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Abstract. We study the problem of estimating the volume of convex
polytopes, focusing on zonotopes. Although a lot of effort is devoted
to practical algorithms for polytopes given as an intersection of halfs-
paces, there is no such method for zonotopes. Our algorithm is based on
Multiphase Monte Carlo (MMC) methods, and our main contributions
include: (i) a new uniform sampler employing Billiard Walk for the first
time in volume computation, (ii) a new simulated annealing generalizing
existing MMC by making use of adaptive convex bodies which fit to the
input, thus drastically reducing the number of phases. Extensive exper-
iments on zonotopes show our algorithm requires sub-linear number of
oracle calls in the dimension, while the best theoretical bound is cubic.
Moreover, our algorithm can be easily generalized to any convex body.
We offer an open-source, optimized C++ implementation, and analyze its
performance. Our code tackles problems intractable so far, offering the
first efficient algorithm for zonotopes which scales to high dimensions
(e.g. one hundred dimensions in less than 1h).

Keywords: Volume approximation - Zonotope - Simulated annealing -
Billiard Walk - Mathematical software

1 Introduction

Volume computation is a fundamental problem with many applications. It is
#P-hard for explicit polytopes [7,11], and APX-hard [9] for convex bodies in
the oracle model. Therefore, a significant effort has been devoted to randomized
approximation algorithms, starting with the celebrated result in [8] with com-
plexity O*(d??) oracle calls, where O*(-) suppresses polylog factors and depen-
dence on error parameters, and d is the dimension. Improved algorithms reduced
the exponent to 5 [13] and further results [5,14] reduced the exponent to 3. Cur-
rent theoretical results consider either the general oracle model or polytopes
given as an intersection of halfspaces (i.e. H-polytopes). Regarding implemen-
tations, the approach of [13] led to the first practical implementation in [10]
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for high dimensions, followed by another practical implementation [6] based on
[5,14]. However, both implementations can handle only H-polytopes.

An important class of convex polytopes are zonotopes [15]. A zonotope is
the Minkowski sum of k d-dimensional segments. Equivalently, given a matrix
G € R¥F a zonotope can be seen as the affine projection of the hypercube
[~1,1]* to R? using the matrix G, while the columns of G are the corresponding
segments (or generators). Zonotopes are centrally symmetric and each of their
faces are again zonotopes. We call the order of a zonotope P the ratio between
the number of generators of P over the dimension. For a nice introduction to
zonotopes we refer to [20].

Volume approximation for zonotopes is of special interest in several applica-
tions in smart grids [1], in autonomous driving [2] or human-robot collaboration
[16]. The complexity of algorithms that work on zonotopes strongly depends on
their order. Thus, to achieve efficient computations, a solution that is common in
practice is to over-approximate P, as tight as possible, with a second zonotope
Prcq of smaller order, while vol(P,..q) is given by, an easy to compute, closed
formula. A good measure for the quality of the approximation is the ratio of fit-
ness, p = (vol(Preq)/vol(P))*?, which involves a volume computation problem
[3]. Existing work (e.g. in [12]) uses exact - deterministic volume computation
[11], and thus p can not be computed for d > 10 in certain applications.

A typical randomized algorithm uses a Multiphase Monte Carlo (MMC) tech-
nique, which reduces volume approximation of convex P to computing a telescop-
ing product of ratios of integrals. Then each ratio is estimated by means of ran-
dom walks sampling from a proper multivariate distribution. In this paper we rely
on MMC of [13] which specifies a sequence of convex bodies P,,, C--- C Py = P,
assuming P is well-rounded, i.e. B4 € P C C’\/&Bd7 where C' is constant
and By is the unit ball. We define a sequence of scaled copies of By, and let
P, = (2m=9/4B)N P, i =0,...,m. One computes vol(P,,) and applies:

vol(Pp—1) o vol(Pp)
vol(Py,) vol(Py)’ (1)
m = O(dlgd), Py = CVdBy N P.

vol(P) = vol(Py,)

There is a closed-form expression to compute vol(P,,) = vol(By) . Each ratio
r; = vol(P;11)/vol(P;) in Eq. (1) can be estimated within arbitrary small error ¢;
by sampling uniformly distributed points in P; and accept/reject points in P;4q
so vol(P) can be derived after m multiplications. The estimation of r; shows
how sampling comes into the picture. In [10], assuming rBy; C P C RBy for
r < R, they get m = [dlg(R/r)]. The issue is to minimize m while each ratio
remains bounded by a constant, and to use a random walk that converges, after
a minimum number of steps, to the uniform distribution. The first would permit
a larger approximation error per ratio without compromising overall error, while
it would require a smaller uniform sample to estimate each ratio. The second
would reduce the cost per sample point. Total complexity is determined by the
number of ratios, or phases, multiplied by the number of points, or steps, to
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estimate each ratio, multiplied by the cost to generate a point. The first two
factors are determined by the MMC and the third by the random walk.

Previous Work. Exact volume computation for zonotopes can be reduced to
a sum of absolute values of determinants, with an exponential number of sum-
mands in d [11]. Practical algorithms for volume computation of zonotopes are
limited to low dimensions (typically < 10 in [6]). This is due to two main reasons:
current algorithms create a long sequence of phases in MMC for zonotopes, and
the boundary and membership oracles are costlier than for H-polytope, as they
both reduce to Linear Programs (LP). In [6], they consider low dimensional
zonotopes: in R'” with k = 20 generators, the algorithm performs 1.92 x 10°
Boundary Oracle Calls (BOC), whereas our algorithm requires only 8.50 x 103
BOCs, and for d = 100,k = 200 it performs 6.51 x 10* BOCs (see Table1).
In [19] they present an implementation of an efficient algorithm that computes
Minkowski sums of polytopes (generalization of zonotopes). In [18] they propose
a randomized algorithm for enumerating the vertices of a zonotope.

Our Contribution. We focus on zonotopes and introduce crucial algorithmic
innovations to overcome the existing barriers, by reducing significantly the num-
ber of oracle calls. Thus, our method scales to high dimensions (d = 100 in <1h),
performing computations which were intractable till now.

We use a new simulated annealing method in order to define a sequence
of appropriate convex bodies, instead of balls, in MMC, and we exploit the
fast convergence of Billiard Walk (BW) [17] to the uniform distribution. We
experimentally analyze complexity by counting the number of BOCs, since BW
uses boundary reflections.

The new simulated annealing specifies the P;’s by exploiting the statistical
properties of the telescoping ratios to drastically reduce the number of phases.
In particular, we bound each ratio r; = vol(P;41)/vol(P;) to a given interval
[r,7 + ] with high probability, for some real r. Moreover, our MMC generalizes
balls, used in [13] and previous papers, by taking as input any convex body C
and constructing the sequence by only scaling C. It does not need an enclosing
body of P nor an inscribed ball (or body), unlike [10,13].

Most of the previous algorithms use a rounding step before volume compu-
tation, as preprocessing, to reduce the number of phases in MMC. However,
rounding requires uniform sampling from P which makes it costly for zonotopes
because of the expensive oracle calls. Our approach is to exploit the fact that
the schedule uses any body C and skip rounding by letting C' be an H-polytope
that fits well to P. The idea is to construct C' fast and reduce the number of
phases and the total runtime more than a rounding preprocessing would do in
practice.

We prove that the number of bodies defined in MMC is, with high probability,
m = O(lg(vol(P)/vol(Py,))), where P,, = ¢gC N P, for some ¢ € R, is the body

d % € [r,r + 6]. The bound on m is not

surprising, as it does not improve worst-case complexity [5], if C' is a ball, but

with minimum volume, an
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offers crucial advantages in practice. First, the hidden constant is small. More
importantly, if C is a good fit to P, vol(P,,) increases and m decreases (Fig. 1).

Fig. 1. Different selection of body in our algorithm’s MMC; » = 0.8 and r + § = 0.85.
Body C': left is the unit ball; right is the centrally symmetric H-polytope of Sect. 2.3.

We also show that, for constant d, and k (number of generators) increasing,
m decreases to 1, when we use ball in MMC, since the schedule constructs an
enclosing ball of P. Intuitively, while order increases for constant d, a random
zonotope approximates the hypersphere. The latter can be approximated up to
€ in the Hausdorff metric by a zonotope with k < c(d)(€?|1ge|)(@=D/(d+2) " ¢(d)
being a constant [4]. This does not directly prove our claim on m but strengthens
it intuitively. So, in our experiments, the number of phases is m < 3 for any order,
without rounding for d < 100.

Considering uniform sampling, BW defines a linear trajectory starting at
the current point, using boundary reflections [17]. No theoretical mixing time
exists. We show that with the right selection of parameters, BW behaves like an
almost perfect uniform sampler even if the walk length is 1. In particular, for this
walk length, it generates just O*(1) points per phase, with sub-linear number of
reflections per point, and provides the desired accuracy. To stop sampling when
estimating ratio r; we modify the binomial proportion confidence interval. We
use the standard deviation of a sliding window of the last [ ratios, thus defining
a new empirical convergence criterion; I = O(1) suffices with BW.

Our software contributions build upon and enhance volesti! a C++ open
source library for high dimensional sampling and volume computation with an
R interface. We experimentally show that the total number of oracle calls grows
as 0*(d) for random zonotopes; the best available theoretical bound is O*(d?)

[5]-
2 Volume Algorithm

The algorithm first constructs a sequence of convex bodies C7; O --- 2 C,
intersecting the zonotope P; the C;’s are determined by simulated annealing.

! https://github.com/GeomScale/volume_approximation.
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A typical choice of C;’s in this paper is co-centric balls, or centrally symmetric
H-polytopes. C,, is chosen for its volume to be computed faster than vol(P) and
easily sampled. Then,

vol(P,,)
vol(P) = vol(Gm) vl(C),  P=CinPi=1,...,m,
vol(py) vol(p,) ~ vol(Pn)
vol(Py) vol(py) vol(P._1)
where Py = P. Let r; = vol(Piiy) 1=0,....m—1,r, = vol(py,)

vol(p,) ’ vol(Cm)

2.1 Uniform Sampling and Oracles for Zonotopes

We use BW to sample approximately uniform points in P; at each phase i. BW
picks a uniformly distributed line ¢ through the current point. It walks on a
linear trajectory of length L = —71lnn, n ~ U(0, 1), reflecting at the boundary.
BW can be used to sample only uniform points; in [17] they experimentally show
that BW converges fast to the uniform distribution when 7 ~ diam(P).

The membership oracle is a feasibility problem. A point p € P iff the following
region is feasible: Zle zig; = p, —1 < x; <1, where g; are the generators of P.
Let the uniformly distributed vector on the boundary of the unit ball v define
the line ¢ through the current point. The boundary oracle for the intersection
£NOP is expressed as a LP. One extreme point of the segment can be computed
as follows: min —\, s.t. p+ v = Zle r;9; — 1 < x; < 1. The second
extreme point which corresponds to a negative value of A is not used by BW.
For the BW we need the normal of the facet that intersects ¢ to compute the
reflection of the trajectory if needed. We keep the generators that corresponds
to x; # —1,1 and then the normal vector is computed straightforwardly.

2.2 Annealing Schedule for Convex Bodies

Given P, the annealing schedule generates the sequence of convex bodies C; D
-+« D Oy, defining P, = C; N P and Py = P. The main goal is to restrict each
ratio r; in the interval [r,r + §] with high probability. We define the following
two statistical tests, which can be reduced to t-tests:

[U-teSt(Pl,Pg)] H()Z VOl(PQ)/VOl(Pl) Z r—+ 1)
[L-test (Pl,PQ)] H()Z VOl(PQ)/VOl(Pl) S r

The U-test and L-test are successful iff null hypothesis H is rejected,
namely r; is upper bounded by 40 or lower bounded by 7, with high probability,
respectively. If we sample N uniform points from P; then r.v. X that counts
points in P;;1, follows X ~ b(N,r;), the binomial distribution, and ¥ = X/N ~
N(ri,ri(1 —r;)/N). Then each sample proportion that counts successes in P;41
over N is an unbiased estimator for the mean of Y, which is r;.
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Perform L-test and U-test
Input : convex bodies P;, Ps, cooling parameters r, 9, s.l. a, v, N € N

Sample vIN uniform points from Py

Partition vIN points to lists S1,...,S,, each of length N

Compute ratios 7, = |{p € Po: p€ S;}|/N,i=1,...,v

Compute the mean, i, and st.d., s, of the v ratios

ifp>r+ tu—l,a% then L-test holds, otherwise L-test fails
ifp<r+4+9— tu—1,a% then U-test holds, otherwise U-test fails

Let us now describe the annealing schedule: Each C; in C; 2 --- D (), is a
scalar multiple of a given body C'. Since our algorithm does not use an inscribed
body, initialization computes the body with minimum volume, denoted by C’
or Cy,. This is the last body in the sequence. The algorithm sets Py = P and
employs C’ to decide stopping at the i-th phase.

Initialization. Given C, and interval [¢min, gmax], One employs binary search to
compute ¢ € [Gmin, dmax] S-t. both U-test(qC, ¢C N P) and L-test(qC,¢C N P)
are successful. Let ¢ = (¢min + ¢max)/2. If U-test(¢C,¢C N P) succeeds and
L-test(qC, qCNP) fails, we continue to the left-half of the interval. With inverse
outcomes, we continue to the right-half of the interval. If both succeed, stop and
set C" = qC. The output is C’, denoted by C,, at termination.

Regular Iteration. At iteration i, the algorithm determines P;y; s.t. volume
ratio r; € [r,r + d] with high probability. The schedule samples ¥ N points from
P; and binary searches for a ¢;11 in an updated interval [gmin, ¢max| S-t. both
U-test(P;, ¢;i+1CNP) and L-test(P;, ¢;+1CNP) are successful. Then set P11 =
qi+1C NnP.

Stopping and Termination. The algorithm uses C' N P in the i-th iteration
for checking whether vol(C’ N P)/vol(P;) > r with high probability, using only
L-test, and then stops if L-test(P;,C’ N P) holds. Then, set m =i + 1, and
P,=0C'nP.

In the t-tests, errors of different types may occur, thus, binary search may
enter intervals that do not contain ratios in [r, r+6]. Hence, there is a probability
that annealing schedule fails to terminate. Let § capture the power of a t-test:
pow = Prreject Hy | Hy false] =1 — 3.

Theorem 1. Let J be the minimum number of steps by annealing schedule,
corresponding to no errors occurring in the t-tests. Let the algorithm perform
M > J iterations. Let Bnax, Bmin be the mazimum and minimum among all 3’s
in the M pairs of t-tests in the U-test and L-test, respectively. Then, annealing
schedule terminates with constant probability, namely:

1- min max 2 max — 2
Pr[an. sched. terminates] > 1 — 2 (1 = fuin) + 3 _ 2 Prmin

1- 0((1 - ﬂmin) + ﬂmax 1- 2ﬁmax - ﬂgnin .
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13d — 1.7d — 3d — 5d - 13
order — ysq — 24 - 4d order T 127

100 25 50 75 100

Fig. 2. Number of bodies in MMC. For each dimension we generate 10 random zono-
topes and we compute the number of bodies, m, in MMC when C is ball. We keep
the zonotope with the larger m and then, for that one, we compute m when C is the
P-approx.

2.3 Rounding and Convex Bodies in MMC

The annealing schedule allows as to use any C' which must (a) be a good fit
to P, (b) allow for more efficient sampling than in P, and (c) for faster volume
calculation than of vol(P). For low order ones C' shall be an enclosing H-polytope
that fits well to P. Indeed it is possible that with certain choices for C' rounding
is not needed. We define a centrally symmetric H-polytope with < 2k facets:

Construct P-approx
Input : The generator matrix G € R4** of zonotope P
Output: An H-polytope C' O P

compute the eigenvectors of GT'G (has k — d zero eigenvalues)

let the eigenvectors of k — d zero eigenvalues of GTG form E € RF*(k=d),
compute an orthonormal basis for E, and the orthogonal complement W
Let Ay < by, A € R**F be an H-representation of [—1, 1]

C:={x|Mz < by}, M = AWT(GWT)~! € R2kxd

return C|

2.4 Experimental Complexity

We perform extended experiments analyzing practical complexity. We use
eigen? for linear algebra and 1pSolve? for LPs. All experiments were performed
on a PC with Intel® Core™ i7-6700 3.40 GHz 8 CPU and 32 GB RAM. We
use three zonotope generators. All of them pick uniformly a direction for each
one of the k segments. Then, (a) Zy-d-k: the length of each segment is uniformly
sampled from [0,100], (b) Zar-d-k: the length of each segment is random from

2 eigen.tuxfamily.org.
3 Ipsolve.sourceforge.net.
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generator — Exponential — Gaussian — Uniform generator — Exponential — Gaussian — Uniform

Bodies

.....

OracleCalls
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1500

P

1400 e e e e e 7

Steps / Phases
Reflections / Step

1300 | 74

25 50 75 100 %
d d

Fig. 3. Experimental complexity for order = 2. Total number of oracle calls is given
by the #phases (bodies) x #steps (points) per phase x Freflections per step.

N (50, (50/3)?) truncated to [0,100], (¢) Zpyp-d-k: the length of each segment is
random from Ezp(1/30) truncated to [0, 100]. Total number of boundary oracle
calls of our algorithm:

#BOCs= #phases(bodies) x #steps(points) /phase x #reflections/point.

Figure2 denotes the best choice between ball and P-approx in MMC. It
moreover shows that for order < 5, the number of phases m < 3 for d < 100.
In particular, when we use P-approx, m is smaller for order < 4 compared
to using balls without rounding. For order equal to 5 the number of balls in
MMC is smaller compared to the number of bodies when the choice is the P-
approx. Notice than when we use balls in MMC, m decreases for constant d as
k increases. Table 1 shows that, for high-order zonotopes, m = 1, which implies
one or two rejection steps, while the run-time is smaller when we use ball in
MMC. It also reports the difference in the run-time for random zonotopes of
order = 2 between the cases of using ball and the P-approx in MMC. In all our
experiments, BW performs only O*(1) steps per phase with just a factor of ¢;
hidden in the complexity. The plot that counts the BW reflections per point in
Fig.3 imply this number grows sub-linearly in d. Hence, the total number of
BOCGs grows sub-linearly in d.
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Table 1. Volume estimation for zonotopes. For each Z-d-k we approximate its volume
using ball and the P-approx in MMC. Body stands for the type of body in MMC;
order = k/d, Vol the average of volumes over 10 runs; m the average number of bodies
in MMC; OracleCalls is the average number of BOCs; time is average time in seconds.
We set the error parameter € = 0.1 in all cases.

Z-d-k Body order | Vol m | OralceCalls | time

Znr-20-2000 | Ball 100 3.69e+83 1 |3.52e+403 1442
Zn-20-2000 | P-approx | 100 3.54e+83 1 | 4.10e+03 1647
Zu-30-600 | Ball 20 [3.93e+104| 1 |5.26e+03 451
Zu-30-600 | P-approx| 20 |3.84e+104| 1 |5.34e+03 554
Zu-60-120 | Ball 2 |4.31e+139| 6 |7.94e+04 694
Zu-60-120 | P-approx | 2 [4.18e+139| 2 |3.39e+04 361
Z Exp-80-160 | Ball 2 | 1.68e+187| 9 |1.67e+05 3045
Z E«p-80-160 | P-approx 2 1.82e+187 | 2 |4.22e+04 950
Zn-100-200 | Ball 2 9.77e+233 | 12 | 2.81e+05 12223
Zn-100-200 | P-approx| 2 |1.03e+234| 3 |6.51e+04 2815
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