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Abstract 

" i ~  .bti0tt ot ~i ~In~ut'ri spaniiin~ elllpsoki ~ My 

dimension is explained. Basic definitions and theorems 

provide the ideas for an algorithm to find the minimum 

sparmh:g ellipsoid of  a set of points, i.e., the ellipsoid of 

minimum volume containing the set. The run-time of 

the algorithm O(n 2) independent of  dimension, where 

n is the number of  points. 

Introduction 

The problem of finding the Minimum Spannning 

Ellipse of" a set of  pi~_nar, convex points was introduced 

in [PoS1]. An. algorithm which ran in O(n  3) time was 

described to compute the smallest ellipse containing the 

n points. This algorithm was clarified and improved in 

[Po82, Po83], yielding a O(n  2) algorithm which also 

could be modified for non-convex sots of points. This 
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papor introduces tbe notion of minimum spanning ellip- 

soids, and the basic concepts necessary for computing 

them inde~ndent  of dimension. Proofs of the various 

properties presented are not included in this paper. 

The Structure of Ellipsoids 

For our discussion, we will assume that the points 

come from a d-dimensional, euclidean co-ordinate 

space, ~/...Given an ordered pair., (~'0,A), where T 0 is a 

r..oint in d-space (column vector), and A is a d xd  

positive-definite matrix, the following theorem defines 

the center form for an ellipsoid. 

Theorem 1. The set of points which satisfy the equa- 

tion: 

(~--~0)t A (X'--X'O) = I 

defines an ellipsoid centered at ~'o- 

The volume of an ellipsoid in im center form is 

given by the following corollary. 

Corollary t .  The volume of an ellipsoid E: (x'0, A) 

~Li~s ~ / ~  Wheir~ v d is the volume of the unit 

hypersphere in dimension d. 
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Consider the left-hand side of  the equation of  

Theomni  1. it mtxesents  a function with pararnemrs 

(~:0,A). This function is linear with respect to A and 

quadratic with mslx~ct to X" 0. An alternate form similar 

to Theorem 1 can be derived with the property that the 

left-hand side of  its defining ecuation will be line~a" in 

i..s paramemrs. 

Theorem 2. Let E be an eUipsoid in E d. Then  for 

some constant c ,  E is the set of  points which satisfy an 

equation of  the form: 

~ . , ~ + 3 7 ~ + e  --  0 

where A is a d xd  positive-definite matrix and b ~ is a 

row-vector. We denote this linear form by E: (A,b ' ,c) .  

Corollary 2. Let E be an ellipsoid in its linear form. 

Then the volume of  E is ectual to 

i v , ~ . - - c  + - - ~ - - -  

This theorem concludes the discussion of  the 

structure of  ellipsoids in E d. They provide the basic 

representation needed m compum minimum spanning 

ellipsoids. First, however,  the next section defines the 

notion of  spanning, and proves various convex prolx~r- 

ties for ellil:xsoids in their standard forms. 

Spanning and Convexity 

To start this discussion, we define what it means 

for an ellipsoid to span a set of  points. Consider a finim 

set of  points P, !~P]fn, and an ellipsoid E: (x'0,A) in its 

center fomx Let ~'E P. 

Definition 1. I f  (~'--2"0)tA(~'--2"0) ~< 1, then E is said 

to span X'. If  the inequality is strict,, then E properly 

spans x .  

Let E: ( A , ~ , c )  be an ellipsoid in its linear fo rm 

and let P be a set o f  points. Consider the following 

notation. For a point X'EEE d, we use the notation E(~ ' )  

to represent the value obtained by substituting X" in the 

linear form equation of  E. That is, 

g(~') -- X~A X ' + ~ X ' + c .  

The following definition dt~fines the spanning prolx~rty 

for linear form ellipsoids. 

Definit|0ri 2.. I f  E(X') ~< 0, ti '~n E sl~i.tis X'. E protmrlY 

spans ~" if the inequality is stHck. 

We now consider some convex prolx~rties off cenmr 

form elli~oids. First, let E: (~'0,A) and E':  (~'o',A'), 

2" 0 ~ X'0', be el l i~oids in theft tmnmr forms. Tl'~n, we 

define the ealipsoid formed by taking the convex combi- 

nation of  E and E': 

Theorem 3. Let X" be spanned by E and E' .  Then X" is 

prol:~rty spanned by E a. 
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This theorem has shown that spanning is a convex 

property of  center form ellipsiods with different centers. 

When the two ellipsoids have different centers, this 

theorem has shown that E a properly spans all the points, 

including those on E and E'.  Thus, in general, being 

ON an ellispoid is NOT a convex property of  center 

form ellipsoids. 

Theorem 4. Volume is a convex funtion of center 

form ellipsoids. Thus, 

VoI(E a) ~ a.Vo/(E) + ~.Vo/(E') 

We have now shown that spanning and volume are 

convex properties of  center form ellipsoids. We have 

also shown that being on an ellipsoid is NOT a convex 

property of arbitrary center form ellipsoids. We now 

show that the linear form has similar, but slightly 

different properties. Let E: (A,b',c) and E': ( A ' , ~ , c ' )  

be linear form ellipsoids. Now, consider the convex 

combination of E and E': 

E::=4"a.E--I=~-E'): [(a. A+~" A' ),(a'b'+~'P),(a'c+~'c' )] 

Theorem 5. Let X" be spanned by E and E'.  Then X" is 

spanned by E a. 

This theorem shows that any point sparmed by E 

and E '  is also spanned by E a. Although being ON 

center form ellipsoids is not convex, the following cor- 

rollary shows this property iS convex for linear form 

ellipsoids. 

Corollary 3. If  Y is on E and E';  then for all a ,  Y is 

on E=. 

Corollary 3 illustrates the usefulness of the linear 

form in analyzing the set of ellipsoids which go through 

some common set of points. The linearity of the 

defining equation also allows the parameters of  such an 

ellipsoid to be mLdtip|ied by a scalar without changing 

the defined e||~psoid. This property is important when 

analyzing the volume of linear form ealipsoids. Center 

form ellipsoids provided structure which made the 

analysis of  their volumes easy. Corollary 3 shows that 

the linear form has some spanning properties which the 

center form does not. However, the volume of an 

ellipsoid in such a form has a complicated structure. 

Thus, the analysis of the volume becomes more. 

difficult. 

Volume, in general, is not a convex function of 

linear formed ellipsoids. However, it is a function 

which does have an important properW expressed by 

the following theorem and corollary. 

Theorem 6. For all 0 < a ~ 1, the volume of  E= is 

less than the volume of E' .  

Corollary 4. The volume of E= is stricldy decreasing 

on [0,1]. 

This corollary has provided an important result 

concerning the v d u m e  of the convex combination of 

linear form ellipsoids. It provides a method for strickly 

decreasing the volume of  an ellipsoid while fixing the 

ellipsoid at a set of points. The next section uses this 

method in analyzing minimum spanning ellipsoids. 
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Minimum Spanning .Ellipsoids - Brute Force 

Given a set P, p ] = n ,  the MSE of  P is the smallest 

(volume) spanning ellipsoid of  P. It is denoted by Ep ~. 

In order to describe a technique for computing such an 

ellipsoid, we must use the :qtructure of  ellipsoids in E a 

to anaiyze the number  of  conditions necessary for 

defining an ellipsoid. 

Consider the centered form equation for an ellip- 

soid in E a. How many degrees of  freedom does the 

centered form equation have? Clearly in E a, T 0 con- 

sists of  d independent variables. Moreover, A is 

d(d-I-1) 
positive.definite (symmetric), thus, A has 

2 

dZ.F3d 
independent variables. Hence, 2 conditions 

uniquely determine an ellipsoid. There are sets of  

d2-F3d points which cannot have any ellipsoid go 
2 

through them. They determine other analytic objects 

(hyberboloids, paraboloids, etc. ). 

Given p points, p < - -  
d2+3d 

2 
, there can be many 

ellipsoids which go through the points. Specifically, we 

now define the smallest (in volume) such ellipsoid. 

d " 1 - d2q'3d Definition 3. Given p points, + .~..p~ ~ , in 

E a, a p-point ellipsoid is defined to be the smallest ellip- 

~-oid which goes through the points. 

The general method for computing a p-point eUip- 

soid will be to substitute the points into the centered or 

linear form equation and solve for as many indepen- 

dent variables as possible. Then, the volume will be 

minimized with respect to the remaining independent 

variables. In lower dimensions, a dosed form equation 

can be developed for p-point  ellipsoids. In higher 

dimensions, some sort of  numerical method should be 

used to compute them. 

Definition 3 gives a lower bound for p of  d + l .  

The reason for this is'apparent. In E a, i f p < d ,  then 

the set o f p  points are co-hyperplanar. Thus, the smal- 

lest ellipsoid through the points will have volume ex:lual 

to zero. Similarily, we are assuming that our  sets of  

points are not co-hyperplanar. This restriction merely 

keeps the problemwell-formed. 

The following theorem is the most important one 

of  this section. It will provide the basic result necessary 

for developing a brute force algorithm for computing 

the MSE of a set of  points. Moreover,  it is used as the 

basis for the faster algorithm for computing the MSE. 

Theorem '7 Given a set of  points, F, in E d, the 

rninkT..um spanning ellipsoid of  P, Ep ~, is a p-point  el- 

lipsoid. 

The proof of this theorem uses a ~chniqu~ of 

shrinking a spanning ellipsoid, while fixing it at the 

points already on it. Eventually, either the ellipsoid 

becomes the smallest through those points (a p-point  
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ellipsoid) or  another point comes on it. Repeating this 

process proves the theorem. This teclmiquc is an 

impotta.iit oiie, and will be used ag~tin in this patx~f. 

Theorem 8. The minimum spanning ellipsoid o f  a set 

of  points is unique. 

This theorem now allows us to give the brute force 

algorithm for computing the rose of  a set of  points. It 

shows that the /vISE can be computed by identifying 

some unique set - of  p points, for 

d:q--3d 
( d + I )  ~ p ~ 2 

Algorithm B 

[1 ] Compute every 

d2+3d 
d + l  ~< p ~. 2 

p -point ellipsoid for 

!2] For each of  the ellipsoids generated by [1], cheek 

if it spans the set of  points. 

[3] Choose the smallest which spans the points. 

The asymptotic analysis shows that the runtime of  

this brute force algorithm is exponential in the dimen- 

sion. It takes O(n)  time to perform step [2] for each of  

d2.t-3d 
the O(n 2 ) ellipsoids generated by [1]. Therefore, 

(d~3d+2) 
the runtime of  Algorithm B is O(n 2 ). This 

shows that the runtime o f  the brute force algorithm is 

exponential with respect to the dimension. This 

exponential runtirne shows that in order to use MSE's  

in higher dimensions, a fas ter  algorithm to compute 

them must first be developed. 

A Fast Minimum Spanning Ellipsoid Algorithm 

We now introduce an algorithm to compute the 

minimum spanning ellipsoid of  a set o f  n points in 

O(n2)  time. The algorithm is an iterative one. Given a 

p-point  spanning ellipsoid, we will identify a smaller q -  

point spanning ellipsoid o f  the entire set, for some 

a~-3a 
d-I.-1 .~. q .~. - - .  In the process, we will be able to 

2 

eliminate a point f rom consideration. Thus, the algo- 

rithm is as follows: 

:Mg0rithra 3LSE 

[1]. Compute an initial p-point  spanning ellipsoid of  

the ent i re  set of  points, for some 

_ d 2-l",~d 
d + l ~ p  ~ ~ . This initial ellipsoid is called 

the current eilipsoid. 

[2] Determine if there is a smaller spanning ellipsoid. 

If  there is'nt one, then we arc done. The current 

ellipsoid is the MSE. 

[3] Eliminate a single point on  the current ellipsoid 

which cannot be on the MSE. 

[4] Identify a smaller q-point  spanning ellipsoid, 

d2+M and go back to [2]. d+l~  q E--T-- ,  

The itemtive nature of  this algorithm is similar to 

that in [Po82]. Step one, which initializes the algo- 

rithm, can be done in O(n)  time. Determining whether 

or not the current ellipsoid is minimum is shown to be 

decidable ha constant time which depends on the 
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dimension, inde0endent off n. We present an algorithm 

to identit~¢ z smaller spanning ellipsoid in O(n) time. 

Finally, a point can be eliminated by a constant number 

of applications of this algorithm. This analysis shows 

that the algorithm makes at most O(n)iterations, 

yielding a worst-case runtime of O (n 2). 

In proving this algorithm correct, we will consider 

steps two, three, and tour first, and then show how to 

compute an initial p-point spanning ellipsoid. For the 

following discussion., let E '  be the current p-point span- 

ning ellipsoid of the entire set of points P, and let Q be 

the set o f p  points on E' .  

Theorem 9. There is a smaller spanning ellipsoid of 

the entire set P if and only if there is a smaller (p--1)- 

point spanning ellipsoid of Q. 

This theorem provides the technique for determin- 

ing if the current spanning elliosoid, E ' ,  is minimum. 

We merely have to check to see if there is a (p--1)- 

point spanning ellipsoid of only the points on E'. There 

are exactly p such ellipsoids to cheek, thus, to do this 

d2+3d 
merely requires O(p) runtime, p ~, - - -~-- - ,  therefore, 

we see that the rttntime of this is only depends on the 

dimension., and is independent of the number of points 

in the set. 

In order to show how to compute a smaller span- 

ning ellipsoid of P in O(n) time, we will use the tech- 

nique of shrinking an ellipsoid while fixing it at a set of 

points introduced by Theorem 7. From Theorem 9, if 

the current ellipsoid is not minimum, then them exists 

a smaller q-point ellipsoid, q=(p--1) ,  of just the points 

on the current ellipsoid. Let this ellipsoid be called E, 

and let our ellipsoids be represented in their linear 

forms. 

Algorithm ES ~iiipsoid Shrink) 

[ 1 ] Does E span the entire set? If yes then w~ am 

done (E is smaller than E' ,  i.e., smaller than the 

original p -point ellipsoid) 

[2] Consider the convex combination of E and E ' ,  E,~. 

For each point not spanned by E, compum a such 

that E a goes through the point, l..~t fl be the 

minimum such ~x. Spanning is a convex property, 

thus Ea spans the entire set. From Theorem 6, 

this ellipsoid must be smaller than E'. 

This minimum value, identifies a point ~" such that 

E a goes through ~" and the q points on E. 

Let E '  be E~, and let E now be the smallest eiiip- 

soid through the ( q + l )  points on E~ (X" and tix~ q 

points from the previous E). Iterate (loop to step 

[11). 

[3] 

[41 

Each iteration of  this algorithm shrinks a spanning 

eUipsoid through q points until it has another point 

from the set on it, while maintaining the property that 

dl..l-3d 
it spans the entire set. At most ~ points deter- 

mine an ellipsoid, thus, the algorithm iterates at most 
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dE+3d 
p times (independent of  n). Steps one, two, 

2 

and three take O(n) time. If we let MEa{p) represent 

the cost of computing a p-point ellipsoid in dimension 

d,  then step four takes O ( M E a ( q + l ) )  time, i.e., 

independent of  n. Thus, this algorithm takes O(n) 

time. 

This algorithm has an important property 

expressed by the following theorem. Consider the ini- 

tial value of E in Algorithm ES. It is a q-point sparming 

ellipsoid of the just tP.e poL, ats on the current ellipsoid. 

Theorem 9. The output of  Algorithm ES, a spanning 

ellipsoid of  P smaller than E' ,  is the smallest spanning 

ellipsoid of  P which goes through the q points on the 

initial ellipsoid E. 

This theorem is important when considering step 

three of Algorithm/vISE, eliminating a point from con- 

sideration. Let E '  be the current spanning ellipsoid of 

the set, and Q be the set of  points on E' .  

Theorem 10. If  E '  is not minimum, then one of  the 

points in Q cannot be on the rose. 

Theorem i i .  If  a point in Q is on the minimum span- 

ning ellipsoid of  P, then it is on the smallest spanning 

ellipseid of P which goes through at least d.+l of the 

points in Q. 

This theorem provides the method by which we 

can eliminate one point from consideration. Given the 

current ellispoid, we compute, by brute force, all possi- 

hie q-point spanning ellipsoids of  just the poinm in Q, 

_1. d2+Sa a'+ dl 
q ~>d-t-1. There are at most Oi l . - - - -B-- - - )" :1  of  

them. For each, use Algorithm ES to find in O(n) 

time the smallest spanning ellipsoid of  P which goes 

through the q points. Choose the smallest such one and 

eliminate a point from Q which is not on this eUipsoid. 

Thus, step three takes O(n) time, however, the con- 

stant factor is exponential in the dirnension~ 

We now introduce a technique for computing an 

initial p-point spanning ellipsoid of  the entire set of 

points. This method uses the same iterative technique 

of the previous section. Given a spanning ellipsoid of 

P, E ' ,  through p points (p > d) ,  let E be the smallest 

ellipsoid through those p points. We will now shrink E '  

as in Algorithm ES until either it is the smallest ellip- 

soid through those points or until another point is on it. 

d:Z-i.-3d 
This continues until there are at most ~ points on 

the eUipsoid. The only difference between this algo- 

rithm and Algorithm ES is that we have to identify this 

initial spanning ellipsoid E ' .  Once this ellipsoid is com- 

puted, we can then use Algorithm ES on it. 

The rest of this section concerns itself with finding 

a spanning ellipsoid through ( d + l )  points. As men- 

tioned before, this spanning ellipsoid is not necessarily 

the smallest ellipsoid through the points. The initial 

spanning ellipsoid will in fact be a hypersphere, and we 

shall find such a spanning hypersphere in 0 (n)  time. 
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Consider the linear form for a hylx~rsphe~ in E #. 

That is, a hytx~rsphem S, is an ellipsoid E: (I,b',c), 

w h e n  I is the identity matrix. This shows that a hytx~r- 

sphere is uniqtmly determined by ( d + l )  non- 

hyperplanar points. Mo~over ,  the unique hypersphe~ 

through some such set of  ( d + l )  points can be com- 

puted by solving the ( d + l ) x ( d + l )  sot of linear equa- 

tions generated by the linear form for S. 

We now describe the algorithm to compute a span- 

ning hypersphere of  P. This hypcrspher¢, denoted by 

Sp(d), wi[l go through ( d + l )  non-hypcrplanar points. 

As merifloixxi above, this hypcrsphere ~ be used as 

input to Algorithm ES to find an initial p-point span- 

ning cUipsoid of the entire set. 

Algorithm SH (Spanning Hyl:~rspherc) 

[1] Identify a face of  the convex hull of P. This face 

has at least d points, and at most n--1 points. Call 

the set of points on the face P'. 

[2] Compute Sp,(d--1), that is, a spanning hypcrpshere 

in dimension (d- - l )  of the face, P', of  the convex 

hull found in step 1. 

[3] Sp,(d--i) goes through d points on the face found 

from step 1. Find the point not on the face which 

when added to the d points found by step 2, forms 

the largest hypcrsphere. This hYlx,,rsphero goes 

through ( d + l )  non-hypcrplanar points, and spans 

the entire sot. 

Steps one and three can be done in O(d .n )  time. 

Using the notation Td(n)  to represent the asymptotic 

runtim¢ of computing the spanning hypersphem of n 

points in dimension d, step two shows that 

Td(n) = Td_l(n--1) + d . n  == O(di .n) .  

Note that this analysis ignores the cost of  comput- 

ing a hypcrsphero through a .sot of points, i.e., solving a 

set of  linear equations. Thus, the actual asymptotic 

runtime is O(d2.M(d) .n) ,  where M ( d )  is the asymp- 

totic cost of multiplying d xd matrices. 

Conclusions and Further Research 

This concludes the description o f t h e  l a se r  

minimum spanning ellipsoid algorithm. As noted 

above, the runtime of the algorithm is O(n2). The 

dimensional costs arc bounded above by the cost of 

eliminating a point as in step three. This constant is 

independent of  n, yet is expor~ntial in the dimension. 

Or~ possible area of for further research would be to 

refluce this dimensional cost to a constant which is 

polynomial in the dimension. This could make 

minimum spanning ellipsoids useful for multi- 

dimensional optimization problems, such as linear pro- 

grarnming. 

Another Are.,~t towards which furtber research 

should be direcied is the problem of actuaiiy computing 

the smallest eflipsoid through p points. In [Po82], it is 

shown that closed form formulae for throe-, four-, and 

five-point ellipsoids in two dimensions can be deter- 
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mined using differtial calculus. In higher dimensions, 

the algebraic manipulations necessary to do this become 

overwhelming. Use of symbolic algebra manipulators, 

such as MACSYMA, can accomplish this. However, in 

very high dimensions, some sort of numerical method, 

such as Newton's method, should be used to iteratively 

compute the desired ellipsoid. 
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