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CHAPTER 5

A Locally Well-Behaved
Potential Function and a
Simple Newton-Type Method
for Finding the Center

of a Polytope

Pravin M. Vaidya

Abstract. The center of a bounded full-dimensional polytope P = {x: Ax > b}
is the unique point w that maximizes the strictly concave potential function
F(x) = Y™, In(alx — b)) over the interior of P. Let x, be a point in the interior
of P. We show that the first two terms in the power series of F(x) at.x, serve as
a good approximation to F(x) in a suitable ellipsoid around x, and that mini-
mizing the first-order (linear) term in the power series over this ellipsoid increases
F(x) by a fixed additive constant as long as x, is not too close to the cefiter w.

§1. Introduction

Let the polytope P be defined as
P={x:Ax > b}

where x € R", b € R™, and A € R™*".'The center w of the polytope P is defined
to be the unique point that maximizes the strictly concave potential function

F(x) =), In(@7x — by

Under the assumption that the polytope P is bounded and has a nonzero
interior, the Hessian of F is negative definite over the interior of P, and so w
is indeed a unique point. We let f(x) = F(w) — F(x) denote the normalized
potential corresponding to F(x). We define transformed coordinates ¥;(x) as

al(x — w)

) =t =

i=1,2,...,m

The coordinates W;(x) were originally defined in [3, 4] and will be used exten-
sively here in proving various properties of f(x). Let (J) denote the ellipsoid
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around o given by

2(6) = { Z‘P(x <52}

Then £(1) € P < X(m) [3,4]. Thus the ratio of the maximum to the minimum
distance from the center w to any point on the boundary of P is upper bounded
by m. So the center is a balanced point in the polytope. The center plays an
important role in algorithms for linear and convex programming [1-6]. In
particular, a polynomial time algorithm for computing a good approximation
to the center can be converted into a polynomial time algorithm for linear
programming [3, 6].

In this short chapter we shall describe some properties of f(x) and see how
they may be used to develop an algorithm for finding the center w. We shall
assume that an initial point strictly in the interior of the polytope is available.

{
§2. Local Behavior of the Potential

Let x, be a point in the interior of the polytope P, let 7 be the gradient of f(x)
evaluated at x,, and let H denote the Hessian of f(x) evaluated at x,.
Explicitly,

,; (alxq — b)a
and

m ]
=Y ————aal.
S (@ xp — b;)?

Let E(r) be the ellipsoid around x, defined as
E(r) = {x: (x — xq)TH(x — x,) < r*}.

Note that if 0 < r < 1 then the ellipsoid E(r) is contained within the polytope
P. We shall show that minimizing the linear function #7x over the ellipsoid
E(r) gives a good reduction in f(x). Specifically, f(x) is reduced by at least a
fixed additive constant if x, lies outside the ellipsoid Z(0.5), whereas f(x) is
reduced by at least a fixed fraction if x, is within the ellipsoid %(0.5).

Let x = x4 + t&. Using the power series expansion of f(x, + t&) at x,,
f(xo + t&) may be written as

B = P [_!)Jrf );
S(xo +88) = f(x0) + ty 6+ é HE + ; e ).

= (u,"‘xu — by

We shall prove the following lemmas.

Lemma 5.1. Let r be a parameter such that 0 <r < 1, and let x = x, + t& be
a point in the ellipsoid E(r) around x,. Then
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£2
? f THé < 0.57’2

0 —[ i m (ﬂ:‘r‘f)J ) 3
jZS J (;;1 (af xq — bﬂ]j>’ = 3(1—n)

The next lemma lower bounds the maximum ehange obtainable in the
linear function nx over the ellipsoid E(r).

and

Lemma 5.2. Let r be a parameter such that 0 < r < 1, and let 6 be a parameter
such that 0 < & < 1. Let x’ be the point where the straight line joining x, to the
center w intersects the boundary of the ellipsoid E(r) around x0 The point x’
satlsfles the followmg conditions.

5(1—9
(W)=If x5 ¢ Z(8) then n(xo — x') = 2E1 + a;

(2) If xo € Z(6) then nT(xq — x') = ((1 — 8)f(x,))2r.

The final lemma says that the point that minimizes the linear function 7 x
over E(r) gives a good reduction in f(x).

Lemma 5.3. Let § be a parameter such that 0 < § < 0.7, and let € be a parameter
such that 0 < ¢ < 1. Let ry, be defined by

o {e, i x4 3(6)

¢ e/ f(xo), if xo € Z(3)

Let x be the point that minimizes the linear function n™x over the ellipsoid E(r,)
around x,. Then point x satisfies the following conditions.

(1) If xo ¢ X(5) then

5(1 — 3) £
T A Trpeer

f(%) = flxo) < —

Q) If xo € Z(5) then

3

f(x)_<_< —g(1 — 8)M* 4 0.5¢2 +3( )

)f(xo)

Lemma 5.3 may be converted into an algorithm for finding the center w as
follows. Let x, be the current point and let x be the point that minimizes n7x
over the ellipsoid E(r,), where r, is as defined in Lemma 5.3. x, — x satisfies
the system of linear equations

H(xg — x) =ty

for some scalar t. So we may compute a direction & by solving the system
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HE =n

and minimize f(x) on the line x, + & (Note that the one-dimensional mini-
mization need not be exact.) According to Lemma 5.3, the point thus obtained
will reduce f(x) by an additive constant if x, ¢ £(0.5) and will reduce f(x) by
a fixed fraction if x, € £(0.5). Thus starting with an initial point x;; strictly
in the interior of the polytope P we can produce a sequence of points converg-
ing to the center .

We now give a more formal algorithm for computing the center. We shail
assume that a point x,,;, such that f(x;,;) < M is available. (x;,;, 1s in the
interior of polytope P.) The algorithm produces a sequence of points zg = X;;
Zy, ..., Zt, - .. that converge to the center . x, denotes the current point in
the computation, and k is the step number. Let 0 be a parameter less than
1/250. The output of the the algorithm is a point z, such that f(z,) < 0.

Algorithm Find-Center
X 1= Xinic} Zo += Xiniis K 1= 05
Loop:
/*x, is the current point */
Let n be the gradient of f(x) at x, and
let H be the Hessian of f(x) at x,;
Let & be the direction obtained by solving HE = 7;
/* Increment step number k and compute z, */
ki=k+ 1,
Let z, be the point that minimizes f(x) on the line
Xo + t& where t is a scalar;
/* Reset x, */
Xp =iz
If f(z, — 1) — f(z,) = 0/3 then go to Loop
else halt;
end Find-Center

It is worth noting that & is in the same direction as the direction generated by
the Newton-Raphson method applied to the problem of minimizing f(x);
however, the length of the step taken in the direction of £ is quite different in
the above algorithm. Also note that in the above algorithm the value of F at
@ is not required to compute the difference f(z,_,) — f(z,). Furthermore, the
one- dimensional minimization on the line x, + t§ need not be performed
exactly. (It suffices to find a point on this line where f is either reduced by a
fixed additive constant or f is reduced by a {ixed fraction.)

Let z, be the point at the termination of the algorithm. Then f(z,_,) = 0/3,
and f(z,) < 0. That f(z,_,) > 0/3 follows from the observations that the
algorithm did not terminate at the (¢ — 1)st step and that the minimum value
of f'is zero. That f(z,) < 0 is shown as follows. We have that

]‘(qul) o f(Zq) < 0/3’
and hence by Lemma 5.3 (with 6 = 1/2, ¢ = 1/10), z,_, cannot be outside

e e e
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2(0.5). Therefore z,_; € X(0.5). Then again by Lemma 5.3 (with § = 1/2, ¢ =
0.5) we get that

flzq=1) — f(z)) 2 3f(zg-1).

Thus f(z,) < f(z,-1) < 0.

We shall now show an upper bound of O((mn* + n*)(M + log(1/6))) on
the total number of arithmetic operations performed by the algorithm. Since
during a step we must compute the gradient # and the Hessian H and solve
a system of linear equations, executing a step requires O(mn* + n*) arithmetic
operations. So to obtain the said bound on the total number of arithmetic
operations it suffices to show a bound of O(M + log(1/6)) on the total number
of steps executed by the algorithm. The number of steps is upper bounded as
follows. It requires O(M) steps to obtain a point in X(0.3) because by Lemma
5.3 f(x) is decreased by a fixed additive constant at each step as long as the
current point is outside £(0.3). Let p be the step number such that z, € £(0.3)
and for 0 < k < p, z, ¢ £(0.3). By Lemma 5.5 in Section 3, we get that flz,) <
0.1 and that for all k > p, f(z,) < f(z,) < 0.1. Then by Lemma 5.6 in Section
3 it follows that z, € Z(0.5) for all k > p. So we can apply Lemma 5.3 to each
step after the pth step and conclude that from the pth step onward f(x)
decreases by a fixed fraction at each step. Hence in O(log(1/0)) steps after
the pth step f(x) must fall below 6/3. Thus the total number of steps is
O(M + log(1/0)).

In a manner similar to [2, 6] it is possible to reduce the time complexity
of the above algorithm by using an approximate Hessian H, at each step where

: 5 A
H

_ i a.af
a oo 2 Y
=1 (af xg — b)

a;

and A, e [1/1.1,1.1], 1 < i < m. The above algorithm is modified as follows.
The direction § is now computed by solving the system H,E = y instead of
the system HE = 5. The approximate Hessian H, and its inverse are main-
tainedby performing rank-one updates as described in [2, 6]. z, is still obtained
by a one-dimensional minimization on the line x, + & We note that
the direction & computed by the modified algorithm is now quite different
from the Newton-Raphson direction. The modified algorithm still requires
O(M + log(1/0)) steps, which may be seen as follows. Suppose E,(r) is the
ellipsoid defined as

E (r) = {x: (x — x0)TH,(x — xo) < r?}.

Then

1.1

So Lemmas 5.1 through 5.3 are still valid (but with different constants) if the
ellipsoid E(r) is replaced by the ellipsoid E,(r). Thus minimizing T x over E,(r)
rather than E(r) still gives an adequate decrease in f(x). Use of approximate
Hessians reduces the average work per step to O(mn + m®>n?) arithmetic

E(L> < E,(r) < E(1.17).
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operations, leading to a total of O((mn -+ m®>n2)(M + log(1/0))) arithmetic
operations,

§3. Proofs of Lemmas

We shall first prove a couple of lemmas that will be used in the proofs of the
lemmas stated in Section 2.

| Lemma 5.4. Let ¥(x) = (afx — al w)/(a] w — b)), fori = 1,2,...,m. Then for
any point x in the polytope P,

PRrOOF. A proofis given in [3, 4] but we include it here for completeness. Since
o the gradient of f(x) vanishes at w, taking the dot product of the gradient of
f(x) at @ with @ — x gives

(w — X) i _

a;"m — h{) frt

The next lemma bounds for the maximum value of f(x) in the region 2(J)
for0<d <1

| Lemma 5.5. Let § be a parameter such that 0 < & < 1. Then the maximum value
:'.31 of f(x) in the ellipsoid Z(3) is at most 62/2(1 — §).

Proor. Since f(x) is strictly convex, and w minimizes f(x), the maximum value
of f(x) over the region X(d) is achieved on the boundary of £(d). We have

9= 5 ()

Using the Taylor series expansion, on the boundary of £(8) we may write f(x)
as

[ee]

i s =3, 3 A

B | j=ti

Bl From Lemma 5.4, Y ;_; W(x) = 0. So on the boundary of £(5) we get

—1 )J Jr( ,C)J'

Uk skl ek

m ‘Pi(x)2<1 26 25% 28 >

e e et e
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The next lemma lower bounds the value of the function Y7, (1/
(1 + Wi(x)) — 1) over the region {x: x € P,x ¢ ()} for 0 < § < 1.

Lemma 5.6. Let 6 be a parameter such that 0 < & < 1. The minimum value of
“1 (1/(1 + ¥i(x)) — 1) over the region {x: x € P,x ¢ £(8)} is greater than or
equal to 82/(1 + §).

ProOF. Let g(x) = ) 1= (1/(1 + Wi(x)) — 1). By Lemma 5.4, Y7o, ¥(x) =0,
and so

B m 1 _ = ‘Pi{x]z

The Hessian of g(x) evaluated at a point x is the matrix A7 D(x) A where D(x)
is a diagonal matrix whose ith diagonal entry D;(x) is given by D;(x) =
2(afw — b)/(aTx — b,)>. As ATD(x)A is positive definite in the interior of P,
g(x) is strictly convex in the interior of P. Furthermore, the minimum value
of g(x) over the interior of P occurs at the center w. Thus the minimum value
of g(x) over the region {x: x € P,x ¢ £(8)} occurs on the boundary of Z(5).
And on the boundary of (),

Wilx)*

N '"‘“P[JL)Z 52
909 =Y e z; :

l+0_1+5

We shall now prove the lemmas stated in Section 2. We shall restate the
lemmas for convenience.

Lemma 5.1. Let r be a parameter suchthat O <r < 1, and let x = Xo + tébea
point in the ellipsoid E(r) around x,. Then

tZ
?fTHé < 0.57‘2
and

3

© (—[)it)/m (a &y N
j;! b (t; (H;'Txo o b.'}j> = 3(1 - r).

Proor. By definition of E(r),
t2ETHE < 2.

As H may be written as

we get

T Fm—r——,
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Thus

=

J

© (—1)frf<m (afey )
=4

J i=1 {“ilrxu - {3’;)_'f

Lemma 5.2. Let r be a parameter such that O < r < 1, and let & be a parameter
such that 0 < & < 1. Let x' be the point where the straight line joining x, to the
center w intersects the boundary of the ellipsoid E(r) around x,. The point x’
satisfies the following conditions.

(1) If xo ¢ Z(3) then n(xg — x') = zg o gir

(2) If xo € £(8) then n"(xo — x') = (1 — 8)f(xo))*r.

PROOF. Let x, — x’ = Au where u is the unit vector in the direction of x, — x’
and 1 = | xo — x'||,. Then

VuTHu > r?

and so
P
uTHu
Thus
’,’T
HHxg — x') > r
JuTHu
T —
> nbo—o (.1)
Jxg — )T H(xo — o)
Note that
al' xo—alw
: :lil—, .=I,2,..‘, 1,
Yilxo) (alw — by r i
m l
=Y
1 i=1 (ﬂ;‘ Xo — b)
and

m ] -

H= ———q;q; .
:Zl (“.1 Xg — h'i)2 o

i o 1
ee=o-§ (i)
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<

j=3

w

< r
3(1 —r)
< 1, and let 6 be a parameter

straight line joining x to the
2(r) around x,. The point x'

)P,

or in the direction of x, — x’

-————14 (5.1)
(xo — o)

1,2,...,m,

al.

|
|
|
|
|
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@ 1 g
(xo — ®)"H(xo — @) = ) (lm - l> ‘

L 1
1;1 ( + ‘//l(x0) l)

N (%o — x') = —= . _r (5.2)
\/.Zi (1 + i(xo) 1>
Also,
m 1
o= £ () o
From Lemma 5.4,
3 vitxo) =

< I o S8 Wilxe)®
p (! +(xg) ) Zl <| Fxo) ¥ilxo) - 1) B .-; 1+ (o) 64)
Also,

n 1___ B e (\0)
i=zl (l + lﬁ"f{xo) > |'=Zl L= 'l’(‘co]]z

Thus from (5.2) we may conclude that

5 i)

=1

n7(xo — x') > (iiﬂz'(x"))@ r (5.5)
&+ Yi(x0)? '

From (5.3) and (5.5) it follows that in order to prove the lemma it suffices to
show that

(1) If x4 ¢ Z(6) then
u (XO) S(1—0) (& Ylxo)® 7
AT+ )22<1+6)(§ (L + Yilxo))? ) '
(2) If x, € X(J) then

L (V{:-)z L 1 . t{;f{x(}}z 172
] _$ L=t Tl .
zi I+ h(xe) < : )< ; ( 'Pi(xn]>><i; (1+ 'ﬁi(-xe})z))

Case 1. x ¢ X(9).
There are two subcases depending on the value of YT, [¥(xo)2 /1 + ¥i(xo))*].

(xo)2
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m Ynlxo)?
Case 1.1. e
i; (1 + i(x0))”
Since x, ¢ 2(3), from (5.4) and Lemma 5.6 it [ollows that
i 'l'r"i{xnlz_ > j:
Sl xy) 1+ 6

o L ':'("I{xo}z 2
Y (Z (1 + w.-(on) (56)

< 82

Case 1.2. v lf’i(xo}a—, > 62
S (L + y(xg))”

Note that 1 + y;(x) > 0 for all points x in the interior of the polytope P.
Thus

‘//i(xo)z - 6_!__0?@_(_3‘:}”
Wir=s 1+ i(x0)  ecayz=a 11+ ilxo)|

d Pilxo)? )’”
5 . )
= (I'P-U%I“zﬁ (1r+ w.‘(—"fu))z

z l//i(xo)z _wi(xtﬁ B
|i(xo) =4 (1 + 'pi(xo))z i (xo)| < & (1 + l//i(xo))z .
Then it follows that

Suppose that

v

Pilxo)? i( s Yi(xo)? )1/2 5.7
s T+ )~ JINE T+ W) i
So let us assume that
. lpi(xo)z - . l//i()fo)z_
e <a (L4 d(xo))* ~ oddii=a (1 + $i(x0))
Then
lpi(xo)z s ﬁ
wid<s (L + Wilx0))® ~ 27
Thus
B l//i(xo)2 >(1—6) Yi(x)?

Wi <s (1 ¥i(x0))?

1 Vilxo)?  \?
(1 - L
= 2 ( )<|w.-(xZoJ|<a 1+ l//i(xo))2>

5)< 5 w‘{x”)z—> B (5.8)

S (1 4 lxo))?
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follows that

((x0)? 2
' ‘Jr’i':xn)}z) (5.6)

e interior of the polytope P.

bixo)|

~dxo)l
_':bf(xu)z ) Ve
+0ilx0))?)

'//i(xo)z
1+ ¢i(x0))*

hixo? |2
+@um& &7

‘/’:(xo)
(1 + Yilxo))”

52

7

Wi(xo)?

+ Yil(xo))?

L P )m
h<s (1 + Yi(xo))?

E'I{xo)z 12
) o9
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Thus from (5.6), (5.7), and (5.8) we may conclude that for Case 1
mooYilx)t 01 =08) & ko)t 2
=1+wna—zu+m<§"wum) '

Case 2. xg € Z(J).
Note that since x, € Z(3), [Y(xo) £ 6,i=1,2,...,m. So

< '»b;(\u} 'J"f(xu]'
Z!+wum—(_)zu+muw~
Also,
i 1n<-—- : — ) < i ( 1 l.)
i=1 L+ (xe)) =S\ + '/fi(xa}
Thus for Case 2

n o) g )\
A w(a (“‘&<Zmﬂ+wmq»<§u+wuw>>

Lemma 5.3. Let 6 be a parameter such that 0 < 6.< 0.7, and let ¢ be a parameter !
such that 0 < ¢ < 1. Let ry be defined by L

_F, i xo € Z(6),
= e/ T), i xo € Z(O).

Let % be the point that minimizes the linear function ™ x over the ellipsoid E(r,)
around x,. The point % satisfies the following conditions.

(1) If xo ¢ Z(5) then
(1 — &) g

2
A+ 5)£+0.5s +3(1 5

&) = flxo) < —

(2) If xo € Z(9) then

f(ﬁ)s( —&(1 — 8)Y* + 0.5¢> +3(13 )>f(x0).

PROOF. Let x’ be the point where the straight line joining x, and the center
intersects the boundary of E(r).

Case l. x,¢ Z(9).

Proof by application of Lemmas 5.1 and 5.2 above and from the observa-
tion that 7% < nTx
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Case 2. x4 € Z(9).

Before we may apply Lemma 5.1 we must show that r, is less than 1. To
show that r, < 1 it is adequate to prove that f(x,) < 1. From Lemma 5.5,

f(xo) < 8%/2(1 — §), and since § < 0.7 we get that f(xy) < 1. We can now

apply Lemmas 5.1 and 5.2, and noting that 77 £ < #Tx’ we may conclude that

—_ 3
16 = f(50) = ran/0T = 8)fx0) + 057 + 37705
a
< (1 — e (= 8) + 0.5 + §h>f(xo), as f(xg) < L.

That concludes the proof for Case 2.
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