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Abstract. Logical agents base their action selection decisions on in-
ferences made over a logical knowledge base. Given a propositional logic
knowledge base expressed in Conjunctive Normal Form (CNF), the knowl-
edge can be converted into a geometrical format, and subsequent analysis
takes place as geometrical operations on the feasible region in that repre-
sentation. Two geometric representations are presented: the n-dimensional
hypercube in Euclidean geometry and the n-dimensional Poincaré disk in
non-Euclidean geometry. Based on these representations, two novel meth-
ods are proposed to: (1) find SAT solutions for the knowledge base (i.e., a
truth assignment to each logical variable which makes the CNF sentence
true), and (2) find a reasonable approximation to the atom probabilities
given the current set of information. This allows agents to determine the
semantics (truth) of the world as well as to estimate the probability of
truth. The geometric method provides an efficient heuristic approach to
solving SAT for CNF knowledge bases, and provides polynomial-time so-
lutions of probabilistic SAT for independent variables, and good PSAT
estimates for non-independent logical variables.

1 Introduction and Background

Given a propositional calculus knowledge base represented in Conjunctive Nor-
mal Form (CNF), an agent can find out information about the world by finding
new sentences that are entailed by the current knowledge. In this way, an agent
can determine proper actions. To do so, it may be useful to determine whether
the CNF sentence has a solution (satisfiable) or not (unsatisfiable). This is called
the SAT problem (for SATisfiability) problem. The SAT problem is NP complete
[20].

Another aspect of interest to the agent is the probability that a specific
atom (logical variable) is true. For example, for the CNF S = A ∨ B, there
are three solutions, (0, 1), (1, 0), (1, 1), which satisfy S and, assuming equal
likelihood for all solutions, the probability of A is 2/3, and the probability of B
is 2/3 Note that this is the mean of the models (truth assignments to variables)
which satisfy the sentence. One way to determine the atom probabilities is to
solve the Probabilistic SAT (PSAT) problem when each conjunct, Ci, is given



a probability, pi [9, 17]. That is, given n logical variables, there are 2n unique
truth assignments (also called models or the complete conjunction set) to the
variables. The set of all models is called Ω, and ωi is the model with binary
assignments corresponding to the binary representation of i−1; e.g., ω1 is all zero
assignments - all false. The PSAT problem consists of determining a probability

distribution, π : Ω → [0, 1] such that
∑2n

i=1 π(ωi) = 1, and
∑

ωi|=Cj
π(ωi) = pj ,

for all conjunct probabilities, pi. The probability of an atom is then found as
Prob(A) =

∑

ωi|=A π(ωi). We have also previously described how to solve the

Probabilistic Sentence Satisfiability Problem (PSSAT) [12] which in certain cases
provides a PSAT solution (i.e., given independent variables). The methods we
are proposing differ from standard methods in that we solve linear or nonlinear
systems of equations rather than having to consider the full joint probability
distribution over the variables (e.g., like Bayesian networks [18] or Markov Logic
Networks [7]).

The purpose of this study is to investigate Chop-SAT as an alternative way
to answer these questions about SAT and PSAT [13, 15]. Work on the the use
of cutting planes started with Gomory [11] who sought integer solutions for lin-
ear programs. Given the semantics of the literals in a disjunction, then a linear
inequality can be formed summing xi for atoms in the clause and (1 − xi) for
negated atoms in the clause and setting this to be greater than or equal to
1. Next, a {0, 1} solution is sought resulting in an integer linear programming
problem. If a non-{0, 1} solution is found, Gomory proposed a way to separate
(via a cutting plane) that solution from all integer solutions. This method has
been used in finding lower complexity ways to provide theorems for proving
the boundedness of polytopes, cutting plane proofs for unsatisfiable sentences,
pseudo-Boolean optimization, etc. (see [2–6]). The Chop-SAT method was dis-
covered independently and is based on a different set of insights into the nature
of the CNF form.

Based on the Chop-SAT approach, the contributions here provide:

1. A method to determine whether a SAT solution exists, and
2. A method to determine an approximation to the atom probabilities.

2 Chop-SAT

A CNF sentence is the conjunction of a set of disjunctions where each disjunction
is a literal (i.e., either an atom or the negation of an atom). A CNF sentence is
then represented as S = C1 ∧ C2 ∧ . . . ∧ Cm, where Ci = Li,1 ∨ Li,2 ∨ . . . ∨ Li,ki

where Li,j = ap or Li,j = ¬ap, and ap is an atom.
The satisfiability of a CNF sentence, S, over n variables can be converted to

a geometric problem as follows. Consider the hypercube of dimension n centered
at [ 12 ,

1
2 , . . . ,

1
2 ]; call it Hn. Then each vertex of Hn represents a model for n

variables. The vertexes also represent assignments of probability 0 or 1 for the
truth of each variable. Every other point in Hn can be considered to give a prob-
ability on the interval [0, 1] for each variable. E.g., the center of Hn represents a
probability assignment of 1/2 for each atom.



Next, consider a clause, Ci, of S with ki literals. Since it is a disjunction,
there is only one truth assignment over its literals which makes it false: namely,
where the atom of each literal is assigned the value which makes the literal false.
However, every atom not represented by a literal in Ci can take on either truth
value and not change the truth of the clause. Thus, there is a sub-hypercube of
dimension n−ki, that is, a shifted, scaled instance of Hn−ki

, whose vertexes are
not solutions for S. It turns out that there is an (n− 1)-dimensional hyperplane
which can be constructed so as to separate solutions from these non-solutions
for Ci. This chopping hyperplane can be positioned anywhere along the edges
connecting Hn−k to the rest of Hn. Figure 1 shows an example of chopping one
vertex, [1,0,1], from H3. The chop corresponds to finding the intersection of Hn

with the set of points in the non-negative half-space defined by the hyperplane.
Each conjunct provides a corresponding half-space, and the set of all half-spaces,
along with Hn are intersected to produce the feasible region for solutions.

Fig. 1. Example of Chopping [1;0;1] from H3. The chopping hyperplane goes through
the neighbors of [1, 0, 1].

Once all the chops are made (i.e., the intersection ofHn with the non-negative
half-spaces defined by the hyperplanes), the resulting convex set is called the
feasible region. Note that it is necessary to include hyperplanes which define the
faces of Hn in order to keep the feasible region bounded. Figure 2 shows a simple
2-D example of the feasible region resulting from chopping off each corner. The
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Fig. 2. Example 2-D Feasible Region Resulting from Chopping all Corners o H2.

hyperplanes in this case are lines in 2-D. Each row provides the coefficients a, b, c
of the standard form equation of a line: ax+ by + c = 0:

-0.7071 -0.7071 1.0607

-0.7071 0.7071 0.3536

0.7071 -0.7071 0.3536

0.7071 0.7071 -0.3536

1.0000 0 0

-1.0000 0 1.0000

0 1.0000 0

0 -1.0000 1.0000



where the first four are the corner cuts, and the last four define the faces (sides)
of the square. The chops are made midway along the edges connecting the vertex
to be removed and its neighbors.

3 Solving SAT

Given a feasible region, F , corresponding to a CNF sentence (or knowledge base),
it is possible to probe that region to determine if there is a SAT solution (i.e., a
corner of Hn in F). Note that the feasible region for any unsatisfiable sentence

has no point farther than
√
n−2
2 from the center of Hn.

Our approach takes advantage of the fact that the Maximal Volume Inscribed
Ellipsoid (MVE) of a full-dimensional convex polytope defined by a finite set of
affine inequalities can be found in polynomial time [22], and the MVE will,
in general, have its major semi-axes aligned with the most elongated parts of
F . Moreover, Prof. Zhang provided us with a Matlab function which produces
an ellipsoid representation consisting of x and E, where x is the center of the
ellipsoid and E is the matrix such that the points, P, of the ellipsoid are defined
as:

P = {x+ Es|s ∈ ℜn ∋ ‖s‖ ≤ 1}

The Singular Value Decomposition of E yields the semi-major axes of the MVE.
In order to increase the volume, it is possible to move the hypercube face con-
straints outward to allow a larger volume for the ellipsoid. Figure 3 demonstrates
this idea in 2-D where there is just one solution ([0;0]), and the sides of the square
have been moved out 10 units.

To test the practicality of this approach, the following experiment was per-
formed:

– A set of 1000 random knowledge bases over 20 variables was generated.

– The corresponding feasible region was determined for each KB.

– The MVE was found for each feasible region.

– The major semi-axes were found.

– The feasible region boundary points along both directions of the major semi-
axes were found.

– If any point was greater than
√
n−2
2 away from the center, then a solution is

known to exist.

A solution was found in this way for every knowledge base. Note that this is only
a heuristic and is not guaranteed to find a solution. If the Minimal Volume Cir-
cumscribing ellipsoid were found instead, then this would guarantee a solution,
but this problem is NP hard [8].



Fig. 3. Example 2-D MVE Showing Major Semi-Axis in Direction of Solution.

4 Solving for Atom Probabilities

Another important problem for an agent is to determine the probability of the
state of the world. For example, in the Wumpus World, the agent will die if it
enters a cell with a pit. Here we describe a method to determine such probabilities
using the feasible region arising from a CNF sentence knowledge base.

For any given satisfiable knowledge base, the atom probabilities are just the
average of the 0/1 truth assignments of the models which make satisfy the CNF
sentence as described in the introduction. However, since it is too computation-
ally costly to determine all possible solutions and take their average, we propose
the following approximations that can be found within a feasible region F :

– the analytic center of F .



– the p-center of F .
– the center of the MVE.
– mean of samples from F .

Analytic Center of F

The analytic center of F is defined as:

c = maxy

∏

h

(ah ·

[

y
1

]

)

where y ∈ F and ah is the hyperplane coefficient vector for hyperplane h.

P-Center of F

The p-center of the feasible region is defined as follows [16]: (1) choose an initial
point x ∈ F ; (2) for each hyperplane constraint find the line normal to the
hyperplane which goes through x; (3) find the two most distant points in F on
this line; (4) Average all the points found this way and assign the value to x; (5)
stop if x does not change significantly.

Chop-SAT Mean Center of F

In this approach, a number of samples are found in the feasible region and their
average determined. For example, solve the following:

minxf
Tx

such that x ∈ F and f is taken as the positive and negative unit vector along
each axis of the n-D space.

MVE Center of F

The MVE provides both the center of the MVE as well as the directions of
the semi-axes. Here, the center of the MVE is used to approximate the atom
probabilities.

4.1 Experimental Study

For this study, 1000 random knowledge bases were generated with 5 atoms, a
maximum of 10 clauses, and at most three literals in a clause. Figure 4 shows the
Euclidean distance between the atom probability vector and the four proposed
approximations: (1) the analytic center (has lowest error), (2) the p-center (next
lowest error), (3) the Chop mean center (similar to p-center error), and (4) the
MVE center (has the most error). The center errors over all trials was 0.25, 0.52,
0.57, and 1.07, respectively.
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Fig. 4. Error of Approximation Methods: Analytic Center (blue), P-Center (red), Chop
center (mustard), MVE center (purple).

Figure 5 shows how the centers cluster. Since the vectors are all 5-dimensional,
they are converted to a 2-dimensional representation which maintains spatial co-
herence. As can be seen, the analytic centers spread similarly to the actual atom
probabilities, the MVE centers form a tight central cluster, the p-centers skew
somewhat away (up) from the actual atom probabilities, while the Chop mean
centers skew a good bit away from the actual probabilities. The experiments
indicate that the Analytic Center is the best approximation to the actual atom
probabilities.
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5 Wumpus World Experiment

To demonstrate the effectiveness of this approach, agent decision making was
tested in the Wumpus World framework. Wumpus World was proposed by Yob
[21], and has been used as a standard agent testbed for some time [19]. Wumpus
world here is a 4x4 grid of cells; each cell may contain a pit with 20% probability,
and if there is a pit it is the only thing in the cell. One cell contains some gold,
and one cell contains a Wumpus (the gold may be co-located with the Wumpus).
An agent starts in cell (1, 1) and explores the grid in order to find the gold. Each
cell neighboring a pit has a breeze, and each cell neighboring the Wumpus has
a stench. Figure 6 shows an example board with the agent in cell (1, 1) with



direction θ = 0, with pits in cells {(1, 4), (4, 2), (4, 3)}, the Wumpus in cell (2, 3),
and the gold in cell (4, 4).

Step 1

Fig. 6. An Example Wumpus World Board.

The agent has a set of percepts in a cell (represented as bits): (1) stench, (2)
breeze, (3) glitter, (4) bump, and (5) scream. The glitter percept lets the agent
know it’s in the cell with the gold. The agent has a state (x, y, θ), where (x, y) is
its location in the grid, and θ is its orientation θ ∈ {0, 90, 180, 270} degrees. The
agent has a set of possible actions: (1) rotate left, (2) rotate right, (3) forward,
(4) grab, (5) shoot, and (6) climb. If the agent moves into a cell with a pit or
the Wumpus, it dies. The agent has one arrow and can shoot the Wumpus.



The agents here all share a Belief, Desire, Intention cognitive architecture
[10]. The Belief-Desire-Intention architecture is a hierarchical organization of
states and actions (grouped into plans) that was designed specifically for agent
models. The architecture not only defines the conceptual structure of a program,
but also a process structure that enables dynamic planning. Organizing the pro-
gram in this way supports both reasoning by the autonomous agent as well as
reasoning by human operators. The structure of desires, intentions, beliefs, and
plans coincides well with the reasoning of the human operator. For example, a
human observer could ask a BDI agent directly, “What is your current plan?”
and the agent could respond “Located the Wumpus and pro ceding to kill it.”

In the specific scenario here, the desires are: (1) escape, (2) kill the Wum-
pus, and (3) explore. If it has the gold, its intention will be to escape with the
gold. The agent’s intention will be to kill the Wumpus if its location is known.
Otherwise, its intention is to explore the grid. In order to explore, the agent
selects the lowest probability risk unvisited cell. All agents have the same BDI
architecture and only differ in how they compute the probabilities for risk: (1)
a human produced algorithm to assign pit and Wumpus probabilities, (2) the
analytic center, (3) Chop-SAT mean, and (4) Monte Carlo simulation based on
statistics over sample boards satisfying the known percept information.

The experimental method is to generate 1,000 random Wumpus boards, run
each agent type on the boards, and measure successful escape with the gold.
Note that the Monte Carlo results will be very close to optimal and serves as
the upper bound on success. The results are given in Table 1. As can be seen,
the Chop-SAT based agent performed the best, and this is a good indication of
its efficacy.

Table 1. Results of Wumpus World Experiment.
Number Human Analytic Chop-SAT Monte Carlo

of Boards Center

1000 585 598 608 613.3

6 Non-Euclidean Geometry Approach

The Euclidean method described above shows how each disjunction in the CNF
sentence gives rise to a hyperplane which separates the non-solution vertexes (on
the negative side of the hyperplane) of Hn from the solution vertexes (on the
non-negative side of the hyperplane); i.e., the intersection of the non-negative
half-spaces of these hyperplanes results in a convex feasible region which must
contain any solution which exists. The non-Euclidean method projects Hn onto
the n-dimensional unit hypersphere considered as an n-dimensional Poincaré
Disk (see [14]). The advantage of this approach is that the vertexes of Hn are
mapped onto the surface of the disk and are thus at infinite distance (in terms of
hyperbolic geometry) from the center of the disk. The idea is that this property
makes the solutions more readily identifiable.



The motivation for using non-Euclidean geometry is that it allows us to
put the solutions at a unique location: at infinite distance from the origin in
terms of non-Euclidean distance). That is, SAT is mapped onto the Poincare
Disk as follows (see Figure 7). The corners of the n-dimensional hypercube are

Fig. 7. The Vertexes of the Hypercube are Projected onto the Hypersphere.

projected onto the n-dimensional hypersphere,Dn, as ideal points (i.e., points on
the surface of the hypersphere - note that these are not points in the Poincaré
Disk). These ideal points are an infinite distance from the center of the unit
hypersphere. Unlike in Euclidean geometry where the hyperplane chops usually
produce a bounded convex polytope for the feasible region whether or not a



solution exists, in the case of the Poincaré Disk representation, the feasible region
is only bounded when no solution is in the feasible region. Given this fact, the
goal is to find low-complexity algorithms to determine whether or not there exists
a sequence of points in the feasible region such that in the limit their distance
from the origin is infinite (in hyperbolic geometry).

The goal is to provide a representation in terms of the Poincaré Disk which
allows the solution vertexes to be found through efficient geometric algorithms.
To set up this representation, a few basic facts concerning the Poincaré Disk
geometry must be defined.

6.1 Poincaré Disk Distance

Consider the 2-dimensional Poincaré Disk (Figure 8, upper left circle). The dis-
tance between two points, p and q, in the Poincaré Disk is defined in terms of
Euclidean distance on points given as complex numbers:

d(p, q) = ln(
|ap||qb|

|aq||pb|
)

where a and b are the intersection points with the unit circle of the unique circle
(Figure 8, lower right circle) through p and q which is orthogonal to the unit
circle. Moreover, the points are arranged in the order a, p, q and b along the
circle. An alternative formulation which does not require the orthogonal circle
is given by:

d(p, q) = acosh(1 +
2|pq|2|r|2

(|r|2 − |op|2)(|r|2 − |oq|2)
)

where r = 1 for the unit disk, and |op| and |oq| are the Euclidean distances of p
and q from the origin, respectively.

6.2 The Orthogonal Circle through Two Points

The angle between two circles (defined in Euclidean coordinates) is given by:

cos(θ) =
r21 + r22 − ‖C1 − C2‖

2

2r1r2

where r1 is the radius of the first circle, r2 the radius of the second circle, and C1

and C2 are the centers of the two circles. Two circles are said to be orthogonal
if θ = π

2 .
Given two points, p and q, in the Poincaré Disk, the straight line (in hyper-

bolic terms) through them can be found as follows. If p and q lie on a diameter
of the Poincaré Disk, then the line is just the straight Euclidean line through
the two points. This can be viewed as a circle of infinite radius through the two
points. If p and q do not lie on a diameter line, then there are two circles to
consider: the unit disk with r1 = 1 and C1 = (0, 0), and the circle through p and
q with radius r2 and center C2 = (Cx, Cy). Since the circles are orthogonal:

cos(θ) = cos(
π

2
) = 0
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Fig. 8. The 2D Poincaré Disk; L1 is a line through the center, O = (0, 0), i.e., a
diameter; L2 is a circular arc which is orthogonal to the unit circle.

⇒ 0 = 1 + r22 − ‖C2‖
2

⇒ r22 = C2
x + C2

y − 1

Each point, p and q, gives rise to another equation; e.g., for p:

r22 = (px − Cx)
2 + (py − Cy)

2

⇒ r22 = p2x − 2pxCx + C2
x + p2y − 2pyCy + C2

y

and substituting the first into the second:

C2
x + C2

y − 1 = C2
x + C2

y − 2pxCx − 2PyCy + p2x + p2y



⇒ pxCx + pyCy =
p2x + p2y + 1

2

Likewise:

⇒ qxCx + qyCy =
q2x + q2y + 1

2

This can be solved as a linear system:

A =

[

px py
qx qy

]

b =

[

p2

x+p2

y+1

2
q2x+q2y+1

2

]

and solving for the center, C:

AC = b

Finally, the radius is found as follows:

r = ‖C − p‖

6.3 Representation of Bounding Faces in the Poincaré Disk

In Euclidean geometry, the SAT problem is posed in terms of removing vertexes
from the hypercube. Each conjunct in the CNF sentence provides a hyperplane
which divides the feasible region from the non-satisfying solutions for that con-
junct. However, in the Poincaré Disk, a way must be found to represent the
original complete set of vertexes, and then some way to chop non-solutions from
the feasible region. One way to go at this is to use a square like the one shown in
Figure 9. The problem arises that this is likely to suffer from the same problem
as the Euclidean representation, namely that a projection does not readily reveal
solution corners.

Another representation that may allow lower complexity discovery of whether
a solution exists or not is given by the feasible region shown in Figure 10. The
2n (n − 1)-dimensional bounding faces of the hypercube are represented in the
Poincaré Disk in terms of hyperspheres through the corresponding face vertexes.
The centers of these hyperspheres will lie along the coordinate axes (one each in
the positive and negative directions). Let v1 be the unit vector from the center
of Dn to a vertex of the face, and v2 be the unit vector in the desired axis
direction. We seek the center, C and radius r of the hypersphere through the
face vertexes. Given that the desired hypersphere is orthogonal to the unit disk,
then the angle, θ, between v1 and v2 is given by:

θ = acos(v1 · v2)

which means that the distance, xd, along the axis from the origin to C is:

xd =
1

cos(θ)

which gives C. This process is done for the 2n bounding face constraints on the
feasible region.



Fig. 9. Representing the Complete Feasible Region as a Square in the Poincaré Disk.
The left side is the complete feasible region, while the right side shows the feasible
region when (0, 1) is not a truth assignment that satisfies the CLF sentence.

Clause Chops As has been described, lines in the Poincaré Disk are circular
arcs when viewed in Euclidean geometry, and this allows non-solution vertexes
to be separated from the feasible region by choosing the appropriate side of the
circle which defines the chop. What is required is an algorithm to convert from a
CNF conjunct to the equation of a circle which has the non-solutions on one side
and the remaining possible solutions on the other. This algorithm is provided
below.

Given clause:

C = L1 ∨ L2 ∨ . . . ∨ Lk



Fig. 10. Representing the Complete Feasible Region as a Square with corners at infinity
in the Poincaré Disk.

convert to V = [v1, v2, . . . , vn] where n is the number of atoms, and ai is the ith

atom:
vi = −1 if ∃j ∋ ¬ai = Lj

vi = 0 if no literal of ai ∈ C

vi = 1 if ∃j ∋ ai = Lj

Let α = −V and uα = a
‖α‖ . Obtain an Hn vertex to be chopped by substituting

-1 for 0’s, if any, in α: chop pt = α−1←0.
Obtain a non-chopped neighbor, nei pt, by inverting a non-zero element of

chop pt.



Obtain the projection point by sliding along an Hn edge connecting the
chop pt to the nei pt by the desired percentage amount ∆ ∈ (0, 1]; that is:

proj pt = (1−∆)chop pt+∆nei pt

To get the projection point on the Poincaré Disk boundary:

proj pt PD =
proj pt

‖proj pt‖

Then:

θ = acos(ua · proj pt PD)

d =
1

cos(θ)

r2 =
√

d2 − 1

C = dua

Consider the following example. Let C = ¬A ∨ ¬B. Then V = [−1,−1],
α = [1, 1], and µα = [0.7071, 0.7071]. Then chop pt = [1, 1] and nei pt = [−1, 1].
Let ∆ = 0.9, then proj pt = [−0.8, 1] and proj pt PD = [−0.6247, 0.7809]
resulting in θ = 1.4601 radians (83.66 degrees), and d = 9.0554.

Notice that if single-literal clauses are allowed, then the center of the chop
hypersphere may flip sides to satisfy circle orthogonality. If so, the feasible side
of the hypersphere is the interior. Such clauses can be avoided by deleting the
atom of the literal and substituting its truth value into the other clause where it
appears and then reducing these clauses accordingly. Figure 11 shows example
2D and 3D chops. Note that this formulation works in any dimension.

The ∆ parameter determines how far the chop occurs from the non-solution
vertexes which are being cut. Figure 12 shows some example positions for chops.
Figure 13 shows the chops for Modus Ponens, Figure 14 shows three edges
chopped, and Figure 15 shows a 3D face chop.

6.4 Method

Given a CNF sentence, the problem solution is found as follows:

– A set of chops are produced for the CNF clauses; these chops are hyperplanes
just like those used in Euclidean geometry. Note that they can also be viewed
as infinite radius hyperspheres through those neighbor vertexes, however,
these hyperspheres are not orthogonal to the unit disk.

– In addition to the constraint surfaces arising from the chopped vertexes, it is
also necessary to bound the feasible region to be interior to the transformed
unit cube. To this end, a set of face constraint hyperspheres are added; these
hyperspheres are orthogonal to the unit disk.



Fig. 11. Examples of Chops in 2D and 3D.

– A Barrier Method type algorithm is developed for this constraint set which
moves in the selected projection direction (i.e., maximizes the projection)
using the hypersphere surfaces as barrier constraints. This is implemented
as a force field method and is described in detail below. Other forces may
also be introduced to ameliorate the convergence; e.g., a force away from the
origin.

– A solution is considered to exist if the convergence point is close enough to
a solution vertex; i.e., in the limit, the distance from the origin of the points
in the sequence grows without limit.



Fig. 12. The Impact of Delta on Chop Distance from Non-Solution Vertexes.

In Euclidean geometry, existing software tools exist to solve linear program-
ming problems (e.g., the Matlab function linprog). However, a variant was im-
plemented here to handle the mix of hyperplane and hypersphere surfaces.

Barrier Method The Barrier Method is formulated as a force field problem as
described by Boyd and Vandenberg [1]. For each point x ∈ F , a barrier force is
defined for each constraint surface:

Fi(x) = ∇(−log(−fi(x))) =
∇fi(x)

fi(x)



Fig. 13. Chops for Modus Ponens.

where Fi(x) is the force vector at point x from the ith constraint, and fi(x) is the
(minimal) distance function from x to the ith constraint surface. The projection
constraint force (called the forcing direction force) is:

F0(x) = −t∇f0(x)

where F0(x) is the forcing direction force at x and f0(x) is fTx where f is the
direction of the forcing vector.

These forces are based on the logarithmic (barrier) function:

Φ(x) = −

m
∑

i=1

log(−fi(x))



![tbh]

Fig. 14. Three Edges Chop.



Fig. 15. 3D Face Chop.

and the distance function for hyperplanes is:

fi(x) = aTi x+ ci

and for hyperspheres:

fi(x) = ‖Ci − x‖ − |ri|

where Ci and ri are the center and radius, respectively, of the hypersphere. Then
the force field model is defined in terms of forces generated by the minimization
impulse function (to move in a certain direction) and the repulsive force of the
constraint surfaces. Boyd gives the hyperplane forces which in our representation



are:

Fi(x) =
−ai

bi − aTi x

F0(x) = tf

The hypersphere forces are derived as follows:

f0(x) = fTx =

n
∑

i=1

f(i)x(i)

Therefore:

∇f0(x) =











∂f0
∂x1

∂f0
∂x2

· · ·
∂f0
∂xn











=









f(1)
f(2)
· · ·
f(n)









= f

which implies that:

F0(x) = tf

In addition:

fi(x) = ((C(1)− x(1))2 + · · ·+ (C(n)− x(n))2)1/2 − ri

which means that:

∂fi(x)

∂xj
=

1

2
((Ci(j)− x(j))2)−1/2(2(Ci(j)− x(j)))(−1) =

x(j)− Ci(j)

‖Ci − x‖

and finally:

∇fi(x) =
x− Ci

‖Ci − x‖

and

Fi(x) =
x− Ci

‖Ci − x‖(‖Ci − x‖ − ri)

In order to encourage moving toward the disk boundary, another forcing function
may be defined as:

Fb(x) =
tbx

‖x‖

where tb is a magnitude value.
Given x ∈ F , t(0) > 0, µ > 1, ǫ > 0, then the Barrier Method is:

repeat

1. Centering step: find force equilibrium point x∗(t) of tf0 + Φ
2. Update: Set x to x∗(t)
3. Stopping Criterion: quit if µ/t < ǫ
4. Increase t: Set t to µt



Figure 16 shows the forces resulting from only constraint surfaces repulsion
forces (left), an upward external force (middle), and a downward external force
(right). The basic approach is to use the origin as an initial starting point since
the origin is guaranteed to be in the feasible region, and find the equilibrium point
when no force is applied (this corresponds to the analytic center). Next, starting
from the analytic center and using a forcing direction, follow the resultant forces
and move to the equilibrium point for this set of forces. Choosing different forcing
directions results in an exploration of the feasible region. The problem is to
determine an effective and efficient search strategy.

Fig. 16. Example Force Fields: Only constraint surface repulsion forces are present
(left); An added upward force (middle); A downward external force (right).



Figure 17 shows the Barrier Method applied to finding solutions for a 2D
problem with three solutions. A 3-D example path is shown in Figure 18.

Fig. 17. The Paths for the Barrier Method finding Solutions in a 2D Problem.

7 Conclusions and Future Work

The results of the experiments indicate that this geometric approach works well
at least up to dimension 20, and that the analytic center is the best approx-
imation to the actual atom probabilities on a random set of knowledge bases.
However, the probabilities provided by the Chop-SAT method performed slightly



Fig. 18. The Paths for the Barrier Method finding a Solution in a 3D Problem.

better in the decision making experiment in Wumpus World, and both the ana-
lytic center and Chop-SAT methods performed better than a human developed
risk probability algorithm. Moreover, the non-Euclidean geometry also allows
the determination of solutions, although since the barrier method is applied to
a non-convex set, it is not guaranteed to find a vertex solution.

In the future, work will be performed in order to:

– test the SAT solver experiments in higher dimensions,
– seek effective ways to exploit the non-Euclidean geometry representation;

e.g., view the feasible region as a domain to be explored by a geo-bot which
has a set of range sensors to help it detect feasible points far from the
Poincaré disk origin.



– use the atom probability approximation in more complex agent decision mak-
ing situations (e.g., UAS traffic management) and compare its effectiveness
with other methods.

– use the method in a multiagent setting which allows agents to share knowl-
edge.

– explore formal verification of the BDI method.
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