summing xi for atoms in the clause and (1 − xi) for
negated atoms in the clause and setting this to be greater than or equal to
1. Next, a {0, 1} solution is sought resulting in an integer linear programming
problem. If a non-{0, 1} solution is found, Gomory proposed a way to separate
(via a cutting plane) that solution from all integer solutions. This method has
been used in finding lower complexity ways to provide theorems for proving
the boundedness of polytopes, cutting plane proofs for unsatisfiable sentences,
pseudo-Boolean optimization, etc. (see [2–6]). The Chop-SAT method was dis-
covered independently and is based on a different set of insights into the nature
of the CNF form.

Based on the Chop-SAT approach, the contributions here provide:

1. A method to determine whether a SAT solution exists, and
2. A method to determine an approximation to the atom probabilities.

2 Chop-SAT

A CNF sentence is the conjunction of a set of disjunctions where each disjunction
is a literal (i.e., either an atom or the negation of an atom). A CNF sentence is
then represented as S = C1 ∧ C2 ∧ . . . ∧ Cm, where Ci = Li,1 ∨ Li,2 ∨ . . . ∨ Li,ki

where Li,j = ap or Li,j = ¬ap, and ap is an atom.
The satisfiability of a CNF sentence, S, over n variables can be converted to

a geometric problem as follows. Consider the hypercube of dimension n centered
at [ 1

2
, 1

2
, . . . , 1

2
]; call it Hn. Then each vertex of Hn represents a model for n

variables. The vertexes also represent assignments of probability 0 or 1 for the
truth of each variable. Every other point in Hn can be considered to give a prob-
ability on the interval [0, 1] for each variable. E.g., the center of Hn represents a
probability assignment of 1/2 for each atom.


