
38

Practical Polytope Volume Approximation

IOANNIS Z. EMIRIS, National and Kapodistrian University of Athens, Greece

VISSARION FISIKOPOULOS, Université libre de Bruxelles, Belgium

We experimentally study the fundamental problem of computing the volume of a convex polytope given as

an intersection of linear halfspaces. We implement and evaluate randomized polynomial-time algorithms for

accurately approximating the polytope’s volume in high dimensions (e.g., few hundreds) based onhit-and-

run random walks. To carry out this efficiently, we experimentally correlate the effect of parameters, such

as random walk length and number of sample points, with accuracy and runtime. Our method is based on

Monte Carlo algorithms with guaranteed speed and provably high probability of success for arbitrarily high

precision. We exploit the problem’s features in implementing a practical rounding procedure of polytopes,

in computing only partial “generations” of random points, and in designing fast polytope boundary oracles.

Our publicly available software is significantly faster than exact computation and more accurate than exist-

ing approximation methods. For illustration, volume approximations of Birkhoff polytopes B11, . . . ,B15 are

computed, in dimensions up to 196, whereas exact methods have only computed volumes of up to B10.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics—Performance measures; F.2.2

[Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—

Geometrical problems and computations; G.3 [Mathematics of Computing]: Probability and Statistics—

Probabilistic algorithms (including Monte Carlo)

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Volume approximation, general dimension, random walk, polytope oracle,

algorithm engineering, open source software, birkhoff polytopes

ACM Reference format:

Ioannis Z. Emiris and Vissarion Fisikopoulos. 2018. Practical Polytope Volume Approximation. ACM Trans.

Math. Softw. 44, 4, Article 38 (June 2018), 21 pages.

https://doi.org/10.1145/3194656

1 INTRODUCTION

A fundamental problem in optimization, discrete, and computational geometry and also Monte
Carlo (MC) integration is to compute the volume of a convex body in general dimension or, more
particularly, of a polytope. In the past 15 years, randomized algorithms for this problem have wit-
nessed remarkable progress. Starting with the breakthrough polynomial-time algorithm of Dyer
et al. (1991), subsequent results brought down the exponent on the dimension from 27 to 4 (Lovász

The first author is partially supported by the European Union’s Horizon 2020 research and innovation programme under

Grant Agreement No. 734242 (LAMBDA).

Authors’ addresses: I. Z. Emiris, Department of Informatics and Telecommunications, NKUA, Greece; email: emiris@

di.uoa.gr; V. Fisikopoulos, Department of Computer Science, Université libre de Bruxelles CP 216, Boulevard du Triomphe,

1050 Brussels, Belgium; email: vissarion.fisikopoulos@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 0098-3500/2018/06-ART38 $15.00

https://doi.org/10.1145/3194656

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

https://doi.org/10.1145/3194656
mailto:permissions@acm.org
https://doi.org/10.1145/3194656

38:2 I. Z. Emiris and V. Fisikopoulos

and Vempala 2006b), see Section 1.1. However, the question of an efficient implementation had re-
mained open. We undertake this by showing that such an implementation is possible and accurate
on a standard computer.

Preliminaries and Notation. A convex body S is abstractly represented by a membership oracle, a
function that given S and a point returns whether the point lays in S . A more powerful oracle is the
boundary oracle, that given S and a line returns the points where the line intersects the boundary
of S , denoted ∂S .

As an important special case of a convex body, a polytope P ⊆ Rd can concretely be represented
as the convex hull of a set V of points (V-polytope)

P := conv{V } = {x ∈ Rd | x =
|V |∑
i=1

λivi , λi ≥ 0,

|V |∑
i=1

λi = 1}.

Equivalently, P can be represented as the (bounded) intersection

P := {x ∈ Rd | Ax ≤ b}, A ∈ Rm×d

ofm halfspaces. The later is the case studied in this article.
The asymptotic notation O∗ (·) hides poly-logarithmic factors in the argument. The input in-

cludes approximation factor ϵ > 0;W denotes the most important runtime parameter, namely the
random walk length. We denote R the ratio of the radius of the smallest enclosing ball of P over
that of the largest enclosed ball in P .

1.1 Previous Work

Volume computation is #-P hard for V- and for H-polytopes (Dyer and Frieze 1988). Moreover,
the volume of a rational polytope cannot be written in polynomial space (Lawrence 1991). The
complexity of several computational problems related to volume computation of a polytope is
surveyed in Khachiyan (1993) The computational complexity of the polytope volume computation
is open if both representations are given (Büeler et al. 2000).

Several exact algorithms are surveyed in Büeler et al. (2000) and implemented in VINCI (Büeler
and Enge 2000), and also in several other software packages like Latte (De Loera et al. 2013),
Normaliz (Bruns et al. 2013), and Qhull (Barber et al. 1996), which, however, cannot handle general
polytopes for dimension d > 15.

An interesting special case is the computation of the volume of the polytope of n by n doubly
stochastic matrices known asn-Birkhoff polytope. In De Loera et al. (2008), they provide an explicit
combinatorial formula for the volume. On the other hand, computing the volume of the n-Birkhoff
polytope even for small values of n remains a computational challenge. This has been computed
exactly for n ≤ 10 using highly specialized software and high performance computing (Beck and
Pixton 2003).

Regarding deterministic approximation, no polynomial-time algorithm can compute the volume
of a convex body with less than exponential relative error (Elekes 1986). A stronger inapprox-
imability result is proven in Bárány and Füredi (1987). The algorithm of Betke and Henk (1993)
has error ≤ d!. However, it is an interesting open question whether there exists a deterministic
approximation algorithm for the special case of polytopes. Nevertheless, only randomized algo-
rithms allow us to approximate the volume of a convex body to arbitrary accuracy in polynomial
time. So we concentrate on them.

Let us examine the polynomial-time randomized algorithms. The landmark polynomial-time
algorithm in Dyer et al. (1991) approximates the volume of a convex body with high probability and
arbitrarily small relative error. We shall mostly follow the algorithm running inO∗ (d5) membership

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

Practical Polytope Volume Approximation 38:3

calls (Kannan et al. 1997), which establishes Proposition 3.1 by a ball walk; the same complexity was
later obtained by hit-and-run (Lovász 1999). All approaches up to this point transform the given
object to near-isotropic position, then define a sequence of co-centric balls, and produce uniform
point samples in their intersections with P . They use the ratios of the number of samples that fall
in two bodies—defined by the intersection of P with two consecutive balls—to estimate the ratio of
the volumes of the corresponding bodies. By multiplying all these ratios, we get an estimation of
the volume of P . A slightly different approach is presented in Lovász and Vempala (2006b). They
construct a sequence of log-concave functions and estimate ratios of integrals, instead of ratios of
balls, using simulated annealing. The complexity reduces toO∗ (d4) oracle calls by decreasing both

number of phases and number of samples per phase to O∗ (
√
d). Using hit-and-run, O∗ (d3) calls

still bound the time to sample each point. Moreover, they improve isoperimetric sandwiching to
O∗ (d4). While writing this article, a new algorithm with complexity O∗ (d3) was announced with
the additional assumption that the input polytope should be well-rounded (Cousins and Vempala
2015).

Concerning software for randomized algorithms, Cousins and Vempala (2016) presented
recently Matlab code based on Lovász and Vempala (2006b) and Cousins and Vempala (2014).
The latter offers a randomized algorithm for Gaussian volume (which has no direct reduction to
or from volume) in O∗ (d3), as a function of d . In Lovász and Deák (2012), they implement Lovász
and Vempala (2006b), focusing on variance-decreasing techniques, and an empirical estimation
of mixing time; they handle polytopes in dimensions up to 10 only. In Mohácsi and Deák (2015),
they present a parallel version of this algorithm and computational results for convex bodies
in dimensions ranging from 2 to 20. In Liu et al. (2007), they use a straightforward acceptance-
rejection method, which is not expected to work in high dimensions; it was tested only for d ≤ 4.
An approach using thermodynamic integration (Jaekel 2011) offers only experimental guarantees
on runtime and accuracy for d ≤ 80.

The key ingredient of all approaches is random sampling, which is a fundamental problem of
independent interest with important applications in, e.g., global optimization, statistics, machine
learning, MC integration, and non-redundant constraint identification.

Several questions of sampling combinatorial structures such as contingency tables and, more
generally, sampling lattice points in polytopes are related to sampling a polytope. These problems
are hard, in general, in particular, sampling uniformly contingency tables when either the num-
ber of columns or rows are not constant is #P-hard (Dyer et al. 1997). There are many proposed
methods in the bibliography for sampling contingency tables using Markov chain MC (Chen et al.
2005; Cryan and Dyer 2003; Diaconis and Sturmfels 1998). However, these methods work either for
special cases or are only efficient in practice for small tables. Volume computation offer a potential
tool for attacking these difficult problems (Kannan and Vempala 1997). The software developed
here could be used as a tool toward a practical study in these topics.

Simple sampling methods are currently only known for bodies with standard shape, e.g., sim-
plex, cube, or ellipsoid. Acceptance-rejection techniques are inefficient in high dimensions because
the number of uniform points one needs to generate in a bounding box before finding one in P
is exponential in d . A Markov chain is the only known method, and it may use geometric ran-
dom walks such as the grid walk, the ball walk (or variants such as the Dikin walk (Kannan and
Narayanan 2012), which uses Dikin ellipsoids instead of balls), and hit-and-run, see Simonovits
(2003) for an overview. The Markov chain has to make a (large) number of steps, before the gener-
ated point becomes distributed approximately uniformly (which is the stationary limit distribution
of the chain). We focus on hit-and-run, which yields the fastest algorithms today.

In contrast to other walks, hit-and-run is implemented by computing the intersection of a line
with ∂P . In general, this reduces to binary search on the line, calling membership at every step. For

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

38:4 I. Z. Emiris and V. Fisikopoulos

H-polytopes, the intersection is obtained by a boundary oracle; for this, we employ ray-shooting
with respect to the m facet hyperplanes (Section 2). In exact form, it is possible to avoid linear-
time queries by using space in o(m �d/2), achieving queries in O (logm) (Ramos 1999). Duality
may reduce boundary oracles to γ -nearest neighbor (NN) queries. The latter problem can be ap-

proximated in query time O (dm(1+γ)−2+o (1)) using O (dm +m(1+γ)−2+o (1)) space (Andoni and Indyk

2008). Alternatively, data depended methods achieve O (1) time and O (1/γ (d−O (1))) space (Arya
et al. 2012). There is no asymptotic improvement by using the above methods but we examine
their application experimentally.

Approximate membership or boundary oracles can be obtained by computing the exact oracle

on an approximation of the polytope. Classic results, such as Dudley’s, show that O ((1/γ)(d−1)/2)
facets suffice to approximate a convex body of unit diameter within a Hausdorff distance of γ .

This is optimized to O (
√

vol(∂P)/γ (d−1)/2) (Arya et al. 2012). In the case where the approximated
convex body is itself a polytope, Reisner et al. (2001) study the approximation by a polytope
whose vertices (or facets) are a subset of the vertices (or the facets) of the approximated polytope.
The precision of the approximation is being measured using volume. The boundary oracle is dual
to finding the extreme point in a given direction among a known pointset. This is γ -approximated
through γ -coresets for measuring extent, in particular (directional) width, but requires a subset of

O ((1/γ) (d−1)/2) points (Agarwal et al. 2005). The exponential dependence on d or the (super)linear
dependence on m make all aforementioned methods of little practical use. Ray shooting has
been studied in practice only in low dimensions, e.g., in six-dimensional V-polytopes (Zheng and
Yamane 2013).

1.2 Contributions

We implement and experimentally study efficient algorithms for approximating the volume of
polytopes. Our approach uses the iterative technique of co-centric balls intersecting a polytope
P (cf. Section 3) introduced in Dyer et al. (1991). To define the sequence of concentric balls, we
perform sandwiching. On the one hand, the algorithm computes the largest inscribed ball in P by
a linear program. On the other hand, we need an enclosing ball; its computation shall also serve for
rounding the given polytope. A crucial part of the volume algorithm—and of independent interest—
is a random point sampler for polytopes. The sampler is used by the volume algorithm to generate
random points in the intersection of a ball with P . Our C++ code is open-source on github and
uses the CGAL and Eigen open-source libraries.

Our emphasis is to exploit the underlying characteristics of the problem to arrive at a practical
and accurate method. Here we summarize the main pillars toward this goal as well as our results.

Scaling and Limits. A series of experiments establishes that our software handles dimensions
substantially larger than existing exact approaches, e.g., cubes and products of simplices within an
error of 2% for d ≤ 100, in about 20 min. Our study indicates that it will run in dimensions 500 and
1000 in 6 and 60 days, respectively. These limits could be pushed even further by parallelization.
In particular, we obtain a 5x speed-up in dimension 81 using 8 processor threads.

Random Walk Length. It is widely believed that the theoretical bound on random walk length
W of hit-and-run is quite loose, and this is confirmed by our experiments, where we setW = Θ(d)
and obtain a <2% error in up to 100 dimensions (Section 4).

Partial Generations of Random Points. The volume algorithm has to generate N random points
in a sequence of convex bodies defines by a sequence of co-centric balls intersecting P . One main
advantage of our method is that it creates partial “generations” of random points for every new
body, as opposed to having always to generate N new points. Instead of increasing radii of the
balls (as in theory, e.g., Dyer et al. (1991)), our method uses a sequence of concentric balls with

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

Practical Polytope Volume Approximation 38:5

diminishing radii, starting with one that (almost) encloses P and terminates with an inscribed ball.
This allows us to “recycle” points generated in a larger ball but also lying in the smaller one, so as
to sample only partial generations of points in the smaller intersection with P , instead of having
to sample a full generation of N points per intersection. This has a significant effect on runtime
since it reduces it by roughly a constant fraction of points per ball. Partial generations of points
have been used in convex optimization (Bertsimas and Vempala 2004).

Rounding. Unlike most theoretical approaches that use an involved rounding procedure, we
sample a set of points in P and compute an approximation of the minimum volume enclosing
ellipsoid of this set, which is then linearly transformed to a ball. This procedure is repeated until
the ratio of the minimum over the maximum ellipsoid axis reaches some user-defined threshold.
This iterative rounding allows us to handle skinny polytopes efficiently, and takes few iterations
in practice (see Section 4.3).

Boundary Oracle. We provide fast boundary oracles for sampling points (Section 2). For H-
polytopes, the boundary oracle is in O (md) by employing random direction hit-and-run (RDHR).
We employ coordinate direction hit-and-run (CDHR), which further improves the oracle to O (m)
time complexity. Experiments show that, in practice, CDHR is much faster than RDHR without
compromising a lot of accuracy. This difference in accuracy is diminished when the polytope has
some symmetry (e.g., cubes or Birkhoff polytopes). See experiments in Section 4.

Polytope Database. We provide a database of polytopes to evaluate our implementation. The
database contain polytope families for which it is very easy to evaluate the volume, like cubes,
simplices, product of simplices, and families where this is difficult like the Birkhoff and order
polytopes. Our software computes, in a few hours, volume estimations within an error of 2%
for Birkhoff polytopes B2, . . . ,B10; vol(B10) has been exactly computed by specialized parallel
software in a sequential time of years. More interestingly, it provides volume estimations for
vol(B11), . . . , vol(B15), of dimensions up to 196, whose exact values are unknown, within 9 hours.
We exploit the symmetries of Birkhoff polytopes to compute efficiently more random points and
thus imrpove the accuracy of our method.

In conclusion, our work shows that it is possible to approximate the volume of general H-
polytopes in high dimensions (e.g., in the two hundreds) efficiently and accurately on standard
computers today.

A preliminary version of most results from this article has appeared as Emiris and Fisikopoulos
(2014).

1.3 Article Organization

The next section discusses walks and oracles. Section 3 presents the overall volume algorithm.
Section 4 discusses our experiments, and we conclude with open questions in Section 5.

2 RANDOM WALKS AND ORACLES

In this section, we discuss theoretical and practical issues on polytope oracles and geometric ran-
dom walks. Regarding polytope oracles we refer the reader to Grötschel et al. (1993). Geometric
random walks are surveyed in Vempala (2005). Here we mainly focus on the hit-and-run para-
digm (Smith 1984). The methods presented here are analysed experimentally in Section 4.

2.1 Hit-and-Run Random Walks

The main method to randomly sample a polytope is by (geometric) random walks. We shall focus
on variants of hit-and-run that generate a uniform distribution of points (Smith 1984). Assume
we possess procedure Line(p), which returns line � through point p ∈ P ⊆ Rd ; � will be specified

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

38:6 I. Z. Emiris and V. Fisikopoulos

below. The main procedure of hit-and-run is Walk(p, P ,W) described below: it reads in point p ∈ P
and computes a new point p ′ ∈ P , which is meant to be uniformly distributed on P .

Procedure Walk(p, P ,W)

Input: A point p ∈ P and an integerW

Output: A point p′ ∈ P
for i from 1 toW do

� ← Line(p);

move p to a random point uniformly distributed on P ∩ �;
end

return p;

We shall consider two variants of hit-and-run. In RDHR, Line(p) returns � defined by a ran-
dom vector uniformly distributed on the unit sphere centered at p. Equivalently, the vector co-
ordinates are drawn from the standard normal distribution. In CDHR, Line(p) returns � de-
fined by a random vector uniformly distributed on the set {e1, . . . , ed }, of unit coordinate vectors
ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . ,d . This is a continuous variant of the grid walk; for the grid
walk and other random walks see, e.g., Simonovits (2003).

Regarding mixing time, RDHR generates a uniformly distributed point in

O∗ (d3R2) oracle calls with hidden constant 1011, (1)

starting at an arbitrary point (Lovász and Vempala 2006a). Recall that R is the ratio of the radius of
the smallest enclosing ball over that of the largest enclosed ball in P . As far as the authors know,
the mixing time of CDHR has not been analysed. We offer experimental evidence that CDHR is
faster than RDHR and sufficiently accurate so as to approximate volume accurately.

Procedure Walk(p, P ,W) requires at every step a boundary oracle, which computes the intersec-
tion of line � with ∂P . We discuss various implementations of this oracle.

2.2 Boundary Oracle by Facet Intersection

Given an H-polytope P the direct method to compute the intersection of line � with ∂P is to
examine allm hyperplanes. Let us consider Walk (p0, P ,W) and line � = {x ∈ Rd : x = λv + p0, λ ∈
R}, where point p0 ∈ Rd lies on �, and v ∈ Rd is the direction of �. We compute the intersection of
� with the i-th hyperplane aix = bi , ai ∈ Rd ,bi ∈ R, namely

pi := p0 +
bi − ai · p0

ai · v
v, i ∈ {1, 2, . . . ,m}.

We seek the intersection points p+,p− of � with ∂P , namely

p+v = min
1≤i≤m

{piv | piv ≥ 0} and p−v = max
1≤i≤m

{piv | piv ≤ 0}.

This is computed in O (md) arithmetic operations. In practice, only the λ± are computed, where
p± = p0 + λ

±v .
In the context of the volume algorithm (Section 3), the intersection points of � with ∂P are

compared to the intersections of � with the current sphere. Assuming the sphere is centered at the
origin with radius R, its intersections with � are p = p0 + λv such that

λ2 + 2λp0v + |p0 |2 − R2 = 0. (2)

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

Practical Polytope Volume Approximation 38:7

If λ+, λ− give a negative sign when substituted to Equation (2), then p+,p− are the endpoints of the
segment of � lying in the intersection of P and the current ball. Otherwise, we have to compute
one or two roots of Equation (2) since the segment has one or two endpoints on the sphere.

However, in CDHR, where � and v are vertical, after the computation of the first pair p+,p−, all
other pairs can each be computed in O (m) arithmetic operations. This is because two sequential
points produced by the walk differ only in one coordinate. Let j,k be the walk coordinates of
the previous and the current steps, respectively. Then, assuming P = {x ∈ Rd : Ax ≤ b}, where
A ∈ Rm×d , λ± = max{λ | A(p0 ± λv) ≤ b}. This becomes ±λAv = ±λAj ≤ −Ap0 + b, where Aj is
the j-th column ofA. The two maximizations are solved inO (md) operations: This is the bottleneck,
namely computing vector t = −Ap0 + b ∈ Rm . At the next step, given point p ′0 = p0 + cej , where ej

is the j-th standard basis vector, and c > 0 is the (randomly chosen) walk length, we perform two
maximizations of λ : ±λAk ≤ t − cAj , inO (m). In short, the oracle hasO (m) complexity, which has
absorbed the cost of the first oracle that still takes O (md). Hence the oracle incurs an amortized
cost of O (1) per hyperplane.

Remark 2.1. We compute random points as follows: starting from a point, we perform a hit-
and-run walk and every W steps of the walk we keep the current point. Thus, we only compute
one expensive boundary oracle computation of O (md). After this, all oracle computations are in
O (m). Since, the number of sampled points is larger than the dimension of P , the amortized cost
per boundary oracle computation is O (m).

3 THE VOLUME ALGORITHM

This section details our polynomial-time methods for approximating the volume of P . Algorithms
in this family can achieve any approximation ratio given by the user, i.e., they form a fully poly-
nomial randomized approximation scheme (Simonovits 2003).

We consider that P is a full-dimensional H -polytope. If not, we can project it to a subspace in
which it is full-dimensional. Suppose that P is lower-dimensional and given in the standard form
{x ∈ Rd |Ax = b, x ≥ 0}, whereA ∈ Rd×m ,b ∈ Rm . Using Gauss-Jordan elimination, the linear sys-
tem Ax = b can be transformed to its unique reduced row echelon form [I |A′]x = b ′ ∈ Rm , where
I is the identity matrix and A′ ∈ Rd×m−d . Then P can be written as {x ′ ∈ Rm−d | A′x ′ ≤ b ′}, i.e., a
full-dimensional H -polytope in Rm−d .

3.1 Rounding and Sandwiching

This stage involves rounding P to reach a near isotropic position and, then, sandwiching, i.e.,
to compute ball B and scalar ρ such that B ⊆ P ⊆ ρB. A convex body K is in θ -almost-isotropic
position if for some θ ∈ (0, 1), | |b (K) | | ≤ θ and for every v ∈ Rd , we have

(1 − θ) | |v | |22 ≤
1

vol(K)

∫
K−b (K)

(vTx)2dx ≤ (1 + θ) | |v | |22 ,

where b (K) :=
∫

K
xdx is the center of gravity of K .

There is an abundance of methods in the literature for rounding and sandwiching (cf. Simonovits
(2003) and references therein). However, here we develop a simple, efficient method that does not
bring the polytopes into almost isotropic position but obtains approximate sufficiently accurate
results experimentally in practice (cf. Section 4 and Table 4). The method does not compute a ball
that covers P but a ball B′ such that B′ ∩ P contains almost all the volume of P . We sample a set S
ofO (n) random points in P . Then we approximate the minimum volume ellipsoid E that covers S ,
and satisfies the inclusions 1

(1+ε)d E ⊆ conv(S) ⊆ E, in timeO (nd2 (ε−1 + lnd + ln lnn)) (Khachiyan

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

38:8 I. Z. Emiris and V. Fisikopoulos

ALGORITHM 1: RoundingSandwiching(P , tround)

Input: H-polytope P , rounding threshold tround

Output: rounded H-polytope P ′, center and radii of balls c, r , ρ, transformation matrix Lprod

compute the Chebychev ball B (c, r);

generate a random point p in B (c, r);

Lprod ← I ; // I is the identity matrix

repeat

S ← ∅;
for i = 1 to N do

p ← Walk (p, P ,W); // W is the number of walk steps

add p in S ;

end

compute min enclosing ellipsoid E of S , with p.s.d. E;

set Emin,Emax to be the min and max E axes;

compute the Cholesky decomposition LT L of E;

transform P and p w.r.t. L;

Lprod ← LprodL;

until Emax/Emin < tround ;

set ρ the largest distance from c to any point in S ;

return P , c, r , ρ,Lprod ;

1996). Let us write

E = {x ∈ Rd | (x − cE)T E (x − cE) ≤ 1} = {x ∈ Rd | LT (x − cE) ≤ 1}, (3)

where cE is the center of E, E ⊆ Rd×d is a positive semi-definite (p.s.d.) matrix and E = LTL its
Cholesky decomposition. By substituting x = (LT)−1y + cE , we map the ellipsoid to the ball {y ∈
R

d |yTy ≤ 1}. By applying this transformation to P , we obtain P ′ = {y ∈ Rd |A(LT)−1y ≤ b −AcE },
which is the rounded polytope, and vol(P) = det(L)−1vol(P ′). We iterate this procedure until the
ratio of the minimum over the maximum ellipsoid axes reaches some user defined threshold de-
noted as tround .

For sandwiching P , we first compute the Chebychev ball B (c, r) of P , i.e., the largest inscribed
ball in P . It suffices to solve the linear program: {maximize y, subject to Aix + R‖Ai ‖2 ≤ bi , i =
1, . . . ,m, y ≥ 0}, where Ai is the i-th row of A, and the optimal values of y ∈ R and x ∈ Rd yield,
respectively, the radius r and the center c of the Chebychev ball.

Then we may compute a uniform random point in B (c, r) and use it as a start to perform a
random walk in P , eventually generating N random points. Now, compute the largest distance
between any of the N points and c; this defines a (approximate) bounding ball B (c, ρ). Finally,
define the sequence of balls B (c, 2i/d), i = α ,α + 1, . . . , β, where

α = �d log r	 and β = �d log ρ� .

3.2 Multiphase Monte Carlo (MMC)

In this stage we construct a sequence of bodies Pi := P ∩ B (c, 2i/d), i = α ,α + 1, . . . , β,where Pα =

B (c, 2α /d) ⊆ B (c, r) and Pβ (almost) contains P . Then MMC approximates vol(P) by the telescopic

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

Practical Polytope Volume Approximation 38:9

product

vol(Pα)

β∏
i=α+1

vol(Pi)

vol(Pi−1)
, where vol(Pα) =

2πd/2 (2 �log r)d

d Γ(d/2)
,

the latter being the volume of the inscribed ball. This reduces to estimating the ratios vol(Pi)/
vol(Pi−1), which is achieved by generating N uniformly distributed points in Pi and by counting
how many of them fall in Pi−1. For point generation we use random walks. We set the walk length
W = �10 + d/10	 = O (d), which is of the same order as in Lovász and Deák (2012) but significantly
lower than theoretical bounds. This choice is corroborated experimentally (Section 4).

Unlike typical approaches, which generate points in Pi for i = α ,α + 1, . . . , β , here we proceed
inversely, namely by generating points in Pi and counting how many fall within Pi−1. We start
by generating an (almost) uniformly distributed random point p ∈ Pα , which is easy since Pα =

B (c, 2α /d) ⊆ B (c, r). Then we use p to start a random walk in Pβ . Alternatively, we may start a
random walk in Pα , Pα+1, Pα+2 and so on, until we obtain a uniformly distributed point in Pβ . In
the second approach, the point computed in Pβ is less biased with respect to B (c, r).

Once we have a randomly distributed point in Pβ , we initiate a random walk from this point
usingWN walk steps: everyW steps, we output the current point. Such a random walk is called a
thread, also employed in Lovász and Deák (2012). Algoritm 2 describes our method using a single
thread. This way we generate N (almost) uniformly distributed points in Pβ , then count how many
of them fall into Pβ−1. This yields an estimate of vol(Pβ)/vol(Pβ−1). We keep the points that lie in
Pβ−1, and use them to start walks so as to gather a total of N (almost) uniformly distributed points
in Pβ−1. We repeat until we compute the last ratio vol(Pα+1)/vol(Pα).

The implementation is based on a data structure S that stores the random points. In step i > α ,
we wish to compute vol(Pβ−i)/vol(Pβ−i−1) and S contains N random points in Pβ−i+1 from the
previous step. The computation in this step consists in removing from S the points not in Pβ−i ,
then samplingN − size (S) new points in Pβ−i and, finally, counting how many lie in Pβ−i−1. Testing

whether a point lies in some Pi reduces to testing whether p ∈ B (2i/d) because p ∈ P .
One main advantage of our method is that it creates partial “generations” of random points for

every new body Pi , as opposed to having always to generate N points. This has a significant effect
on runtime since it reduces it by roughly a constant fraction of points per ball.

3.3 Complexity

The first O∗ (d5) algorithm (Kannan et al. 1997) used a sequence of subsets defined as the inter-
section of the given body with a ball. It uses isotropic sandwiching to bound the number of balls
by O∗ (d), it samples N = 400ϵ−2d logd = O∗ (d) points per ball, and follows a ball walk to gener-
ate each point with O∗ (d3) oracle calls. Interestingly, both sandwiching and MMC each require
O∗ (d5) oracle calls. Later the same complexity was obtained by hit-and-run under the assumption
the convex body is well sandwiched (Lovász 1999).

Proposition 3.1. (Kannan et al. 1997) Assuming B (0, 1) ⊆ P ⊆ B (0, ρ), the algorithm of Kannan

et al. (1997) returns an estimation of vol(P), which lies between (1 − ϵ)vol(P) and (1 + ϵ)vol(P), with

probability ≥ 3/4, by

O

(
d4ρ2

ϵ2
lnd ln ρ ln2 d

ϵ

)
= O∗ (d4ρ2)

oracle calls with probability ≥ 9/10, where we have assumed ϵ is fixed for the second bound. Sand-

wiching yields ρ =
√
d/ log(1/ϵ), implying a total of O∗ (d5) calls.

The following lemma states the runtime of Algorithm 2, which is a variant of the algorithm
analysed in Proposition 3.1. Although there is no theoretical bound on the approximation of the

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

38:10 I. Z. Emiris and V. Fisikopoulos

ALGORITHM 2: VolEsti (P , ϵ, tround)

Input: H-polytope P in dimension d , objective approximation ϵ , rounding threshold tround

Output: approximation of vol(P)

P , c, r , ρ,L ← RoundinдSandwichinд(P , tround);

W ← �10 + d/10	;
Generate the first random point p in P ∩ B (c, ρ);

S ← {p};

Set α ← �d log r	; β ← �d log ρ�;
vol ← 2πd/2 (2 �log r)d/d Γ(d/2);

i ← β ;

while i > α do

Set p to be an arbitrary point in S ;

Pi ← P ∩ B (c, 2i/d);

Plarge ← Pi ; i ← i − 1; Psmall ← Pi ;

count_prev ← size (S); remove from S the points not in Psmall; count ← size (S);

for j = 1 to N − count_prev do

p ←Walk (p, Plarge,W);

if p ∈ B (c, 2i/d) then

count ← count + 1;

add p in S ;

end

end

vol ← vol · (N /count);
end

return vol/ det(L) ;

volume computed by of Algorithm 2 in terms of ϵ , our experimental analysis in Section 4 shows
that in practice the achieved error is always better than the one proved in Proposition 3.1.

Lemma 3.2. Given H -polytope P , Algorithm 2 performs k phases of rounding, for some k ≥ 1, in

total time O∗ (d2mk). The Algorithm approximates vol(P), in O (md3 logd log(ρ/r)) arithmetic oper-

ations, where r and ρ denote, respectively, the radii of the largest inscribed ball in P and of a cocentric

ball covering P .

Proof. Each rounding iteration decreases the diameter of P and runs in O (nd2 (ε−1 + lnd +
ln ln(n))), where n stands for the number of sampled points, and ε is the approximation of the
minimum volume ellipsoid of Equation (3). We generate n = O (d) points, each after O (d) steps,
each step taking O (m) arithmetic operations. The k roundings run in O∗ (d2nk) total, where ε is
fixed, hence the rounding stage runs in O∗ ((d3 + d2m)k) = O∗ (d2mk) overall.

Algorithm 2 generates d log(ρ/r) balls and uses hit-and-run. In each ball intersected with P ,
we generate ≤ N = 400ϵ−2d logd random points, where ϵ is the theoretical bound for volume
approximation (see Proposition 3.1)—not to be confused with ε above. Each point is computed after
W = O (d) steps of CDHR. The boundary oracle of CDHR is implemented in Section 2. In particular,
W CDHR steps require O (dm + (W − 1)m +Wd) arithmetic operations. It holds d = O (m) and
W = Ω(d). Thus, the amortized complexity of a CDHR step is O (m). Overall, the algorithm needs
O (ϵ−2md3 logd log(ρ/r)) operations. �

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

Practical Polytope Volume Approximation 38:11

Fig. 1. Runtime of VolEsti w.r.t. dimension; ϵ = 1, y-axis in logscale; fitting on cube-d results.

Interestingly, the number of roundings k is typically constant, for example k = 1 is enough to
handle polytopes with ρ/r = 100 in dimensions up to 20.

Let us check the above bound with the experimental data for cubes, products of simplices, and

Birkhoff polytopes, with d ≤ 100 and ϵ = 1, where m = 2d , d + 2 and d + 1 + 2
√
d , respectively,

for the three classes, and for cubes log(ρ/r) ≤ log(
√
d) = O (logd). Figure 1 shows that the three

classes behave similarly. Performing a fit of adb log2 d , runtime follows 10−5d3.08 log2 d , which
shows a smaller dependence on d than our bounds.

4 EXPERIMENTS

We implement and experimentally test the above algorithms and methods in the software package
VolEsti. The code currently consists of around 2,500 lines in C++; it is open-source and publicly
available at the following web page:

https://github.com/vissarion/volume_approximation.

It relies on the CGAL library (CGAL 2015) for its d-dimensional kernel parametrized with double
types to represent objects such as points and vectors, for its linear programming solver (Fischer
et al. 2013b), for the approximate minimum ellipsoid (Fischer et al. 2013a), and for generating
random points in balls. We use Eigen (Guennebaud et al. 2010) for linear algebra, such as Cholesky
decomposition, determinant computation, and matrix multiplication.

The memory consumption is dominated by the list of random points that need O (dN) space
during the entire execution of the algorithm (Section 3). Arithmetic uses the double data type of
C++, except from the linear programming solver, which uses the GNU Multiple Precision arithmetic

library to avoid double exponent overflow. We experimented with several pseudo-random num-
ber generators in Boost (Maurer 2000) and chose the fastest, namely Mersenne twister generator
mt19937. All timings are on an Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian
GNU/Linux, unless otherwise stated.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

38:12 I. Z. Emiris and V. Fisikopoulos

4.1 Experimental Data

We construct the following database of polytopes to test our algorithm:

—cube-d : {x = (x1, . . . ,xd) | xi ≤ 1,xi ≥ −1,xi ∈ R for all i = 1, . . . ,d },
—cross-d : cross polytope, the dual of cube, i.e., conv({−ei , ei , i = 1, . . . ,d }),
—Δ-d : the d-dimensional simplex conv({ei , for i = 0, 1, . . . ,d }),
—Δ-d-d : product of two simplices, i.e {(p,p ′) ∈ R2d | p ∈ Δd ,p

′ ∈ Δd },
—skinny-cube-d : {x = (x1, . . . ,xd) | x1 ≤ 100,x1 ≥ −100,xi ≤ 1,xi ≥ −1,xi ∈ R i = 2, . . . ,d },

rotated by 30o in the plane defined by the first two coordinate axes,
—O (P): the order polytope of the poset P (defined below),
—Bn : the n-Birkhoff polytope (defined below).

We have also tested polytopes from the VINCI web page. However, apart from the ones added
to our database above, all other polytopes present no challenge for our approach.

Each experiment is repeated 100 times with ϵ = 1 unless otherwise stated. The reported tim-
ing for each experiment is the mean of 100 timings. We report the min and max computed
values, the mean μ, and the standard deviation. We measure the accuracy of our method by
(vol(P) − μ)/vol(P) and (max−min)/μ; unless otherwise stated, the mean error of approximation
refers to the former quantity. Recall that vol(P) denotes the exact volume. One should not con-
fuse these quantities, which refer to the approximation error computed in practice, with ϵ , which
refers to the objective, user-defined, approximation error. Comparing the practical and objective
approximation error, our method turns out to be more accurate than indicated by the theoret-
ical bounds. In particular, in all experiments all computed values are contained in the interval
((1 − ϵ)vol(P), (1 + ϵ)vol(P)), while theoretical results in Kannan et al. (1997) guarantee only 75%
of them. Actually, the above interval is larger than [min,max].

In general, our experimental results show that our software can approximate the volume of
general polytopes up to dimension 100 in less than 2 hours with mean approximation error at
most 2% (cf. Table 1). Moreover, we run experiments for polytopes of dimension ≤ 200 that we
do not know the volume. A natural question that arises is how the algorithm will scale to higher
dimensions. By an interpolation in our experimental data (order polytopes, see Table 1), we can
expect our software to compute an estimation in dimensions 500, 1000 in 6, 60 days, respectively.

4.2 Random Walks and Polytope Oracles

First, we compare the implementations of boundary oracles using membership oracles versus using
facet intersection. By performing experiments with RDHR our algorithm approximates the volume
of a 10-cube in 42.58 sec using the former, whereas it runs in 2.03 sec using the latter.

We compare RDHR to CDHR. The latter takes advantage of more efficient boundary oracle
implementations as described in Section 2. Table 2 shows that our algorithm becomes faster with
CDHR than with RDHR. An accuracy measure is (vol(P) − μ)/vol(P): CDHR may be less accurate
(e.g., cube-10 in Table 2) but, since it is faster, we can obtain the same accuracy as RDHR in the
same runtime by decreasing ϵ . We observe that CDHR exploits the symmetry of polytopes yielding
smaller [min,max] intervals, i.e., smaller variance of results, for cubes and Birkhoff polytopes.
Random rotated cubes is a more fair comparison case, where CDHR is at most two times less
accurate than RDHR (with respect to (vol(P) − μ)/vol(P), Table 2) reaching a 10x speed-up.

4.3 Choice of Parameters and Rounding

We consider two crucial parameters, the length of a random walk, denoted by W , and approx-
imation ϵ , which determines the number N of random points. We set W = �10 + d/10	. Our

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

Practical Polytope Volume Approximation 38:13

Table 1. Volume Approximation Experimental Results

P d m vol(P) N μ [min, max] std-dev
vol(P)−μ

vol(P)

VolEsti Exact

(sec) (sec)

cube-10 10 20 1.02E+003 9210 1.02E+003 [0.95E+003,1.10E+003] 3.16E+001 0.0030 0.42 0.01

cube-15 15 30 3.27E+004 16248 3.24E+004 [3.03E+004,3.43E+004] 9.41E+002 0.0088 1.44 0.40

cube-20 20 40 1.04E+006 23965 1.04E+006 [0.97E+006,1.11E+006] 3.15E+004 0.0028 4.62 swap

cube-50 50 100 1.12E+015 78240 1.12E+015 [1.00E+015,1.25E+015] 4.39E+013 0.0007 117.51 swap

cube-100 100 200 1.26E+030 184206 1.27E+030 [1.16E+030,1.40E+030] 4.82E+028 0.0081 1285.08 swap

Δ-10 10 11 2.75E-007 9210 2.76E-007 [2.50E-007,3.08E-007] 1.08E-008 0.0021 0.56 0.01

Δ-50 60 61 1.20E-082 98264 1.21E-082 [1.07E-082,1.38E-082] 6.44E-084 0.0068 183.12 0.01

Δ-100 100 101 1.07E-158 184206 1.07E-158 [9.95E-159,1.21E-158] 4.24E-160 0.0032 907.52 0.02

Δ-20-20 40 42 1.68E-037 59022 1.70E-037 [1.54E-037,1.87E-037] 7.33E-039 0.0088 53.13 0.01

Δ-40-40 80 82 1.50E-096 140224 1.50E-096 [1.32E-096,1.70E-096] 7.70E-098 0.0015 452.05 0.01

Δ-50-50 100 102 1.08E-129 184206 1.10E-129 [1.01E-129,1.19E-129] 4.65E-131 0.0154 919.01 0.02

cross-10 10 1024 2.82E-004 9210 2.82E-004 [2.69E+004,2.94E+004] 5.15E-006 0.0003 1.58 388.50

cross-11 11 2048 5.13E-005 10550 5.12E-005 [4.88E-005,5.43E-005] 1.15E-006 0.0010 5.19 6141.40

cross-12 12 4096 8.55E-006 11927 8.55E-006 [8.13E-006,9.02E-006] 1.69E-007 0.0007 12.21 —

cross-15 15 32768 2.50E-008 16248 2.50E-008 [2.33E-008,2.62E-008] 5.15E-010 0.0004 541.22 —

cross-18 18 262144 4.09E-011 20810 4.02E-011 [3.97E-011,4.08E-011] 5.58E-013 0.0165 5791.06 —

O (P) 10 40 8.27E-007 9210 8.30E-007 [7.06E-007,9.31E-007] 4.44E-008 0.0041 0.57 0.1

O (P) 20 60 8.27E-007 23965 8.23E-007 [6.99E-007,9.34E-007] 4.48E-008 0.0039 19.62 swap

O (P) 50 120 8.27E-007 78240 8.30E-007 [7.26E-007,9.37E-007] 4.46E-008 0.0041 385.86 swap

O (P) 100 220 8.27E-007 184206 8.35E-007 [6.85E-007,9.72E-007] 5.18E-008 0.0102 2866.11 swap

B8 49 64 4.42E-023 76279 4.46E-023 [4.05E-023, 7.32E-024] 1.93E+004 0.0092 192.97 1920.00

B9 64 81 2.60E-033 106467 2.58E-033 [2.23E-033, 3.07E-033] 2.13E-034 0.0069 499.56 8 days

B10 81 100 8.78E-046 142380 8.92E-046 [7.97E-046, 9.96E-046] 4.99E-047 0.0152 1034.74 6160 days

B11 100 121 ? 184206 1.40E-060 [1.06E-060, 1.67E-060] 1.10E-061 ? 2398.17 —

B12 121 144 ? 232116 7.85E-078 [6.50E-078, 9.31E-078] 5.69E-079 ? 4946.42 —

B13 144 169 ? 286261 1.33E-097 [1.13E-097, 1.62E-097] 1.09E-098 ? 9802.73 —

B14 169 196 ? 346781 5.96E-120 [5.30E-120, 6.96E-120] 3.82E-121 ? 17257.61 —

B15 196 225 ? 413804 5.70E-145 [5.07E-145, 6.52E-145] 1.55E-145 ? 31812.67 —

Notes: ϵ = 1, “swap” indicates it ran out of memory and started swapping. “?” indicates that the exact volume vol(P), is

unknown; “—” indicates it did not terminate after at least 10h. VINCI is used for exact volume computation except Birkhoff

polytopes where birkhoff is used instead.

Table 2. Experiments with CDHR vs RDHR

RDHR CDHR

P d ϵ μ [min, max]

(vol(P) − μ) VolEsti

μ [min, max]

(vol(P) − μ) VolEsti

/vol(P) (sec) /vol(P) (sec)

B5 16 1 2.27E-07 [1.66E-07,2.85E-07] 0.0072 22.90 2.25E-07 [1.87E-07,2.80E-07] 0.0003 4.06

B6 25 1 8.53E-13 [3.72E-13,1.22E-12] 0.0982 105.96 9.53E-13 [7.30E-13,1.15E-12] 0.0083 17.26

B7 36 1 2.75E-20 [1.78E-21,6.71E-20] 0.4259 479.40 4.82E-20 [3.86E-20,6.18E-20] 0.0056 56.64

cube-10 10 1 1.02E+03 [0.94E+03,1.10E+03] 0.0012 2.03 1026.83 [970.3117,1096.469] 0.0027 0.34

cube-20 20 1 1.04E+06 [9.38E+05,1.14E+06] 0.0033 25.44 1.04E+06 [9.74E+05,1.12E+06] 0.0028 4.62

cube-rot-10 10 1 1.02E+03 [9.81E+02,1.05E+03] 0.0084 1.91 1.03E+03 [9.82E+02 1.07E+03] 0.0096 0.39

cube-rot-50 50 1 1.12E+15 [1.06E+15,1.19E+15] 0.0023 1329.62 1.12E+15 [1.05E+15 1.19E+15] 0.0044 155.27

cube-rot-100 100 1 1.27E+30 [1.25E+30,1.29E+30] 0.0021 23202.08 1.26E+30 [1.14E+30 1.37E+30] 0.0028 2390.25

Notes: W = 10 is used; cube-rot-d is a randomly rotated cube of dimension d .

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

38:14 I. Z. Emiris and V. Fisikopoulos

Table 3. Experiments with VaryingW

P d m W μ [min,max] std-dev

(vol(P) − μ) (max-min)

/vol(P) /μ

(*) cube-10 10 20 10 1026.953 [925.296,1147.101] 33.91331 0.0029 0.2160

cube-10 10 20 15 1024.157 [928.667,1131.928] 31.34121 0.0002 0.1985

cube-10 10 20 20 1026.910 [932.118,1144.601] 30.97023 0.0028 0.2069

cube-50 50 100 10 1.123E+15 [1.019E+15,1.257E+15] 4.135E+13 0.0022 0.2125

(*) cube-50 50 100 15 1.131E+15 [1.039E+15,1.237E+15] 3.882E+13 0.0044 0.1744

cube-50 50 100 20 1.127E+15 [1.033E+15,1.216E+15] 3.893E+13 0.0007 0.1629

cube-100 100 200 10 1.278E+30 [1.165E+30,1.402E+30] 4.819E+28 0.0081 0.1856

cube-100 100 200 15 1.250E+30 [1.243E+30,1.253E+30] 4.075E+27 0.0140 0.0083

(*) cube-100 100 200 20 1.263E+30 [1.190E+30,1.321E+30] 3.987E+28 0.0038 0.1038

Δ-20-20 40 42 10 1.699E-37 [1.527E-37,1.881E-37] 7.670E-39 0.0056 0.2083

(*) Δ-20-20 40 42 14 1.694E-37 [1.526E-37,1.892E-37] 7.096E-39 0.0025 0.2166

Δ-20-20 40 42 20 1.694E-37 [1.433E-37,1.836E-37] 7.006E-39 0.0024 0.2382

Δ-50-50 100 102 10 1.098E-129 [1.012E-129,1.189E-129] 4.652E-131 0.0154 0.1612

Δ-50-50 100 102 15 1.111E-129 [1.090E-129,1.139E-129] 1.610E-131 0.0281 0.0437

(*) Δ-50-50 100 102 20 1.079E-129 [1.011E-129,1.148E-129] 3.685E-131 0.0015 0.1266

B10 81 100 10 7.951E-55 [6.291E-55,9.077E-55] 8.533E-56 0.0946 0.3504

B10 81 100 15 8.124E-55 [7.451E-55,8.774E-55] 5.015E-56 0.0750 0.1629

(*) B10 81 100 20 7.489E-55 [7.398E-55,7.552E-55] 6.615E-57 0.1472 0.0106

Note: ϵ = 1; (*) indicates minimum W where either (vol(P) − μ)/vol(P) or (max-min)μ is < 1%.

experiments indicate that, with this choice, either (vol(P) − μ)/vol(P) or (max −min)/μ is < 1%
up to d = 100 (Table 3). Moreover, for higher W the improvement in accuracy is not significant,
which supports the claim that asymptotic bounds are unrealistically high. Figure 2 correlates
runtime, expressed by the product NW , and accuracy, expressed by (max−min)/μ (which actually
measures some “deviation”), with respect toW and ϵ (expressed by N). A positive observation is
that accuracy tightly correlates with runtime: e.g., accuracy values close to or beyond 1 lie under
the curve NW = 105, and those rounded to ≤ 0.3 lie roughly above NW = 3 · 105. It also shows
that increasingW converges faster than increasing N to a value beyond which the improvement
in accuracy is not significant.

To experimentally test the effect of rounding, we construct skinny hypercubes skinny-cube-d.
We rotate them to avoid CDHR, taking unfair advantage of the degenerate situation where the
long edge is parallel to an axis. Table 4 on these and other polytopes shows that rounding reduces
approximation error by two orders of magnitude. Without rounding, for polytope rv-8-11 one
needs to multiply N (thus runtime) by 100 to achieve approximation error same as with rounding.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

Practical Polytope Volume Approximation 38:15

Fig. 2. Experiments with B5 on the effect ofW and ϵ (or N) on accuracy, measured by (max-min)/μ (crosses),

and runtime, measured by levels of N ·W = c , for c = 105, . . . , 2.5 · 106.

Table 4. Experiments with Rounding

P vol(P) N μ [min,max]
vol(P)−μ

vol(P)
VolEsti(sec)

rv-8-11 3.047E+18 6654 1.595E+18 [6.038E+17,3.467E+18] 0.4766 1.48

rv-8-11 3.047E+18 665421 3.134E+18 [3.134E+18,3.134E+18] 0.0283 157.46

(*) rv-8-11 3.047E+18 6654 3.052E+18 [2.755E+18,3.383E+18] 0.0013 1.34

skinny-cube-10 1.024E+05 9210 5.175E+04 [2.147E+04,1.228E+05] 0.4946 0.69

(*) skinny-cube-10 1.024E+05 9210 1.029E+05 [8.445E+04,1.149E+05] 0.0050 0.71

skinny-cube-20 1.049E+08 23965 4.193E+07 [2.497E+07,7.259E+07] 0.6001 5.59

(*) skinny-cube-20 1.049E+08 23965 1.040E+08 [8.458E+07,1.163E+08] 0.0084 6.70

Note: (*): means that we use rounding.

4.4 Other Software

Exact volume computation concerns software computing the exact value of the volume, up to
round-off errors in case it uses floating point arithmetic. We mainly test against VINCI 1.0.5 (Büeler
and Enge 2000), which implements state-of-the art algorithms, cf. Table 1. For H-polytopes, the
method based on Lawrence’s general formula is numerically unstable resulting in wrong results
in many examples (Büeler et al. 2000), and thus was excluded. Therefore, we focused on Lasserre’s
method. For all polytopes there is a threshold dimension for which VINCI cannot compute the
volume: it takes a lot of time (e.g., >4 hrs for cube-20) and consumes all system memory, thus
starts swapping.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

38:16 I. Z. Emiris and V. Fisikopoulos

Table 5. Experiments with qhull

rv-15- rv-10- cube-
P : 30 40 50 60 100 150 200 250 7 8 9 10

time (sec) 7.7 82.8 473.3 swap 37.3 107.8 282.5 449.0 0.1 2.2 119.5 > 5h

Note: “swap” indicates it ran out of memory and started swapping; “>5h” indicates it did not terminate after 5 hours.

Table 6. Comparison of the Software (Cousins and Vempala 2014) vs. VolEsti

software of Cousins and Vempala [2014] VolEsti

vol(P)−μ

vol(P)

total vol(P)−μ

vol(P)

total

P [min, max] std-dev steps time(sec) [min, max] std-dev steps time(sec)

cube-20 [5.11E+05, 1.55E+06] 1.67E+05 0.0198 7.96E+04 21.48 [9.74E+05, 1.12E+06] 3.15E+04 0.0028 3.61E+06 4.62

cube-30 [6.75E+08, 1.45E+09] 1.72E+08 0.0440 2.22E+05 49.24 [9.91E+08, 1.16E+09] 3.89E+07 0.0039 1.21E+07 17.96

cube-40 [7.90E+11, 1.38E+12] 1.67E+11 0.0731 4.30E+05 88.09 [1.01E+12, 1.23E+12] 4.46E+10 0.0039 2.84E+07 50.72

cube-50 [8.75E+14, 1.45E+15] 1.43E+14 0.0327 7.16E+05 148.06 [1.00E+15, 1.25E+15] 4.39E+13 0.0007 5.49E+07 117.51

cube-60 [8.89E+17, 1.43E+18] 1.64E+17 0.0473 1.15E+06 229.33 [1.06E+18, 1.27E+18] 4.00E+16 0.0051 9.42E+07 222.10

cube-70 [9.01E+20, 1.36E+21] 1.49E+20 0.0707 1.66E+06 427.82 [1.02E+21, 1.32E+21] 5.42E+19 0.0013 1.49E+08 358.93

cube-80 [9.30E+23, 1.36E+24] 1.46E+23 0.1145 2.30E+06 531.46 [1.13E+24, 1.30E+24] 4.42E+22 0.0009 2.21E+08 582.19

cube-90 [1.07E+27, 1.88E+27] 2.20E+26 0.0394 3.30E+06 701.54 [1.09E+27, 1.44E+27] 5.18E+25 0.0019 3.15E+08 875.69

cube-100 [9.53E+29, 1.64E+30] 1.93E+29 0.0357 4.19E+06 884.43 [1.17E+30, 1.40E+30] 4.82E+28 0.0081 4.33E+08 1285.08

B8 [2.12E-23, 2.45E-22] 6.25E-23 0.3970 9.31E+05 221.30 [4.05E-23, 7.32E-24] 1.93E+04 0.0092 1.01E+08 192.97

B9 [1.54E-33, 2.77E-33] 3.71E-34 0.1830 2.05E+06 420.07 [2.23E-33, 3.07E-33] 2.13E-34 0.0069 2.27E+08 499.56

B10 [3.39E-46, 1.92E-45] 4.75E-46 0.1207 3.69E+06 691.97 [7.97E-46, 9.96E-46] 4.99E-47 0.0152 4.62E+08 1034.74

Note: each experiment is run 10 times, total steps refer to the mean of the total number of hit-and-run steps in each

execution.

Latte implements the same decomposition methods as VINCI; it is less prone to round-off error
but slower (De Loera et al. 2013). Normaliz (Bruns et al. 2013) applies triangulation: it handles
cubes for d ≤ 10, in < 1 min, but for d = 15, it did not terminate after 5 hours. Qhull handles V-
polytopes but does not terminate for cube-10 nor random polytope rv-15-60 (Table 5). This should
be juxtaposed to the duals, namely our software approximates the volume of cross-10 in 2 sec
with <1% error and rh-15-60 in 3.44 sec. LRS (Avis 2000) is not useful for H-polytopes as stated
on its webpage: “If the volume option is applied to an H-representation, the results are not pre-
dictable.” A general conclusion for exact software is that it cannot handle d > 15.

We compare with the most relevant approximation method, namely the Matlab implementation
of Cousins and Vempala (2016), for bodies represented as the intersection of an H-polytope and
an ellipsoid. They report that the code is optimized to achieve about 75% success rate for bodies
of dimension ≤ 100 and objective ϵ ∈ [0.1, 0.2] (not to be confused with the ϵ of our method).
Testing Cousins and Vempala (2016) with default options and ϵ = 0.1, our implementation with
ϵ = 1 runs faster for d < 80, performs roughly 100 times more total hit-and-run steps and returns
significantly more accurate results, e.g., from 4 to 100 times smaller error on cube-d when d > 70,
and from 5 to 80 times on Birkhoff polytopes (Table 6).

4.5 Birkhoff Polytopes

The n-th Birkhoff polytope is

Bn = {x ∈ Rn×n | xi j ≥ 0,
∑

i

xi j = 1,
∑

j

xi j = 1, 1 ≤ i, j ≤ n}.

It is the polytope of the perfect matchings of the complete bipartite graphKn,n , the polytope of the
n × n doubly stochastic matrices, or the Newton polytope of the determinant. Every point in the
polytope can equivalently be seen as an n × n matrix or a point in Rn×n . These polytopes are well

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

Practical Polytope Volume Approximation 38:17

Table 7. Asymptotic and Experimental Approximation of the Volume of Bn

asymptotic

n d estimation (Canfield and McKay 2009) estimation
asymptotic exact exact

asymptotic

3 4 1.12E+000 1.41E+000 0.793284 1.13E+000 0.797392
4 9 6.79E-002 7.61E-002 0.891934 6.21E-002 0.815930
5 16 1.41E-004 1.69E-004 0.834435 1.41E-004 0.834190
6 25 7.41E-009 8.62E-009 0.859866 7.35E-009 0.852792
7 36 5.67E-015 6.51E-015 0.871389 5.64E-015 0.866505
8 49 4.39E-023 5.03E-023 0.872949 4.42E-023 0.877863
9 64 2.58E-033 2.93E-033 0.881310 2.60E-033 0.887412

10 81 8.92E-046 9.81E-046 0.909205 8.78E-046 0.895549
11 100 1.40E-060 1.49E-060 0.934258 ? ?
12 121 7.85E-078 8.38E-078 0.937051 ? ?
13 144 1.33E-097 1.43E-097 0.933151 ? ?
14 169 5.96E-120 6.24E-120 0.955008 ? ?
15 196 5.70E-145 5.94E-145 0.959378 ? ?

Note: “?” indicates that the exact volume is unknown.

studied in combinatorial geometry and offer an important benchmark. A complex-analytic method
(Beck and Pixton 2003), implemented in package birkhoff, has managed to compute vol(B10) in
parallel execution, which corresponds to a single 1GHz processor running for almost 17 years.

Since dimBn = n
2 − 2n + 1, we project Bn to a subspace of this dimension. Our software, with

ϵ = 1, computes the volume of polytopes up toB10 in < 1 hour with mean error of ≤ 1.5% (Table 1).
By setting ϵ = 0.5, we obtain an error of 0.7% for vol(B10), in 6 hours. The computed approximation
has two correct digits.

More interestingly, using ϵ = 1 we compute, in < 9 hours, an approximation as well as an in-
terval of values for vol(B11), . . . , vol(B15). The absence of exact values makes the computation of
the approximation error impossible. However, the calculation in Table 7 provides an experimental
proof of the quality of our approximation since it shows that the ratio of our estimation over the
asymptotic upper bound of Canfield and McKay (2009) converges to 1.

We exploit the symmetries of Birkhoff polytopes to compute efficiently more random points. If
a point p is in Bn then all points obtained by applying the permutations of the symmetric group in
the rows and columns of p (seen as a matrix) lie in Bn . Therefore, for each p we readily compute
2n! − 1 more random points. In general, whenever a polytope possesses some known symmetry,
producing easily random points increases accuracy without practically increasing runtime. As an
illustration, for B6, exploiting symmetries reduces relative error (vol(P) − μ)/vol(P) from 0.138 to
0.011 and shrinks interval [min,max] from [7.807E − 13, 1.731E − 12] to [8.813e − 13, 1.016e − 12]
(experiments repeated 10 times).

4.6 Order Polytopes

The order polytope of the poset P is the subset of R |P |—where |P | is the number of elements in
P—defined by the conditions

0 ≤ f (x) ≤ 1, for all x ∈ P , (4)

f (x) ≤ f (y), if x ≤ y in P . (5)

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

38:18 I. Z. Emiris and V. Fisikopoulos

Order polytopes have been defined in Stanley (1986). They are important polytopes in combina-
torics since their volume equals the number of linear extensions of the poset P . However, comput-
ing this number is proven to be hard (Brightwell and Winkler 1991).

In the experiments of this article, we construct a poset P with 20 fixed edges and we vary
the number of elements to test how our algorithm will scale with dimension. The relative er-
ror (vol(P) − μ)/vol(P) of our computation is less than 0.01 up to dimension 100. For more details,
see Table 1.

4.7 Parallel Computation

We exploit a crucial property of the method, its straightforward parallelization. In particular, we as-
sign threads of the random walk to computer processors threads. We use boost threads (William
and Escriba 2007). We test the acceleration of parallel computation in our software by comput-
ing the volumes of B8,B9,B10. To carry out these experiments, we used an Intel(R) Core(TM)
i7-4700HQ CPU @ 2.40GHz with 8 processor threads. The parallel timings are 35.46, 91.64, 217.57
secs while the sequential are 153.31, 399.25, 825.65 secs, respectively. Therefore, we obtain an ac-
celeration of approximately five times.

5 CONCLUSION

Various theoretical and practical research questions arise from our study. For example, the point
samples can also be seen as another means of representing the polytope: Could we implement fast
membership simply using the point samples?

Our original motivation and ultimate goal is to extend our methods to V-polytopes and, more
generally, to polytopes represented by an optimization oracle.

The rest of this section is devoted to an interesting connection between approximate NN and
approximate boundary oracles. Duality reduces the boundary oracle problem to NN search and
its variants. Given a pointset B ⊆ Rd and query point q, NN search returns a point p ∈ B s.t.
dist(q,p) ≤ dist(q,p ′) for all p ′ ∈ B, where dist(q,p) is the Euclidean distance between points
q,p. Let us consider, w.l.o.g., boundary intersection for line � parallel to the xd -axis: � = {x : x =
λv + p, λ ∈ R}, v = (0, . . . , 0,−1). It reduces to two ray-shooting questions; it suffices to describe
one, namely with the upward vertical ray, defined by λ ≤ 0. We seek the first facet hyperplane
hit which, equivalently, has the maximum negative signed vertical distance from p to any hyper-
plane H of the upper hull. This distance is denoted by sv(p,H). Let us consider the standard (aka
functional) duality transform between points p and non-vertical hyperplanes H :

p = (p1, . . . ,pd) �→ p∗ : xd = p1x1 + · · · + pd−1xd−1 − pd ,

H : xd = c1x1 + · · · + cd−1xd−1 + c0 �→ H ∗ = (c1, . . . , cd−1,−c0).

This transformation is self-dual, preserves point-hyperplane incidences, and negates vertical dis-
tance, hence sv∗ (p∗,H ∗) = −sv(p,H), where sv∗ (·, ·) is the signed vertical distance from hyper-
planep∗ to pointH ∗ in dual space. Hence, our problem is equivalent to minimizing sv∗ (p∗,H ∗) ≥ 0.
Equivalently, we seek point H ∗ minimizing absolute vertical distance to hyperplane p∗ on its half-
space of positive distances. In dual space, consider

point t = (t1, . . . , td), and hyperplane p∗ = q : xd = q1x1 + · · · + qd−1xd−1 + q0 : (6)

Then, define the following function sv∗ (q, t), which is minimized over all t in the positive halfspace
of vector q:

sv∗ (q, t) = td − (q1t1 + · · · + qd−1td−1 + q0) = −(q0,q1, . . . ,qd−1,−1) · (1, t1, . . . , td−1, td),

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

Practical Polytope Volume Approximation 38:19

where the latter operation is inner product in “lifted” Euclidean space Rd+1 of “lifted” points
t ′ = (1, t1, . . . , td−1, td) with “lifted” query point q′ = (q0,q1, . . . ,qd−1,−1). Notice that the t ′ lie
in convex position. Let

q′′ = (q′, 0), t ′′ = (t ′,
√
M − ‖t ′‖22), for M ≥ max

t
{1 + ‖t ‖22 },

following an idea of Basri et al. (2011). By the cosine rule,

dist2
d+2 (q′′, t ′′) = ‖q′‖22 +M + 2sv∗ (q, t),

where distd+2 (·, ·) stands for Euclidean distance in Rd+2. Since the t ′′ lie on hyperplane x1 = 1,
optimizing distd+2 (q′′, t ′′) over a set of points t ′′ is equivalent to optimizing distd+1 (q̂, t̂) in (d +

1)-dimensional space, where q̂ = (q1, . . . ,qd−1,−1, 0), over points t̂ = (t ,
√
M − 1 − ‖t ‖22). Hence,

point t minimizing sv∗ (q, t) ≥ 0 corresponds to t̂ minimizing dist2
d+1

(q̂, t̂). Thus the problem is

reduced to NN in Rd+1. Ray shooting to the lower hull with same v reduces to farthest neighbor.
Preliminary tests of the above approach, using FLANN (Muja 2011) to perform NN queries, have

shown a 40x speed-up for certain instances such as cross-polytopes in dimension 16. However,
an approximate solution to these problems incurs an additive error to the corresponding origi-
nal problem. Thus, we view this technique mainly with motivation for the design of algorithms
that can use approximate boundary queries and hence take advantage of NN software to handle
polytopes with a large number of facets.

ACKNOWLEDGMENTS

Most of the work was done while the second author was at the NKU Athens. The authors acknowl-
edge discussions with Matthias Beck on Birkhoff polytopes, and Andreas Enge on VINCI, and help
with experiments with NN software by Ioannis Psarros and Georgios Samaras, students at NKUA.
Finally, we acknowledge useful comments by anonymous reviewers that helped to improve the
presentation of the article.

REFERENCES

P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. 2005. Geometric approximation via coresets. In Combinatorial and

Computational Geometry. MSRI, Berkeley, 1–30.

A. Andoni and P. Indyk. 2008. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions.

Commun. ACM 51 (2008), 117–122.

S. Arya, G. D. da Fonseca, and D. M. Mount. 2012. Optimal area-sensitive bounds for polytope approximation. In Proc. Symp.

on Computational Geometry. ACM, New York, 363–372.

D. Avis. 2000. lrs: A revised implementation of the reverse search vertex enumeration algorithm. In Polytopes: Combinatorics

& Computation. Oberwolfach Seminars, Vol. 29. Birkhäuser, Basel, 177–198.

I. Bárány and Z. Füredi. 1987. Computing the volume is difficult. Discrete Comput. Geom. 2, 4 (1987), 319–326.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. 1996. The quickhull algorithm for convex hulls. ACM Trans. of Math. Softw.

22, 4 (1996), 469–483.

R. Basri, T. Hassner, and L. Zelnik-Manor. 2011. Approximate nearest subspace search. IEEE Trans. Pattern Anal. Mach.

Intell. 33, 2 (2011), 266–278.

M. Beck and D. Pixton. 2003. The Ehrhart polynomial of the Birkhoff polytope. Discrete Comput. Geom. 30, 4 (2003), 623–637.

D. Bertsimas and S. Vempala. 2004. Solving convex programs by random walks. J. ACM 51, 4 (2004), 540–556.

U. Betke and M. Henk. 1993. Approximating the volume of convex bodies. Discrete Comput. Geom. 10, 1 (1993), 15–21.

http://dx.doi.org/10.1007/BF02573960.

G. Brightwell and P. Winkler. 1991. Counting linear extensions. Order 8, 3 (1991), 225–242.

W. Bruns, B. Ichim, and C. Söger. 2013. Normaliz. Algorithms for rational cones and affine monoids. Retrieved from http://

www.math.uos.de/normaliz.

B. Büeler and A. Enge. 2000. VINCI. Retrieved from http://www.math.u-bordeaux1.fr/ aenge/index.php?category=

software&page=vinci.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

http://dx.doi.org/10.1007/BF02573960
http://penalty -@M www.math.uos.de/normaliz
http://www.math.u-bordeaux1.fr/ ignorespaces aenge/index.php?category$=$software&page$=$vinci

38:20 I. Z. Emiris and V. Fisikopoulos

B. Büeler, A. Enge, and K. Fukuda. 2000. Exact Volume Computation for Polytopes: A Practical Study. Mathematics and

Statistics, Vol. 29. Birkhäuser, Basel, 131–154.

E. Canfield and B. McKay. 2009. The asymptotic volume of the Birkhoff polytope. Online J. Anal. Comb. 4 (2009).

CGAL 2015. CGAL: Computational Geometry Algorithms Library. Retrieved from http://www.cgal.org.

Y. Chen, P. Diaconis, S. P. Holmes, and J. S. Liu. 2005. Sequential Monte Carlo methods for statistical analysis of tables. J.

Amer. Statist. Assoc. 100, 469 (March 2005), 109–120.

B. Cousins and S. Vempala. 2014. A cubic algorithm for computing gaussian volume. In Proc. Symp. on Discrete Algorithms.

SIAM/ACM, 1215–1228.

B. Cousins and S. Vempala. 2015. Bypassing KLS: Gaussian cooling and an O∗ (n3) volume algorithm. In Proceedings of the

47th Annual ACM Symposium on Theory of Computing (STOC’15). ACM, New York, NY, 539–548.

B. Cousins and S. Vempala. 2016. A practical volume algorithm. Math. Program. Comput. 8, 2 (2016), 133–160.

M. Cryan and M. Dyer. 2003. A polynomial-time algorithm to approximately count contingency tables when the number

of rows is constant. J. Comput. System Sci. 67, 2 (2003), 291–310.

J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, and J. Wu. 2013. Software for exact integration of polynomials

over polyhedra. Comput. Geom.: Theory Appl. 46, 3 (April 2013), 232–252.

J. A. De Loera, F. Liu, and R. Yoshida. 2008. A generating function for all semi-magic squares and the volume of the Birkhoff

polytope. J. Algebraic Comb. 30, 1 (2008), 113–139.

P. Diaconis and B. Sturmfels. 1998. Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26, 1 (02

1998), 363–397.

M. E. Dyer and A. M. Frieze. 1988. On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17, 5

(1988), 967–974.

M. Dyer, A. Frieze, and R. Kannan. 1991. A random polynomial-time algorithm for approximating the volume of convex

bodies. J. ACM 38, 1 (1991), 1–17.

M. Dyer, R. Kannan, and J. Mount. 1997. Sampling contingency tables. Random Struct. Algorithms 10 (1997), 487–506.

G. Elekes. 1986. A geometric inequality and the complexity of computing volume. Discrete Comput. Geom. 1 (1986), 289–292.

I. Z. Emiris and V. Fisikopoulos. 2014. Efficient random-walk methods for approximating polytope volume. In Proc. Symp.

on Computational Geometry. ACM, Kyoto, Japan, 318–325.

K. Fischer, B. Gärtner, T. Herrmann, M. Hoffmann, and S. Schönherr. 2013a. Bounding volumes. In CGAL User

and Reference Manual (4.3 ed.). CGAL Editorial Board. Retrieved from http://doc.cgal.org/4.3/Manual/packages.

html#PkgBoundingVolumesSummary.

K. Fischer, B. Gärtner, S. Schönherr, and F. Wessendorp. 2013b. Linear and quadratic programming solver. In

CGAL User and Reference Manual (4.3 ed.). CGAL Editorial Board. http://doc.cgal.org/4.3/Manual/packages.html#

PkgQPSolverSummary.

M. Grötschel, L. Lovász, and A. Schrijver. 1993. Geometric Algorithms and Combinatorial Optimization (2nd corrected ed.).

Algorithms and Combinatorics, Vol. 2. Springer, Berlin.

G. Guennebaud, B. Jacob, et al. 2010. Eigen v3. Retrieved from http://eigen.tuxfamily.org.

U. Jaekel. 2011. A Monte Carlo method for high-dimensional volume estimation and application to polytopes. Proced.

Comput. Sci. 4 (2011), 1403–1411.

R. Kannan, L. Lovász, and M. Simonovits. 1997. Random walks and an O (n5) volume algorithm for convex bodies. Rand.

Struct. Algor. 11 (1997), 1–50.

R. Kannan and H. Narayanan. 2012. Random walks on polytopes and an affine interior point method for linear program-

ming. Math. Op. Res. 37, 1 (2012), 1–20.

R. Kannan and S. Vempala. 1997. Sampling lattice points. In Proc. Symp. Theory of Computing. ACM, New York, 696–700.

L. Khachiyan. 1993. Complexity of polytope volume computation. In New Trends in Discrete and Computational Geometry.

Springer, Berlin, 91–101.

L. G. Khachiyan. 1996. Rounding of polytopes in the real number model of computation. Math. Oper. Res. 21, 2 (1996),

307–320.

J. Lawrence. 1991. Polytope volume computation. AMS Math. Comput. 57, 195 (1991), 259–271.

S. Liu, J. Zhang, and B. Zhu. 2007. Volume computation using a direct Monte Carlo method. In Comp. and Combinatorics.,

G. Lin (Ed.). LNCS, Vol. 4598. Springer, Berlin, 198–209.

L. Lovász. 1999. Hit-and-run mixes fast. Math. Program. 86 (1999), 443–461. Issue 3.

L. Lovász and I. Deák. 2012. Computational results of an O (n4) volume algorithm. Eur. J. Op. Res. 216, 1 (2012), 152–161.

L. Lovász and S. Vempala. 2006a. Hit-and-run from a corner. SIAM J. Comput. 35, 4 (2006), 985–1005.

L. Lovász and S. Vempala. 2006b. Simulated annealing in convex bodies and an O∗ (n4) volume algorithm. J. Comp. Syst.

Sci. 72, 2 (2006), 392–417.

J. Maurer. 2000. Boost: C++ Libraries. Chapter 23. Boost Random. Retrieved from www.boost.org/doc/libs/1_54_0/doc/

html/ boost_random.html.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

http://www.cgal.org
http://doc.cgal.org/4.3/Manual/packages.html#PkgBoundingVolumesSummary
http://doc.cgal.org/4.3/Manual/packages.html#penalty -@M PkgQPSolverSummary
http://eigen.tuxfamily.org
www.boost.org/doc/libs/1_54_0/doc/html/ ignorespaces boost_random.html

Practical Polytope Volume Approximation 38:21

L. Mohácsi and I. Deák. 2015. A parallel implementation of an O (n4) volume algorithm. Cent. Eur. J. Op. Res. 3, 24 (2015),

1–28.

M. Muja. 2011. FLANN: Fast Library for Approximate Nearest Neighbors. Retrieved October 2013 from http://mloss.org/

software/view/143/.

E. A. Ramos. 1999. On range reporting, ray shooting and K-level construction. In Proc. Symp. on Computational Geometry.

ACM, New York, 390–399.

S. Reisner, C. Schütt, and E. Werner. 2001. Dropping a vertex or a facet from a convex polytope. Forum Math. 13, 3 (2001),

359–378.

M. Simonovits. 2003. How to compute the volume in high dimension? Math. Program. (2003), 337–374.

R. L. Smith. 1984. Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Op.

Res. 32, 6 (1984), 1296–1308.

R. Stanley. 1986. Two poset polytopes. DiscreteComput. Geom. 1, 1 (1986), 9–23.

S. Vempala. 2005. Geometric random walks: A survey. Comb. Comput. Geom. 52 (2005), 573–612.

A. William and V. J. B. Escriba. 2007. Boost: C++ Libraries. Chapter 32. Thread. Retrieved from http://www.boost.org/doc/

libs/1_56_0/doc/html/thread.html.

Y. Zheng and K. Yamane. 2013. Ray-shooting algorithms for robotics. IEEE Trans. Autom. Sci. Eng. 10, 4 (2013), 862–874.

Received March 2015; revised January 2017; accepted February 2018

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 38. Publication date: June 2018.

http://mloss.org/software/view/143/
http://www.boost.org/doc/libs/1_56_0/doc/html/thread.html

