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Abstract

Thié tiotioft of 4 mininitim spaniiing eflipsold ini any
dimension is explained. Basic definitions and theorems
provide the ideas for an algorithm to find the minimum
spanning cllipsoid of a set of points, i.c., the ellipsoid of
minimum volume containing the set. The run-time of
the algorithm O(n?) independent of dimension, where
n is the number of points.

Introduction

The problem of finding the Minimum Spannning
Ellipse of a set of planar, convex points was introduced
in [Po81]. An algorithm which ran in O(n3) time was
described to compute the smallest ellipse containing the
n points. This algorithm was clarified and improved in
[Po82, Po83], yielding a O(n?) algorithm which also

could be miodified for non-convex sets of points. This
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paper introduces the notion of minimum spanning ellip-
soids, and the basic concepts necessary for computing
them independent of dimension. Proofs of the various

properties presented are not included in this paper.

The Structure of Ellipsoids

For our discussion, we will assume that the points
come from a d-dimensional, euclidean co-ordinate
space, E9. Given an ordered pair, (Xp,A), where X is a
roint in d-space (column vector), and A is a dxd
positive-definite matrix, the following theorem defines

the center form for an ellipsoid.
Theorem 1. The set of points which satisfy the equa-

tion:

(F—FpY A(T=Fp) = 1

defines an ellipsoid centered at Xp.

The volume of an ellipsoid in its center form is

given by the following corollary.
Corollary 1. The volume of an eltipsoid E: (Xp, 4)

eqtials

, wheie v, is the volume of the unit

A
Jdet(A)

hypersphere in dimension d.



Consider the left-hand sikle of the equation of
Theorem 1. It represents a function with parameiers
(Xp,4). This function is linear with respect to 4 and
quadratic with respect to X. An alternate form similar
to Theorem 1 can be derived with the property that the
left-hand side of its defining eaquation will be linear in
i's parameters.

Theorem 2. Let E be an ellipsoid in E¢. Then for
some constant ¢, E is the set of points which satisfy an
cquation of the form:

A+ TLe =0
where A is a dxd positive-definite matrix and Pisa

row-vector. We denote this linear form by E: (4,b.,¢c).

Corollary 2. Let E be an ellipsoid in its linear form.

Then the volume of E is equal to
t 1%° 4
- 2
" [_c 4 BA7F ]
Vdet(4)

This theorem concludes the discussion of the
structure of ellipsoids in EY. They provide the basic
representation needed to compuie minimum spanning
ellipsoids. First, however, the next section defines the
notion of spanning, and proves various convex proper-

ties for ellipsoids in their standard forms.
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Spanning and Convexity

To start this discussion, we define what it means
for an ellipsoid o span a set of points. Consider a finite
set of points P, Pl=n, and an ellipsoid E: (Xp,4) in its

center form. Let XEP.

Definition 1. If (x—X,) 4(x—xy) < 1, then E is said

—

to span X. If the inequality is‘strict, then E properiy

spans Xx.

Let E: (4,5,¢) be an ellipsoid in its linear form
and let P be a set of points. Consider the following
notation. For a point €4, we use the notation E(X)
1o represent the value obtained by substituting X" in the
linear form equation of E. That is,

E(X) = X¥AX+b0x+ec.
The following definition defines the spanning property

for linear form ellipsoids.

Definitioii 2.  If E(X) < 0, then E spans X E properly

spans X if the inequality is strick.

We now consider some convex properties of center
form ellipsoids. First, let E: (Xp,4) and E™ (%p,4),
Xp # Xg, be ellipsoids in their center forms. Then, we
define the ellipsoid formed by 1aking the convex combi-
nation of E and E
Eg [ (af0+ﬁ0'), (aA+ad )]

Let X be spanned by E and E’. Then X is

Theorem 3.

properly spanned by E...



This theorem has shown that spanning is a convex
property of center form ellipsiods with different centers.
When the two ellipsoids have different centers, this
theorem has shown that E,, properly spaﬁs all the points,
including those on E and E’. Thus, in general, being
ON an ellispoid is NOT a convex property of center

form ellipsoids.

Theoremi 4. Volime is a convex furtion of certer

form ellipsoids. Thus,

Vol(E,) < aVol(E) + @Vol(E)

‘We have now shown that spanning and volume are
convex properties of center form ellipsoids. We have
also shown that being on an ellipsoid is NOT a convex
property of arbitrary center form ellipsoids. We now
show that the linear form has similar, but slightdy
different properties. Let E: (4.5,¢) and E (4,5°,¢')
be linear form ellipsoids. Now, consider the convex

combination of E and E™:

E,~aE+aE): [(a d+a 4 )(ab+ad ) act+ac)
Theorem 5. Let X be spanned by E and E’. Then X is

spanned by E,.

This theorem shows that any point spafmed by E
and E’ is also spanned by E,. Althougﬁ being ON
center form ellipsoids is not convex, the following cor-
rcilary shows this propérty iS convex for linear form
ellipsoids.
Corollary 3. If X is on E and E’, then for all a, X" is

onkE,.
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Corollary 3 illustrates the usefulness of the linear
form in analyzing the set of ellipsoids which go through
some common set of points. The linearity of the
defining equation also allows the parameters of such an
ellipsoid to be muitiplied by a scalar without changing
the defined ellipsoid. This property is important when
analyzing the volume of linear form ellipsoids. Center
form ecllipsoids provided structure which made the
analysis of their volumes easy. Corollary 3 shows that
the linear form has some spanning properties which the
center form does not. However, the volume of an
ellipsoid in such a form has a complicated structure.
Tnus, the analysis of the volume becomes more
difficult.

Volume, in general, is not a convex function of
linear formed ellipsoids. However, it is a function
which does have an important property expressed by

the following theorem and corollary.

Theorem 6. For all 0 < a 1, the volume of E_ is

less than the volume of E’.

Corollary 4. The volume of E, is strickly decreasing

on[0,1].

This corollary has provided an important result

concerning the volume of the convex combination of

linear form ellipsoids. It provides a method for strickly
decreasing the volume of an ellipsoid while fixing the
ellipsoid at a set of points. The next section uses this

method in analyzing minimum spanning ellipsoids.



Minimum Spanning Ellipsoids - Brute Force

Given a set P, [Pl=n, the MSE of P is the smallest
{volume) spanning ellipsoid of P. It is denoted by Ep*.
In order to describe a technique for computing such an
cllipsoid, we must use the structure of ellipsoids in o
1o analyze the number of conditions necessary for
defining an ellipsoid.

Consider the centered form equation for an ellip-
soid in EY. How many degrees of freedom does the
centered form equation have? Clearly in ) 2 Xp con-

sists of 4 independent variables. Moreover, 4 is

positive-definite (symmetric), thus, 4 has d(d2+1)
independent  variables. Hence, ————"2’;3" conditions

uniquely determine an ellipsoid. There are sets of

d™-3d

5 points which cannot have any ellipsoid go

through them. They determine other analytic objects
(hyberboloids, paraboloids, etc. ).

Given p points, p<

dl;-3d, there can be many
ellipsoids which go through the points. Specifically, we
now define the smallest (in volume) such ellipsoid.

d2+3d

Definition 3. Given p points, d+1<p< 7

in
¥4, a p-point ellipsoid is defined to be the smallest ellip-

s0id which goes through the points.

11

The general method for computing a p-point ellip-
soid will be to substitute the points into the centered or
linear form equation and solve for as many indepen-
dent variables as possible. Then, the volume will be
minimized with respect to the remaining independent
variables. In lower dimensions, a closed form equation>
can be developed for p-point ellipsoids. In higher
dimensions, some sort of numerical method should be

used to compute them.

Definition 3 gives a lower bound for p of d+1.
The reason for this is apparent. In ¢, if p<d, then
the set of p points are co-hyperplanar. Thus, the smal-
lest ellipsoid through the points will have volume equal
to zero. Similarily, we are assuming that our sets of
points are not co-hyperplanar. This restriction merely

keeps the problem well-formed.

The following theorem is the most important one
of this section. It will provide the basic result necessary
for developing a brute force algorithm for computing
ihe MSE of a set of points. Moreover, it is used as the

basis for the fasier algorithm for computing the MSE.

Theorem 7 Given a set of points, P, in E?, the
minimum spanning ellipsoid of P, Eg*, is a p-point cl-

lipsoid.

The proof of this theorem uses a technique of
shrinking a spanning ellipsoid, while fixing it at the
points already on it. Eventually, either the ellipsoid

becomes the smallest through those points (a p-point



ellipsoid) or another point comes on it. Repeating this
process proves the theorem. This technique is an
importatit oie, and will be used again in this papet.

Theorem 8.

The minimum spanning ellipsoid of a set

of points is unique.

This theorem now ailows us to give the brute force
algorithm for computing the mse of a set of points. It

shows that the MSE can be computed by identifying

some unique set - of D points, for
@+ gp < ﬁ;ﬁ
Algorithm B
[1] Compute every  p-point ellipsoid for
2y
d+l<p < @ 53“ .

2] For each of the ellipsoids generated by [1], check

if it spans the set of points.

3] Choose the smallest which spans the points.

The asymptotic analysis shows that the runtime of
this brute force algorithm is exponential in the dimen-

sion. 1t takes O{(n) time to perform step [2] for each of

d*+3d
the O(n 2

) ellipsoids generated by [1]. Therefore,

d*-3d+2)
the runtime of Algorithm B is O(n 2 ). This
shows that the runtime of the brute force algorithm is
exponential with respect to the dimension. This
exponential runtime shows that in order to use MSE’s
in higher dimensions, a faster algorithm to compute

them must first be developed.
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A Fast Minimum Spanning Ellipsoid Algorithm

We now introduce an algorithm to compute the
minimum spanning cllipsoid of a set of # points in
O(n?) time. The algorithm is an iterative one. Given a
p-point spanning cllipsoid, we will identify a smaller q-
point spanning cllipsoid of the entire set, for some

d+1 £ q & d2+—3d In the process, we will be able to

eliminate a point from consideration. Thus, the algo-

rithm is as follows:

Algorithm MSE

{11 Compute an initial p-point spanning ellipsoid of

the entire, set of points, for some

2
d+1gp <4 *2'&’. This initial ellipsoid is called

the current eilipsoid.

[2] Determine if there is a smaller spanning ellipsoid.
If there is’nt one, then we are done. The current

ellipsoid is the MSE.

[3] Eliminate a single point on the current ellipsoid

which cannot be on the MSE.

{4] Identify a smaller g-point spanning ellipsoid,

2

d+1< g <51;'—3d, and go back to [2].

The iterative nature of this algorithm is similar to
that in [Po82]. Step one, which initializes the algo-
rithm, can be done in O{(n) time. Determining whether
or not the current ellipsoid is minimum is shown to be

decidable in constant time which depends on the



dimension, independent of n. We present an algorithm
to identify 2 smaller spanning cllipsoid in O(n) time.
Finally, a point can be eliminated by a constant number
of applications of this algorithm. This analysis shows
that the algorithm makes at most O(n) iterations,

yielding a worst-case runtime of O (n2.

In proving this algorithm correct, we will consider
steps two, three, and four first, and then show how to
compute an initial p-point spanning ellipsoid. For the
following discussion, let E’ be the current p-point span-
ning ellipsoid of the entire set of points P, and let Q be

the set of p points on E’.

Theorem 9. There is a smaller spanning ellipsoid of
the entire set P if and only if there is a smaller (p—1)-

point spanning ellipsoid of Q.

This theorem provides the technique for determin-
ing if the current spanning ellipsoid, E’, is minimum.
We merely have to check to see if there is a (p—1)-
point spanning ellipsoid of only the points on E’. There
are exactly p such ellipsoids to check, thus, to do this

d*43d
2

merely requires O (p) runtime. p < , therefore,

we see thai the nuintime of this is only depends on the
dimension, and is independent of the number of points

in the set.

In order to show how to compute a smaller span-
ning ellipsoid of P in O{(n) time, we will use the tech-
nique of shrinking an ellipsoid while fixing it at a set of

points introduced by Theorem 7. From Theorem 9, if
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the current ellipsoid is #ot minimum, then there exists

a smaller g -point ellipsoid, g={(p—1), of just the points

on the current ellipsoid. Let this ellipsoid be called E,

and let our ellipsoids be represented in their linear

forms.

Algorithm ES (Ellipsoid Shrink)

[1] Does E span the entire set? If yes then we are
done (E is smaller than E’, ie., smaller than the
original p -point ellipsoid)

[2] Consider the convex combination of E and E’, E,,.

For each point not spanned by E, compute a such

that E, goes through the point. Let 8 be the

minimum such a. Spanning is a convex property,

thus E4 spans the entire set. From Theorem 6,

this ellipsoid must be smaller than E’.

(3]

This minimum value, identifies a point X" such that

Eg goes through X and the g points on E.

[4] Let E’ be Ej,, and let E now be the smallest eilip-
soid through the (¢+1) points on Eg (X’ and the q
points from the previous E). Iterate (loop to step

[n.

Each iteration of this algorithm shrinks a spanning
ellipsoid through g points until it has another point

from the set on it, while maintaining the property that

it spans the entire set. At most d>+3d points deter-

mine aii ellipsoid, thus, the algorithm iterates at most



d*-3d
2

~— p times (independent of #). Steps one, two,
and three take O(n) time. If we let ME,,(F) represent
the cost of computing a p-point ellipsoid in dimension
d, then step four takes O(ME,{(q+1)) time, ie.,
independent of n. Thus, this algorithm takes O(n)
time.

This algorithm has an important property
expressed by the following theorem. Consider the ini-
tial value of E in Algorithm ES. It is a ¢ -point spanning

ellipsoid of the just the points on the current ellipsoid.

Theorem: 9. The output of Algorithm ES, a sparining
ellipsoid of P smaller than E’, is the smallest spanning
cllipsoid of P which goes through the ¢ points on the

initial ellipsoid E.

This theorem is important when considering step
three of Algorithm MSE, eliminating a point from con-
sideration. Let E’ be the current spanning ellipsoid of

the set, and Q be the set of points on E’.

Theorem 10. If E’ is not minimum, then one of the

points in Q cannot be on the mse.

Theoremt 11. If a point in Q is on the minimum span-
ning ellipsoid of P, then it is on the smallest spanning
ellipsoid of P which goes ihrough at least d+41 of the

points in Q.

This theorem provides the method by which we
can eliminate one point from consideration. Given the

current ellispoid, we compute, by brute force, all possi-
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ble g-point spanning ellipsoids of just the points in Q,

g >d+1. There are at most O

d*+ad
(12;‘—3") - ] of

them. For each, use Algorithm ES to find in O(n)
time the smallest épanning ellipsoid of P which goes
through the g points. Choose the smallest such one and
eliminate a point from Q which is not on this ellipsoid.
Thus, step three takes O(n) time, however, the con-

stant factor is exponential in the dimension.

We now introduce a technique for computing an
initial p-point spanning ellipsoid of the entire set of
points. This method uses the same iterative technique
of the previous section. Given a spanning ellipsoid of
P, E’, through p points (p > d), let E be the smallest

ellipsoid through those p points. We will now shrink E’

as in Algorithm ES until either it is the smallest ellip-

soid through those points or until another point is on it.

This continues until there are at most d™+3d points on
the ellipsoid. The only difference between this algo-
rithm and Algorithm ES is that we have to identify this
initial spanning ellipsoid E’. Once this ellipsoid is com-
puted, we can then use Algorithm ES on it.

The rest of this section concerns itself with finding
a spanning ellipsoid through (d+1) points. As men-
tioned before, this spanning ellipsoid is not necessarily
the smallest ellipsoid through the points. The initial
spanning ellipsoid will in fact be a hypersphere, and we

shall find such a spanning hypersphere in O(n) time.



Consider the linear form for a hypersphere in E¢.
That is, a hypersphere S, is an eltipsoid E: (I,b,¢c),
where I is the identity matrix. This shows that a hyper-
sphere is uniquely determined by (4+1) non-
hyperplanar points. Moreover, the unique hypersphere
through some such set of (d41) points can be com-
puted by solving the (d+1)x(d+1) set of linear equa-

tions generated by the linear form for S.

We now describe the algorithm to compute a span-
ning hypersphere of P. This hypersphere, denoted by
Sp(d), witl go through (d+1) non-hyperplanar points.
As metitlotied above, this hypetsphere cait be used as
input to Algorithm ES to find an initial p-point span-

ning ellipsoid of the entire set.

Algorithm SH (Spanning Hypersphere)
{1] Identify a face of the convex hull of P. This face
has at least d points, and a2t most n—1 points. Call

the set of points on the face P’.

[2] Compute Sp(d—1), that is, a spanning hyperpshere
in dimension (d—1) of the face, P’, of the convex

hull found in step 1.

[3] Sp(d—1) goes through d points on the face found
from step 1. Find the point not on the face which
when added to the d points found by step 2, forms
the largest hypersphere. This hypersphere goes
through {(d+1) non-hyperplanar points, and spans

the entire set.
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Steps one and three can be done in O(d-n) time.
Using the notation 7,(n) to represent the asymptotic
runtime of computing the spanning hypersphere of n

points in dimension d, step two shows that.
Td(") == Td_l(n"‘l) +dn = O(dz-n).

Note that this analysis ignores the cost of comput-
ing a hypersphere through a set of points, i.e., solving a
set of linear equations. Thus, the actual asymptotic
runtime is O(d>M(d )-n), where M(d) is the asymp-

totic cost of multiplying d xd matrices.

Conclusions and Further Research

This concludes the description of the faster
minimum spanning . ellipsoid algorithm. As noted
above, the runtime of the algorithm is O(n2). The
dimensional costs are bounded above by the cost of
eliminating 'a point as in step three. This constant is
independent of n, yet is exponential in the dimension.
One possible area of for further research would be to
reduce this dimensional cost to a constant which is
polynomial in the dimension. This could make
minimum spanning ellipsoids useful for multi-
dimensional optimization problems, such as linear pro-
gramming.

Another area towards which further research
should be direcied is the problem of actuaily computing
the smallest ellipsoid through p points. In [Po82], it is
shown that closed form formulae for three-, four-, and

five-point ellipsoids in two dimensions can be deter-



mined using differtial calculus. In higher dimensions,
the algebraic manipulations necessary to do this become
overwhelming. Use of symbolic algebra manipulators,
such as MACSYMA, can accomplish this. However, in
very high dimensions, some sort of numerical method,
such as Newton’s method, should be used to iteratively

compute the desired ellipsoid.
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