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Abstract

We study the problem of finding the Léwner-John ellipsoid, i.e., an ellipsoid with minimum volume
that contains a given convex set. We reformulate the problem as a generalized copositive program, and
use that reformulation to derive tractable semidefinite programming approximations for instances where
the set is defined by affine and quadratic inequalities. We prove that, when the underlying set is a
polytope, our method never provides an ellipsoid of higher volume than the one obtained by scaling the
maximum volume inscribed ellipsoid. We empirically demonstrate that our proposed method generates
high-quality solutions faster than solving the problem to optimality. Furthermore, we outperform the
existing approximation schemes in terms of solution time and quality. We present applications of our
method to obtain piecewise-linear decision rule approximations for dynamic distributionally robust prob-
lems with random recourse, and to generate ellipsoidal approximations for the set of reachable states in

a linear dynamical system when the set of allowed controls is a polytope.

1 Introduction

We consider the minimum volume ellipsoid problem (MVEP), which can be stated as follows [10, 44]: “Given
a set P C RE, find an ellipsoid Eyye with minimum volume that contains P.” In this paper, we focus on

sets P that satisfy the following assumption.
Assumption 1. The set P is compact, convez, and full-dimensional.

Compactness guarantees the existence of a bounding ellipsoid. The convexity assumption is made without
loss of generality; if the set is not convex, then we can instead consider its convex hull without affecting
Emve- If P is not full-dimensional, then the ellipsoid Enyve is degenerate with zero volume. For sets P
satisfying Assumption 1, such an ellipsoid, also known as the Léwner-John ellipsoid, is unique and affine-

invariant, making it an attractive outer approximation of P [10, Section 8.4.1]. The MVEP arises in many



applications studied in the literature. Several authors discuss outer ellipsoidal approximations for the set
of reachable points in control systems [29, 14], as it is easier to check whether a point lies in an ellipsoid
than in the comparatively complicated reachable set. Rimon and Boyd [37] advocate the use of Epye for
collision detection in robotics. Here, one checks whether the ellipsoids intersect as opposed to the sets that
they approximate. Other applications of the MVEP include outlier detection [1, 41], pattern recognition
[18], computer graphics [15], and facility location [16]. We refer the reader to [23] for an excellent article
about the lives of the eponymous researchers Karel Lowner and Fritz John, the history of the MVEP which
dates back to late 1930s, and some important properties of Lowner-John ellipsoids.

For some sets P, it is possible to identify £y in polynomial time. For example, if P is defined as the
convex hull of a finite number of points, then the complexity of finding &y is polynomial in the problem
size [27, 43]. When P is a union of ellipsoids, one can employ the S-lemma to compute e in polynomial
time [46]. However, excluding these special cases, finding Enye 18, in general, a difficult problem. For example,
if P is a polytope defined by affine inequalities, or if P is an intersection of ellipsoids, then finding &y is
NP-hard [10, 17].

Gotoh and Konno [19] present a constraint-generation approach to solve the MVEP exactly when P is
a polytope defined by affine inequalities. The method starts with a collection of points contained in P and
finds the ellipsoid of minimum volume containing those points. Then feasible points lying outside the current
ellipsoid are successively generated, and the ellipsoid is updated to include the new point, until a desired
optimality tolerance is reached. However, generating a point that lies in P but outside the current candidate
ellipsoid at each iteration is very slow, as it entails solving a non-convex optimization problem. Therefore,
this approach is computationally expensive, and one has to resort to approximation schemes.

One popular approximation method for the MVEP is based on identifying and scaling the mazimum
volume inscribed ellipsoid (MVIE), i.e., the ellipsoid with maximum volume contained in P. In particular,
it is known that scaling the MVIE around its center by a factor of K results in an ellipsoid that contains P,
thereby serving as an approximation of e [25]. Moreover, the MVIE can be found in polynomial time if P
is defined by affine and quadratic inequalities [28]. However, this technique, which we refer to as the SMVIE
(scaled MVIE) approach, produces highly suboptimal ellipsoids because of the scaling factor K. Another
method for approximating the MVEP utilizes the well-known S-procedure. Boyd et al. [9] discuss the
application of the S-procedure to generate approximations for the MVEP when P is either an intersection
or a Minkowski sum of ellipsoids. Finally, in a recent paper, Zhen et al. [47] study approximations to
uncertain second order cone programs and demonstrate how this framework can be exploited to derive an
approximation to the MVEP.

Several authors have identified sufficient conditions under which a convex set contains another convex

set. Helton et al. [22] discuss sufficient conditions which guarantee that a semidefinite-representable set



contains another such set. Kellner et al. [26] provide slightly improved sufficient conditions compared to the
ones in [22]. Although these articles do not focus on the MVEP specifically, their results can be used to
approximate Epye if P is semidefinite-representable (see Appendix B.4). To the best of our knowledge, there
are no results that provide a finite system of constraints that are necessary and sufficient to ensure that an
ellipsoid contains another set. This gap in knowledge is our main focus.

In this article, we prove that checking whether an ellipsoid contains P is equivalent to solving a finite-
dimensional generalized copositive (GC) feasibility problem. We use this result to reformulate the MVEP
exactly as a GC program. This representation of the MVEP enables us to leverage state-of-the-art approx-
imation schemes available for GC programming problems. In particular, GC programs yield a hierarchy of
optimization problems which provide an increasingly tight restriction to the original problem [30, 35, 49].
While our exact reformulation holds for any P satisfying Assumption 1, we focus primarily on developing
approximations in the case where P is defined by affine and convex quadratic inequalities. We demonstrate
that, for these sets, the resulting approximation can be formulated as a semidefinite program (SDP), which
can be solved in polynomial time. Since these SDPs are restrictions of the GC reformulation, they provide
a feasible ellipsoid that contains P. There has been previous work on developing exact copositive program-
ming reformulations for otherwise difficult problems, and using those reformulations to generate tractable
approximations [8, 11, 13, 32, 20, 34, 36]. Our results add to this literature by demonstrating the ability of
generalized copositive programs to exactly model the MVEP.

We demonstrate the utility of our approximations to the MVEP in two applications. First, we consider a
two-stage distributionally robust optimization (DRO) problem with random recourse. Such a problem is NP-
hard even in the absence of random recourse [6]. Bertsimas and Dunning [7] study a piecewise static decision
rules approximation for the case of dynamic robust optimization, which leads to a tractable reformulation.
Although they do not consider a DRO model, this approach can be extended to such a setting. In contrast, we
focus on piecewise linear decision (PLD) rules approximation. In the presence of random recourse, finding
the optimal PLD rule is NP-hard, although feasible PLD rules can be obtained using the S-procedure.
Unfortunately, these decision rules are often of poor quality. The effectiveness of the S-procedure in finding
good PLD rules can be improved by considering an ellipsoid that contains the support set, i.e., the set of
allowed values for the uncertain parameters. In the context of an inventory management problem, we show
that the size of this ellipsoid can have a large effect on the quality of the PLD rules. We also demonstrate
that the PLD rules generated using our method significantly outperform the piecewise static decision rules.
Second, we utilize our method to generate high-quality ellipsoidal approximations to the set of reachable
states in a linear dynamical system when the control set, i.e., the set of allowed controls, is a polytope. This
complements the existing schemes that provide similar approximations when the control set is an ellipsoid

29, 14].



We summarize the main contributions of the article below.

1) We provide necessary and sufficient finite-dimensional conic inequalities that certify whether an ellipsoid
contains a set P satisfying Assumption 1. We use these conditions to derive a generalized copositive

reformulation of the MVEP.

2) When P is defined by affine and convex quadratic inequalities, we derive a tractable SDP restriction to
the GC reformulation, which results in a feasible ellipsoid that contains P. We prove that the volume
of the resulting ellipsoid never exceeds that of the SMVIE approach. To the best of our knowledge, our
approximation is the first one to have this property. We further show that the ratio of the volume of the
SMVIE to the volume of the ellipsoid generated by our method can be arbitrarily high. We also prove
that both the S-procedure [9, Section 3.7] and the approximation suggested by Zhen et al. [47] never
generates ellipsoids of lower volumes than the SMVIE approach.

3) We demonstrate through extensive numerical experiments that our method is significantly faster than
solving the problem to optimality using the constraint-generation technique of [19]. The experiments
further indicate that our method significantly outperforms the SMVIE approach in terms of solution
quality. Also, our method outperforms the scheme which utilizes the sufficient conditions of Kellner et

al. [26] both in terms of solution time and quality.

4) We present two important applications of our approach. Firstly, we exploit the bounding ellipsoids to
obtain improved decision rule approximations to two-stage DRO models with random recourse, which
have resisted effective solution schemes so far. Secondly, we provide ellipsoidal approximations for the set

of reachable states in a linear dynamical system when the control set is a polytope.

This article is organized as follows. In Section 2, we describe the MVEP and reformulate it as an equivalent
GC program. In Section 3, we use that reformulation to derive a tractable SDP that generates a near-optimal
approximation to &ynve Wwhen the set is defined by affine and quadratic inequalities. In Section 4, we explain
the application of our approach for obtaining improved decision rules approximation for a two-stage DRO
model with random recourse. In Section 5, we present numerical experiments comparing the volumes of the
ellipsoids generated by our method against those found using other approaches. We also demonstrate the
efficacy of our approach in solving a distributionally robust inventory management problem. Finally, we
conclude in Section 6. Auxiliary proofs and additional numerical experiments can be found in the electronic

companion to the paper.

1.1 Preliminaries

Notation For a positive integer I, we use [I] to denote the index set {1,2,...,1}. We denote the vector of

ones by e, and the identity matrix by I; their dimensions will be clear from the context. We use R¥ (Rff ) to



denote the set of (non-negative) vectors of length K, and S (SX) to denote the set of all K x K symmetric
(positive semidefinite) matrices. In addition, Sf 4 represents the set of positive definite matrices. The
functions tr(-) and det(-) denote the trace and the determinant of the input matrix, respectively. We define
Diag(v) as a diagonal matrix with vector v on its main diagonal. The symbols |lv||; and ||v|| denote the
£1-norm and ¢s-norm of vector v, respectively. The vertical concatenation of two scalars or vectors u and v
is denoted by [u;v]. For a matrix M € R'*7 | we use M.; € R to denote its j-th column, and M;. € R’ to
denote the transpose of its i-th row. We represent the interior and the conic hull of a set .S by int(S) and

cone(S) respectively.

Generalized Copositive Matrices We use C(K) to denote the set of generalized copositive matrices
with respect to cone K C R ie., C(K) ={M € SK : 2" Mz > 0 Vo € K}. The set of copositive matrices
is a special case of such a set when K = RX. We use C*(K) to denote the set of generalized completely
positive matrices with respect to cone K, i.e., C*(K) = {M € S¥ : M = Yiell] xz;x] ,x; € K} where I is
a positive integer. The cones C(K) and C*(K) are duals of each other [42]. For any P,Q € S¥ and cone
C C SK, the conic inequality P = @ indicates that P — Q is an element of C. We drop the subscript and
simply write P = Q, when C = Sf . Finally, the relation M ¢ 0 indicates that M is strictly copositive,
e,z Mz >0foralzck x#0.

Ellipsoids We define £(A,b) = {x € RX : |Az + b||”> < 1} as an ellipsoid with parameters A € SE, and
b € RE. The volume of £(A,b), denoted by Vol(E(A, b)), is proportional to det(A~1) = 1/det(A). In this
paper, we drop the proportionality constant, and say that Vol(€(A, b)) = 1/det(A); since we use the volume
as a metric for comparing different ellipsoids, doing so does not affect the results. We define the radius of
a K-dimensional ellipsoid as Vol(-)l/ K. this metric is proportional to the radius of a sphere with the same
volume as that of the ellipsoid. Finally, we say the two ellipsoids are equal, i.e., E(A1,b1) = E(Aa, by), if
and only if Ay = Ay and by = bs.

2 Generalized Copositive Reformulation

In this section, we develop a generalized copositive reformulation for the MVEP. It is well-known that
Emve = E(A,Db) if and only if (A,d) is the unique optimal solution to the following semi-infinite convex
optimization problem [44]:
minimize —logdet(A)
(MYVE)
subject to A €SK, beRE Z(A,b) <1,

where

Z(A,b) = sup |Az +b||* = sup {x" A%z +2b" Az + b b} . (1)
zEP rcP



The objective function of (MVE) minimizes the logarithm of the volume, which implicitly restricts A to be
positive definite. Minimizing the logarithm of the volume makes the objective function convex in A. The
constraint Z(A,b) < 1 forces every element of P to lie inside the ellipsoid. We are now ready to present
the main result of this section, where we derive necessary and sufficient conditions for certifying whether an

ellipsoid contains another set.

Theorem 1. Let P be a set satisfying Assumption 1. Let the cone K C RE+L be defined as
K = cone ({[z;1] : = € P}). (2)

If A € S¥. and b € RE, then the ellipsoid E(A,b) contains P if and only if there exist F € S¥, g €
RE, h € R, such that

P F g A
= 0 and T B b'| =0. 3
aT ho1 (k) g (3)
A b 1

Before proving Theorem 1, we discuss its implications. The theorem implies that the constraint Z(A,b) < 1
in (MVE) can be replaced by the constraints in (3). Therefore, Epnve = E(A, D) is the minimum volume
ellipsoid if and only if (A,b, F, g, h) is the unique optimal solution to the following generalized copositive
program:

minimize —logdet(A)
subject to A €SK, beRE, FeSK, geRE, heR, (4)
(3) holds.

Remark 1. In this article, we refer to a problem with —logdet(-) minimization objective and semidefinite

)

(copositive) constraints as a “semidefinite (copositive) program,” albeit with a slight abuse of terminology.
The reason is that minimization of —logdet(-) is equivalent to minimization of —(det(-))"/%; the latter can
be reformulated as a problem with linear objective and additional semidefinite inequality constraints (see,
e.g., [4, Section 4.2]). Some modeling frameworks, like YALMIP [31] which we use for our erperiments,

automatically carry out this conversion before sending the problem to the solver.
Next, we present the following technical lemmas which are needed for the proof of Theorem 1.
Lemma 1. Let K be the cone defined in (2). If [x;7] € K, then 7 > 0. Furthermore, 7 =0 only if € = 0.

Proof. From the definition of K, there exist points s € P and coefficients As > 0, s € [S], such that
[z;7] = ZSG[S] As[xs;1]). By comparing the last element, we get 7 = ZSG[S] As > 0, since Ay > 0. In
addition, 7 = 0 implies that A; = 0 for all s € [S], which further implies that x = 0. O

Lemma 2. The cone K defined in (2) is proper.



Proof. The compactness of P implies that K is convex and closed. Since P has nonempty interior, any point
x in the interior of P yields a point [x;1] in the interior of K; therefore K has nonempty interior. Finally
to see that K is pointed, let [x;7] € K and —[z;7] € K. Using Lemma 1, we have that 7 > 0 and —7 > 0,

which implies that 7 = 0. Again using Lemma 1, we get that [x; 7] = 0, which implies that K is pointed. [

Lemma 3. Let M € S¥ be a symmetric matriz and S C RE be a set with nonempty interior. If vI Mv =0

forallv e S, then M = 0.

Proof. Let A be an eigenvalue of M and g be the corresponding eigenvector of unit length. Since S has
nonempty interior, for any v € int(.S), there exists 7 > 0 such that v+ 7q € S for all 7 € [0,7]. Therefore,
(v+7q) "M (v +71q) =0 for all 7 € [0,7]. Furthermore,

(v+7q) ' M(v+71q9) =v Mv+2rq Mv +712q " Mq=27\qg"v+71*\qg " q=\r(2¢ v +71).

Thus, A7(2q v+ 7) = 0 for all 7 € [0,7]. Since the term 7(2¢g "v + 7) is quadratic in the scalar 7, it cannot
be zero for more than two values of 7. This implies that the previous equality holds for all 7 € [0, 7] only if

A = 0. Therefore, any eigenvalue of M is zero, which implies that M = 0. O
Lemma 4. Let K be the cone defined in (2). There exist X € SK and x € RE such that

X ==

(ET

Proof. We start by showing that C(K) is pointed. Let M € S¥*1 be such that M € C(K) and —M € C(K).
For this choice of M, for all x € K, we have that ' Mz > 0 and —&' Mx > 0, which implies that
x' Mz = 0 for all z € K. Since K has non-empty interior (by Lemma 2), Lemma 3 implies that M = 0.
Therefore C(K) is pointed, which implies that its dual cone, C*(K), has non-empty interior [10, Section 2.6.1].
Consider M € int(C*(K)). The matrix M is positive definite (see discussion below Corollary 8.1 in [11]);
therefore any element on its diagonal, which includes the bottom-right component, is strictly positive. By
scaling M such that the bottom-right component is 1, we get another matrix in the interior of C*(K). Hence

the lemma holds. O
The following lemma is an extension of another recently proved result found in [32, Lemma 4].

Lemma 5. Let M € SE be a symmetric matriz and A € R7*EK be an arbitrary matriz. Then, for any
proper cone IKC C RE | the inequality M Zex) AT A is satisfied if and only if there exists a matriz H € Sf

such that
H AT
M >__C(IC) H and i 0. (5)
A I



Proof. (=) The statement holds immediately by setting H = AT A.

(<) Assume that there exists such a matrix H € Sf . By the Schur complement, the second inequality
in (5) implies that H = AT A, which in turn implies that H >¢) AT A (since S§ C C(K) for any K).
Combining this with the first inequality in (5) implies that M =¢(x,) ATA. O

We now return to the proof of Theorem 1.

Proof of Theorem 1. The set P can be expressed in terms of the cone K as P = {x € R : [z;1] € K}.

Therefore, we can write (1) as

Z(Ab)= sup z' A’x+2b"Ax+b'b. (6)
[w;1]eX

The optimization problem (6) is equivalent to the following completely positive program [11]:

Z(A,b)= sup tr(A%X)+2b"Ax+b'b
st. xeREX X esk,

(7)
X T 0
Zcxx) U
T 1 (K)
The dual of this completely positive program can be written as:
Z4(A,b) = inf
a(A,b) = inf p
e (8)
S.T. ~c(k) Y-
—b"A p-b'b

Using Lemma 4, we conclude that a Slater point exists in the optimization problem (7). Hence, strong
duality holds and Z(A,b) = Z4(A,b). Furthermore, there exists a dual feasible solution which attains the
value Z(A,b), since a Slater point exists in the primal problem (7) [4, Theorem 1.4.2]. Using these facts, we
have that Z(A,b) <1 if and only if there exists a feasible solution to problem (8) whose objective function
value is at most 1. Therefore, Z(A,b) < 1 if and only if there exists p < 1 such that

—A? —Ab . 0
—C(K )
-b'TA p-b'b )
which, in turn, holds if and only if ) )
—A? —Ab . 0
—C(K )
-b"A 1-b"Dd 0o
or equivalently,
0 T
e [A b] A b, 9)



The conic inequality (9) has non-linearity because of the terms involving the product of the decision variables
A and b. However, by Lemma 5, this constraint is satisfied if and only if there exist variables F' € S¥, g € RX
and h € R such that the constraints (3) hold. Therefore, the constraint Z(A,b) < 1 is equivalent to

constraints (3). Hence, the claim follows. O

Theorem 1 implies that Eyye can be found by solving the GC program (4), which is difficult in general. In
the next section, we discuss tractable approximations of (4) for special cases of P. However, before doing

so, we provide some generalizations to the GC reformulation (4).

Remark 2 (Affine mapping of a set). Let P C RY be a set satisfying Assumption 1. Let P = CP +d =
{Cx+d:zc P} CR’ be an affine mapping of P, where C € R'*X and d € R’. In order to obtain
conditions for an ellipsoid to contain P, note that Z(A,b) = supgep [|A(Cz + d) + b||* . Following the steps
of the proof of Theorem 1, we can see that if A € S_‘{_+ and b € RY, then the ellipsoid E(A,b) contains P if
and only if there exist F € S, g € RX, h € R, such that

» F g (Ac)’
Zcik) 0 and | gT h (Ad+b)T| =0,
g’ h-1
AC Ad+b I

where K = cone ({[x;1] : © € P}).

Remark 3 (Union of sets). Let P = Uy Pe, where the set Py satisfies Assumption 1 for all £ € [L]. The
set P does not satisfy Assumption 1 since it may not be conver. However, it is possible to extend Theorem 1
to this case as follows. Note that an ellipsoid contains the union of sets if and only if it contains every set.
We can apply Theorem 1 to every set Py to arrive at the fact that ellipsoid E(A,b) contains P if and only
if there exist Fy € SX, g € RE, hy € R W/ € [L], such that

. F, g A
_f g¢ jc()gz) 0 and g; hy b'| =0 Ve [L},
ge he-l A b I

where K; = cone ({[z;1] : = € Pg}), ¢ € [L].

Remark 4 (Minkowski sum of sets). For all £ € [L], let the set Py satisfy Assumption 1 and K, be the
corresponding cone defined as in (2). Let P = {ZZE[L] To: g €Pp VLl e [L]} be the Minkowski sum of
these sets. Although P satisfies Assumption 1, it might not have a polynomial sized representation. As an
example, if every Py is a polytope, then P is a polytope defined by constraints whose number can potentially

grow exponentially with L. However, we can still reformulate (MVE) for P as a GC program of polynomial



size as follows. Observe that

T
Z(Ab) =  sup Soa | A D> @ | +2"A[ D @ | +b'b
@e€PVEELL] |\ e te(L)] te(L]
= sup {wTAATw +26" ATz + bTb} ,
z=[z1;@2;5 ;@ L],
o €EPy VEG[L]
. T
where A = {A A - A} € REEXE By defining the cone K as
K={lx1;20;--- ;xp;7] € REEFL  [2;7] € K, V2 € [L]}

and repeating the steps in the proof of Theorem 1, we arrive at the fact that ellipsoid E(A,b) contains P if
and only if there exist F € S'% g ¢ RE | h € R such that

F Fog
g jC(KZ) 0 and gT h b'| =0.
g' h-1 -
AT b 1

In the previous three remarks, minimizing the function — log det(A) subject to the corresponding constraints

leads to a GC reformulation of (MVE).

3 Tractable Approximations for Polytopes

In this section, we use the reformulation (4) to present tractable semidefinite programming approximations

for (MVE) in the case where the set P is a polytope defined as
P:{wERK:Smgt}7 (10)

where § € R/*X and t € R/. We start with our proposed approximation, and then present theoretical

comparisons with alternative approaches to approximate &yye.

Theorem 2. Let P be a polytope defined as in (10) that satisfies Assumption 1. Consider any A € Ser
and b € R, Then, an ellipsoid E(A,b) contains P if there evist N € R_{XJ, F cS¥, gcRE, heR such
that

F g A
F g -ST
< N[_s t}, and |gT h BT| =0 (11)
T _ T
g h-1 t
A b 1

Proof. For the polytope P, the cone K defined in (2) can be written as I = {[a:, 7] e REFL: 7 >0, Sz < Tt} .

We show that the constraints (11) imply the constraints (3). Since the second constraints in (11) and (3)

10



are the same, we show that the first constraint of (11) implies the generalized copositive constraint in (3)
which proves our claim. For any [z; 7] € K, we have that
T T
x F g T T -ST T T
< N [75 t] — (rt— Sz) N(rt — Sz) <0,
T g’ h—1]| |7 T t’ T
where the first inequality follows from the first semidefinite inequality in (11) and the final inequality holds
since N > 0 and 7t — Sx > 0. Thus,
F g
- =c(x) 0.
g h-1

Hence, the claim follows. O

Theorem 2 provides a way to approximate (MVE). We choose the ellipsoid with minimum volume among

those that satisfy the conditions of Theorem 2. This can be achieved by solving the following tractable SDP:

minimize —logdet(A)
subject to A € SK, be RE, N e R{*/, FeSK geRX, heR, (12)
(11) holds.

If (A,b,N,F,g,h) is an optimal solution to (12), then we propose the use of the ellipsoid Eqp = £(A,b)
as an approximation of &y ve.

Next, we present a theoretical comparison of the quality of £qp with the other methods of approximating
Emve- We denote by Emvie the ellipsoid obtained by scaling the maximum volume inscribed ellipsoid by
a factor of K. We discuss the SDP formulation for determining Egpvie in Appendix B.1. In Theorem 3,
presented below, we show that the volume of £qp cannot exceed the volume of Enyie. For the theoretical
analysis, it is convenient to combine the two semidefinite inequalities of (11) using the Schur complement,

and write (12) equivalently as follows:

minimize —logdet(A)
subject to A € SK, b e RX, N e R]*/,

00 -ST
=l SR | vEs 4

A
bT

We begin with the following lemma which we use for comparing the volumes of £qp and Egmvie-

Lemma 6 ([24, Theorem 7.8.7]). If M € REXK js q square matriz with real entries such that M + M T = 0,
then

det (; (M + MT)> < det(M).

Theorem 3. If P is a polytope defined as in (10), then Vol(Esap) < Vol(Esmyie)-

11



Proof. The logarithm of the volume of &nyie is equal to the optimal value of the following optimization

problem (see Appendix B.1):

minimize Kp't— K — logdet (—; (STA + ATS'))
subject to A € R7*K pc R/,
STp=0,
ANl < p; Vi € [J].
We can compare the volumes of Eqp, and Esmyie by comparing the optimal values of the minimization problems
(13) and (14). To prove the theorem, we show that any feasible solution in (14) can be used to construct
a feasible solution to (13) with the same or lower objective function value. To this end, consider a solution
(A, p) which satisfies the constraints of (14). Define x = exp(1 — p't). Also, let ATS = UXV " be the
singular value decomposition of ATS, where U,V € RE*X are orthonormal matrices, and ¥ € S¥ is a
diagonal matrix. We note for later use that det(ATS) = det(U)det(X)det(V ") = det(X). Consider the

following solution to (13):
A=rkVEV' b=rVU'ATt, N=r>(pp" —AAT). (15)
We demonstrate that this solution satisfies the constraints of (13). Note that
A’ =rVIVIVIVT = 2VvIU'USVT = k?STAATS,

since V'V =UTU =1. Similarly Ab=k?>STAATt, and b"b = k?tT AATt. Therefore,

-8T N [—S t] _ STNS -STNt _ 2 ST (ppT - AAT) s -ST (ppT — AAT) t
th -t"NS t'Nt —t" (pp" —AAT)S tT (pp" —AAT)E
L [-sTaaTs  sTAAT
T TAATS (o8 — tTAATE

0 0 A% Ab
0 (kp't)? bTA b'b

where the third equality follows from the constraint STp = 0. We claim that (kp't)? < 1. To see this,
first note that since the polytope P is non-empty, by Farkas’ Lemma, any vector p satisfying ST p = 0 and
p > 0 also satisfies p't > 0. Secondly, using the inequality exp(r) > 1+ v with v = p't — 1, we get that
k! =exp(p't —1) > p't, which implies that xp't < 1. Combining these two inequalities, we get that

0 < kp't < 1, which implies that (kp"t)? < 1. Therefore, we have that

A
bT

0 0 -S 0 0 -S
R O I P S P L N B P )
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Next, since N = x? (pp" — AAT), we have that N;; = r? (pip; — ALA;) = K2 (pip; — || Asll |A:]) =0,
where the two inequalities follow from Cauchy-Schwarz and the constraint ||A ;.|| < p; respectively. Therefore,

N > 0. Next, we compare the objective values. Note that

—logdet(A) = —logdet(kVEVT) = —log(kX det(VEVT))
= —Klog(k) — log(det(V) det(X) det(V'T)
=K(p't—1)—logdet(ATS)
<K(p"t—1)—logdet <;(ATS + STA)> ,

where the final inequality follows from Lemma 6. Hence, the feasible solution (15) gives a lower objective

function value. Thus, the claim follows. O
Corollary 1. If the polytope P is a simplez, then Emve = Esdp = Esmvie-

Proof. Tt is known that Enve = Esmvie, if the set P is a simplex [10, Section 8.4.1]. Therefore, Vol(Egmyic) =
Vol(Emve), which implies that Vol(Eap) = Vol(Emve). Because of the uniqueness of the minimum volume

ellipsoid, we get that Esqp = Emve- L]

In the next example, we demonstrate that the difference between the volumes of the ellipsoids Egqp and

Esmvie can be arbitrarily large.

Example 1 (Chipped Hypercube). Consider the polytope: P = {x € RX : 0 < z < e;e’z < \/E}
formed by adding one constraint to the unit hypercube. This polytope forms a special case of (10) with
S = []I; I eT], and t = [e; 0; \/F} . Let Rive, Rsmvie and Reop be the radii (defined in Section 1.1) of
the ellipsoids Emve, Esmvie and Esap, respectively. In the e-companion, we prove that Reop = O (K1/4) and
Romvie = © (K 1/ 2). Therefore, Rsmvie grows at a strictly faster rate with the dimension K than Reop. This
example demonstrates that the ratio Rsmyie/Reop can be arbitrarily high, if a large enough K is chosen. We
compute the three radii for K = 2 to K = 50, and plot the values in Figure 1(b). We observe that Rpvye
is very close to Reop, and the two appear to be growing at the same rate with K. Figure 1(a) shows the

ellipsoids generated by the three methods for K = 2.

Next, we present the comparison of Vol(Esqp) with the volume of the ellipsoid provided by the S-procedure
described in Appendix B.2. However, the application of S-procedure requires an ellipsoidal constraint in
addition to the affine inequalities that define the polytope P (see Remark 7 in Appendix A). This can
be achieved by using any ellipsoid £(Q, q) = {x € R¥ : |Qz + (1||2 < 1} that contains the polytope P, and
adding ||Qx + q||2 <1 as a redundant constraint in the definition of P. The ellipsoid £(Q, q) already serves
as an approximation of &,v.. We can then apply the S-procedure in the hope of finding an ellipsoid with
lower volume; we use Eproc to denote this ellipsoid. However, in Proposition 1, presented below, we show

that if the center of £(Q, q) lies inside P, then applying the S-procedure provides no improvement and, in

13
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Figure 1. Chipped Hypercube Example: a) The ellipsoids generated by the exact method and
the two approximation methods for K = 2. b) Radii (i.e., Vol(-)'/%) of the ellipsoids generated

by the three methods for different dimensions K.

fact, returns the ellipsoid Eproc = £(Q, ) as its unique optimal solution. This result is counter-intuitive
since the S-procedure has been successfully applied in cases where P is defined as either the intersection or
Minkowski sum of ellipsoids. Furthermore, if £(Q, q) = Esmvie is used in the redundant quadratic constraint,
then Proposition 1 implies that the S-procedure does not improve upon Enyie, since the center of Evie lies

inside P. In that case, Vol(Eap) < Vol(Esmvie) = Vol(Esproc)-

Proposition 1. Let P be a polytope defined as in (10) that satisfies Assumption 1, and let £(Q,q) = {x €
RX . ||Qx + q||*> < 1} be an ellipsoid containing P such that the center of £(Q,q) lies inside P. Then, for
the set {x € RE : Sz <t,||Qx + ql* < 1}, we have that Esproc = E(Q, q)-

Proof. See the e-companion. O

Finally, another method of approximating (MVE) uses the decision rule approach described in [47,
Section 6], which we summarize in Appendix B.3. We denote the ellipsoid generated using this approach
by Eun. In the following proposition, we show that Vol(&,.,) is never lower than Vol(Esmyie). Thus, by
Theorem 3, Vol(E,n) > Vol(Eap)-

Proposition 2. Vol(&,n) > Vol(Esmvie)-

Proof. See the e-companion. O
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3.1 Sets with Quadratic Constraints

Next, we provide a semidefinite programming approximation to (MVE) when the set P is defined by affine, as
well as quadratic inequalities. This generalizes the approximation (12) developed for the case of a polytope.

Specifically, we consider the following set:
P:{weRK . Sz <t ||Qi:c+qi||2§1We[I]}, (16)

where § € R/*K t ¢ R/, Q; € S¥ and q; € RX. In the next theorem, we derive sufficient conditions that

an ellipsoid £(A, b) contains the set P defined as in (16).

Theorem 4. Let the set P be defined as in (16). Consider any A € Sf+ and b € RE. Then, an ellipsoid
E(A,b) contains P if there exist N € R_{_XJ, FeSK geRE heR, N\ >0Viell], aj; € RE k5 €
R Vi € [I] Vj € [J] such that

levijl| < wij Vi€ [I]VielJ],

F
. g = —STNS + Z N — Z Mij(aij,mj),
g -l = el jel) an
F g A
gT h b—r iﬂv
A b I
where
2 T
S=[-5 tfer, g = @ Q| Cgrn g, and
4/ Qi g¢/ai—1
-1(8;.a7Q; + Q;aS] L (tQia— (a'q; + K)S;.
Mj(e, k) = : (el Qi+ Quasy) 5 (e (alai 1)) Vi € [I)Vj € [J].

.
3 (t;Qio — (a’q; + K)S;.) (" qi + k)t

Proof. For the set P, the cone K as defined as in (2) can be written as
K= {[:1:;7‘] eRNTL: 7>0, Sz <7t, |Qz+7q|° <2 Vie [I]} .
We show that the conditions (17) imply the conditions (3), which proves the claim. Let

F
P = g
g' h-1
Also, consider [z;7] € K. From the first semidefinite inequality, we have that
T T
T
P S 7STNS + Z )\1.]1 — Z sz(a”)

T T T i€(1] i€lI],5€J] T
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We show that all three terms in the expression on the right hand side are non-positive. The first term
is non-positive as shown in the proof of Theorem 2. Next, observe that for all ¢ € [I], we have that

[;7] " Ji[x; 7] = || Qi + Tq1'||2 — 712 <0, since [z, 7] € K. Also,

[w;T]TMij(aij)[l’;T] = (th — ST.’I})(T,‘{U + aj](sz + Tqi)) > 0.

J:

The previous inequality follows because both terms in the product are non-negative since Sx < 7t and
Thij + o (Qix +7qi) > Thij — |leu; || | Qi + 7qi|| > Thij — Thi; = 0. Hence, [@; 7] T Pla; 7] <0 V7] € K,

which implies that P =<¢(x) 0. Hence the claim follows. O
Theorem 4 implies that the following SDP serves as a restriction to (MVE):

minimize —logdet(A)

subject to A € SK, beRE, FcSK, geRF, heR,
N eR{*, N >0Vie [I], a;; € RE,
(17) holds.

(18)

Remark 5. The approximation discussed above is motivated by the Relaxation Linearization Technique

(RLT) discussed in [2, 40], and SOC-RLT constraints discussed in [12].

4 Application to Distributionally Robust Optimization

In this section, we demonstrate how our approximation to (MVE) can be used to obtain good solutions to
the two-stage DRO model with random recourse given by
inf {cTw + sup EQ[R(Q:,E)]} , (19)
xzeX QeQ

where
R(x.&) = inf (DE+d)Ty
v (20)
s.t. Tg(a:)Tf + hg(:l:) < (We€ + wg)Ty \AS [L]
Here, * € RM and y € R™? represent the first- and the second-stage decision variables respectively, X
is a set defined by tractable convex constraints on x, and & € RX is the vector of uncertain parameters.
Also, ¢ € RN, D € RV2XK W, ¢ RV2*K ¢ € RY2 and wy; € R™ are problem parameters. The functions
T, : X — RX and hy : X — R are affine in the input parameter. We consider the following moment-
based ambiguity set: Q = {Q € Qu(E) : Eglé] = u, Eg[€€T] < X}, where E = {¢ € RX : §¢ < t} is
the bounded support set, and Qy(E) is the set of all probability measures supported on E. The objective
function minimizes the sum of the first-stage and the expected recourse cost, where the expectation is taken

with respect to the worst case distribution among those in the ambiguity set Q. The results presented here

can be extended to other types of ambiguity sets, including the simpler case where Q = Q((E) (i.e., robust
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optimization) [7, 45], the more sophisticated data-driven Wasserstein ambiguity set [20], and to the classical
stochastic programming setting.
The problem (19) can be written equivalently as:

inf ¢'ax+ sup Eq[(D€ + d) Ty (&),
x,y(") QeQ

st. xxed, (21)
Ti(z) "€ + he(x) < (W€ +we) Ty(€) VE€E Ve [L],

where the second-stage decision variable y is a function of the uncertain parameters £&. The problem (21)
is difficult to solve. To generate a tractable approximation to (21), we explore the use of piecewise-linear
decision (PLD) rules. Specifically, we partition Z into regions Z1,..., 2, and restrict y(-) to be of the form
y(&) =Y;€+y; if £ € E;, where Y; € RV2*K and y; € RN2. For constructing the partitions, we start with
a set of constructor points {§;};ers) in 2. Then, we define the partition Z; to be the set of all points in =

which are closer to £; than any other constructor point. In other words,

g, ={¢ecRE:Se<t, |e-¢&| <|€-&| VielJ,i#j}
={€cRN:86<t 2(& &) €¢<& & —¢€]¢ Vie i}
={€ e RF: §;¢ < t;},

where the matrix §; € RELi XK and the vector t; € R% are formed by combining the linear constraints in
the definition of Z;. These partitions are known as Voronoi regions.

Because of random recourse (i.e., uncertainty in the coefficients of y(-)), finding the optimal PLD rule
is NP-hard, even if there is only one piece [3]. However, we can approximate the problem of finding the
optimal PLD rule using the S-procedure. However we need a quadratic constraint in the definition of Z;
for an effective application of S-procedure (see Remark 7 in Appendix A). To this end, let £(A;,b;) be an
ellipsoid that contains Z;. Since Z; is a polytope, we can exploit the results developed in Section 3 to find
E(A;,b;). We can write Z; equivalently as Z; = {€ € R : §;¢ < t;,]|A;& +b;||* < 1}. We illustrate the
procedure of partitioning and covering with ellipsoids in Figure 2.

In the next proposition, we derive a tractable SDP that generates a feasible PLD rule. The optimal value
of the resulting SDP approximation provides an upper bound to the optimal value of (21). In Example
2 presented after the proposition, we demonstrate that the size of the bounding ellipsoids £(A;, b;) can
drastically impact the upper bound provided by the SDP approximation; in particular, the tighter the
ellipsoids, the better the upper bound.
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Figure 2. Voronoi Regions: The outer square represents the support set, and the black dots are

the constructor points. The points are used to construct partitions, and an ellipsoid containing
each partition is found by solving the SDP (12).

Proposition 3. Consider the following SDP:
inf c'z+a+B u+tr(lE)
st. x€ X, T eSK, BeRE acR,
Y; e RV:¥K g e RN 4, eRY 6, €eR, VjelJ],

Mo €Ry, peRY Vje ]Vl e[l

T 1 DY, +Y."D LD y. +Y.d
2 B 2( it Y ) 2( Y+ Y; ) FP(y,) + 6,0, =0 V€]
19T 1/ T NT T i\ I ’
a 3(D y; +Y; d) d'y;
[ 1 W, Y, +Y."W, Twly, +Y.Tw
AW ¥ W) s Wews $ Y500 @) 4 Pypge) + Medy =0 Vi€ ) v e (L,
Wy + Y w) wy, Y;
where
0 LTy (x 0 18T A? ATb,
M;(x) ) 2 T2l®) Pilp) = |, 2°; P , and Jj= ! 7
2Tg(ar:)T he(x) §pTS’j thp bjTAj bijj—l

Let y(&) =Y;€+y; if € € Z;. Then, (z,y(-)) provides a feasible solution to (21). Furthermore, the optimal
value of (22) provides an upper bound to the optimal value of (21).

Proof. See e-companion.

Example 2. Consider the following special case of (21):

z= inf =
z,y(+)

st. 1<(E+e)Ty§) <z VEc=

=
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where = = {€ € RE : 0 < & < e} is the unit hypercube, and J = 1. This problem is a special case of (21)
with L =2, D=0,d=0, Wy =1, w; =e, Ti(z) =0, hi(z) =1, Wy = =I, wy = —e, Th(z) =
0, and ho(z) = —x. The true optimal value is z = 1, which is obtained by the non-linear decision function
y(€) = (E+e)/||€+el’. In this case, Emve = {€ € RE : [|€ —e/2||> < N/4}. For s > 0, let 2(s) be the
upper bound generated by the SDP approzimation when {€ € R : ||€ —e/2||> < N(1 + s)/4} is used as the

bounding ellipsoid. In the e-companion, we show that

9/(8—s) if0<s<2,
2(s) = 1+s/4  if2<s<4,

2 if4<s.

Therefore, the linear decision rule obtained with Eyve generates an objective value of z(0) = 9/8 = 1.125. The
objective value z(s) increases as the size of the ellipsoid increases. The case when s approaches oo corresponds
to dropping the ellipsoidal constraint; in that case, we obtain an objective value of lims_, 2(s) = 2. Hence,
ignoring the ellipsoidal constraint can increase the suboptimality of the decision rules approximation from

12.5% to 100%.

Example 2 demonstrates the importance of generating good outer ellipsoids. We further elaborate on
this point in Section 5.2, where we perform experiments on randomly generated instances of an inventory
management model. We note that the task of finding the outer ellipsoids £(A;, b;) can be parallelized, which

leads to a substantial reduction in the computation time.

Remark 6 (Two-Stage Stochastic Programming). In the classical stochastic programming setting, the ran-
dom parameters € are assumed to be governed by a known distribution P. The semi-infinite constraints in (21)
remain unchanged and can be approximated in the same manner using the S-procedure. On the other hand,
the worst-case expectation in the objective function of (21) reduces to the expectation Ep[(Dé—&—d)Ty(EN)], Ap-
plying the law of total expectation and employing the proposed PLD rules, we can reformulate the expectation

as

> PE€E))Er [(DE+d) y(€) | € € 5]
]

jelg

= Y P(Eez) B [(DE+a) (Vé+yy) | ETy]
jelJ]

= Y PEécE) (u(DTYENEEIECE))) + (v D+ dTYEREE € ) +dTy; ).
jelJ]

This expression is affine in the decision variables Y; and y;, j € [J]. Note that the partition probabilities
]P’(é € Ej), j € [J], and conditional moments E]p[é\é € E,;] and Ep[éé”é € 5], 7 € [J], can be estimated

using the Monte Carlo sampling method.
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5 Numerical Experiments

In this section, we present numerical experiments that demonstrate the improved performance of our scheme
for approximating (MVE) over the existing methods. First, we show that our approach outperforms the
existing approaches in terms of solution quality and computational time on randomly generated polytopes.
Second, we demonstrate the efficacy of our method in generating quality solutions for a distributionally
robust inventory management model. All optimization problems are solved using the YALMIP interface [31]
on a 16-core 3.4 GHz computer with 32 GB RAM. We use MOSEK 8.1 to solve SDPs and CPLEX 12.8 to

solve non-convex quadratic programs to optimality.

5.1 Random Polytopes

Here, we compare our method of approximating (MVE) with (i) the constraint generation approach [19],
(ii) the SMVIE approach, and (iii) the method using sufficient conditions proposed by Kellner, Theobald,
and Trabandt [26]. We refer to the last method as the KTT approach, and denote the corresponding ellipsoid
by Ektt (see Appendix B.4 for details on the formulation).

For our experiments, we generate polytopes randomly as follows. We start with the hyper-rectangle
{z € RE: 0 <z < e} with center ¢ = /2. Then we add M linear inequalities in the following way. For
j € [M], we generate a vector s; € RE uniformly distributed on the surface of the unit hypersphere. We

generate a distance r; uniformly at random from the interval [— [|s;||, /2, ||s;]|, /2], and add the constraint

T
J

si(x—c)<r;ifr; >0 and sz(ar: —c¢) > r;j if r; < 0. Choosing r; from the specified interval leads to
a constraint that cuts the hyper-rectangle (i.e., the constraint is not redundant). Also, the construction
ensures that the polytope is non-empty since c satisfies all the constraints.

For several values of K, we solve the problem exactly and apply each approximation method on 50
randomly generated instances for M = K, 2K, 3K. We report the suboptimality results of the three
approximation methods in Table 1. For higher values of K, for which we were not able to solve the problem
exactly within 30 minutes, we report the suboptimality of the radius of Egmyie and Exyy with respect to Esap
in Table 2. Finally, the solution times of different methods are reported in Table 3. We do not report the
solution time of the SMVIE approach. Even for the largest problem size that we solved, the SMVIE approach
produces solutions in less than 2 seconds, dominating every other approach.

It can be observed that the radius (and therefore, volume) of Esqp is significantly lower than that of
Esmvie- Furthermore, the suboptimality of the radius of Egnvie relative to that of £y, increases with the
dimension K (from 246% for K = 15 to 481% for K = 40). This is perhaps because the scale factor of K
becomes very conservative for higher values of K. This increase in solution quality of 4, comes at the cost

of higher solution times compared to that of finding Egmyie-

We also observe that the radius of £yqp, is slightly better than that of £x; the solution time, however, is
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M=K M =2K M =3K
K | Copos KTT SMVIE | Copos KTT SMVIE | Copos KTT SMVIE
2 | 341% 4.68%  34.3% | 5.20% 6.48%  32.8% | 5.33% 6.63%  31.9%
5 | 4.88% 7.02% 105% | 9.92% 13.16%  91.9% | 13.2% 16.4%  93.7%
10 | 2.53% 3.712% 188% | 7.48%  9.51% 176% | 13.6% 16.9% 164%
15 | 1.29% 1.84% 250% | 5.57%  7.16% 230% N/A N/A N/A

Table 1. Random Polytopes: Mean suboptimality of the radii of Eqp (‘Copos’), ket (KTT’),
and Emvie (‘SMVIE’) for different problem sizes. We use ‘N/A’ when the problem cannot be

solved to optimality within 30 minutes.

M=K M =2K M =3K
K | KTT SMVIE | KTT SMVIE | KTT SMVIE
15 | 0.54% 246% | 1.50% 212% | 2.07% 191%
20 | 0.30% 310% | 1.01% 268% | 1.65% 245%

25 | 0.28% 357% | 0.66% 318% - 292%
30 - 401% - 364% - 329%
35 - 440% - 405% - 372%
40 - 481% - 447% - 414%

Table 2. Random Polytopes: Mean suboptimality of the radii of kit (‘KTT’) and Esmvie
(‘SMVIE’) relative to Esap for the cases which could not be solved to optimality within 30

minutes. We use “~” for the cases when the KTT approach does not provide a solution within

30 minutes.

significantly lower (1-2 orders of magnitude). As an example, for K = M = 30, the KTT approach does not
provide solutions within 30 minutes, whereas our method generates an solution in 13.7 seconds on average.

Finally, we observe that for small problem instances, our method finds a solution much faster than
solving the problem to optimality. For higher dimensional problems (K > 15), where solving the problem
exactly becomes intractable, our approximation continues to provide ellipsoids of lower volume than the

other approximation methods.

5.2 Risk-Averse Inventory Management

Next, we consider an inventory management problem, where we decide the purchase amount of N products

before observing their demands. We incur a holding cost if we purchase more than the demand, and a

21



M=K M =2K M = 3K

K | Exact Copos KTT | Exac Copos KTT | Exact Copos KTT
2 1.52 0.004 0.011 | 1.53 0.005 0.027 1.69  0.005 0.059
5 8.56  0.014 0.036 | 9.13 0.023 0.073 9.59  0.050 0.096
10 72.6  0.106 0.925 | 81.7 0.290 2.09 133 0.754  3.78

15 406  0.542  10.0 | 1191 1.82 258 - 5.21  49.7
20 - 2.01 73.2 - 7.60 210 - 22.2 438
25 - 5.65 368 - 22.8 1067 - 68.0 -
30 - 13.7 - - 54.7 - - 207 -
35 - 28.8 - - 133 - - 492 -
40 - 53.2 - - 302 - - 1155 -

Table 3. Random Polytopes: Mean solution times (in seconds) of the exact method (‘Exact’),

our proposed method (‘Copos’), and the KTT approach (‘KTT’) for different problem sizes. We
use “~” when the corresponding method does not provide a solution within 30 minutes.

stockout cost if we purchase less than the demand. We assume that the demands and the stockout costs
are random. The objective is to minimize the worst-case conditional value at risk (CVaR) [38, 48, 33] of the

total cost. We can write the model as follows:

minimize  sup Q-CVaR[R(z, €, 5)]
QeQ

subject to z €RN, >0, e'a < B,

where
R(x, & s)=inf glys+s5"ys

st. y1 e RY,yo e RY,
ypzx—§ y2>2€—x.
Here, the variables @, y; and ys represent the vector of purchase decisions, excess amounts and shortfall
amounts, respectively. The vector g € RY represents the known holding costs, and B denotes budget on the
total purchase amount. Also, £ € RY and s € R are random parameters which represent the vectors of

demand and stock-out costs respectively. The ambiguity set Q is as described in Section 4. By employing
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the definition of CVaR, it can be shown that the above problem is equivalent to
o 1 > .
minimize x + — sup Eq[7(§, 5)]
€ QeQ

subject to KER, x €¢RN, £>0, e’z < B,
T(£7S) Z 07 yl(&vs) 2 07 y2(£a 8) Z Oa
T(é» S) 2 gTy1(£1 S) + sTy2(£a 8) -k, V(é, S) € E‘7
y1(€73) > _57 92(53) > 5 — &

(24)

which is of the form (21) [21, 39].

We generate the parameters for this problem as follows. We use N = 7 products, which leads to 2N = 14
random parameters. We choose Z = {[€;8] : & < & < &,,8 < s < 8,}, and € = 5%. We partition =
into J = 4 regions, and select the constructor points {[£;; s;]},e[s by sampling uniformly at random from
=. We choose B =30, § =0, £, = 10e, s; = 8e, s, = 12e. For constructing the ambiguity set, we use
p= [pe; ps] € R?YN | where ps = 10e and every element of pg is generated uniformly from the interval [0, 2].
We select a random correlation matrix C € Sf_N with the MATLAB command “gallery(‘randcorr’,2*N)”,
and set ¥ = Diag(o)C Diag(o) + up', where o = [o¢;05] € R?N, 05 = /2 and o¢ = pe /4.

We approximate (24) using our proposed SDP (22), where the ellipsoids £(A;,b;) are generated using
the SDP (12) developed in Section 3. We refer to this approach here as ‘PWL’. We compare the solution
time and quality of the PWL approach with those of the following schemes:

o Piecewise static decision rules (‘PWS’) [7]: Here, the second stage decision variables are restricted to
be constant within each partition, i.e., Y; = 0 in Proposition 3. This approach leads to a tractable
approximation, and, to the best of our knowledge, is state-of-the-art for solving DRO problems with

random recourse.

e Linear decision rules (‘LDR’): This is similar to PWL except we do not partition the support set (i.e.,

J =1). We compare against LDR to demonstrate the advantage of partitioning the support set.

e Ellipsoids of double radius (‘PWL-2’): To demonstrate the importance of the size of the ellipsoid, we
present comparisons against the scheme similar to PWL, except we double the radii of the ellipsoids

E(A;,b;) used in PWL.

We perform the experiment on 100 randomly generated instances, and present the relative objective gaps in
Table 4. We also report the average solution times in Table 5. We assume that we can parallelize the task
of generating the ellipsoids for each partition on 4 machines. Since we consider J = 4, for the solution time
of the PWL approach, we choose the maximum among the solution times to find the 4 ellipsoids, and add

that to the solution time of solving the SDP (22).
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Statistic PWS LDR PWL-2
Mean 75.1% 24.5% 47.4%
10th Percentile | 33.3% 1.23%  25.6%
90th Percentile | 130% 49.4%  71.4%

Table 4. Inventory Management: Objective gaps of other models relative to PWL model.

Statistic PWL PWS LDR PWL-2
Solution Time (ms) | 622 91.8 219 617

Table 5. Inventory Management: Average solution times of the models (in milliseconds).

The results indicate that we outperform the other methods in terms of the quality of the approximation.
We observe that neglecting the linear term in the decision rules (i.e., using static decision rules) can lead
to 75% increase in the objective value. Thus, although static decision rules lead to a tractable formulation
that requires less computational time, they also generate significantly worse solutions. Furthermore, not
partitioning the support set can lead to 24% higher objective values. Finally, doubling the radii of the
bounding ellipsoids can increase the objective by 47%. For two-stage DRO models with random recourse,
these results exhibit the importance of (i) using piecewise linear instead of piecewise static decision rules,
(ii) partitioning the support set, and (iii) having good ellipsoidal approximations to the partitions of the
support set.The improvement in solution quality comes at the expense of increased computational time.
However, if one is willing to spend computational resources, significant improvement in the solution quality

can be achieved by using our method.

6 Conclusions

In this article, we propose a GC reformulation for the minimum volume ellipsoid problem. We use that refor-
mulation to generate tractable approximations when the set is defined by affine and quadratic inequalities.
We prove the volume of the ellipsoids that our approach provides never exceeds the volume of Egpyie. Fur-
thermore, we demonstrate empirically that our method performs better than the other competing schemes
for providing approximate solutions to the MVEP, in terms of solution time and quality. Finally, we use our
method to efficiently generate high-quality approximations in the context of distributional robust optimiza-
tion and linear dynamical systems.

The work presented in this paper leaves room for further investigation. First, it would be interesting to

study the suboptimality bounds of the radii of the ellipsoids generated by our method. In particular, for
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Esmvie, 1t 18 known that Radius(Egmyie) < K - Radius(Emye). It would be interesting to see if a better upper
bound can be proved for the radius of &qgp. A second possible direction is to utilize the GC reformulation
to generate approximation for other types of sets. Studying such approximations would add to the entire
copositive programming literature, and not only to the minimum volume ellipsoid problem.
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A S-procedure

In this section, we discuss the S-procedure [4, 9].

Lemma 7 (S-procedure). Let Q; € S¥,q; € RE r; € R, i € {0} U[I]. Then the optimal value of the

non-convexr quadratic optimization problem

minimize ' Qox + 2q¢ T + o
subject to = € R¥, (25)
' Qix+2q x+r; <0 Vil

is > 0 if there exist \; > 0 Vi € [I] such that

Qo q N A Qi aq <o (26)

a 7o iell] a7

The S-procedure has been used in literature to provide sufficient conditions that certify that the optimal
value of a non-convex quadratic problem is non-negative [5, 9, 20]. In the following remark, we discuss a

special case when we only have linear inequalities in the optimization problem (25).

Remark 7. In the case when all the constraints are linear, i.e., Q; = 0, i € [I], the semidefinite con-
straint (26) reduces to

Qo Qo+ D e Nidi

ad +Xien Mg o+ e Airi

which implies that Qg = 0. Therefore, if Qq is not positive semidefinite, then the sufficient conditions are

=0,

never feasible; hence they do not provide any certification on the optimal value of (25). We can overcome this
limitation by adding a redundant quadratic constraint || Az + b||*> < 1 to the original problem (25). Doing so

does not change the optimal value of (25), but the sufficient conditions (26) can now be written as

Qo Qo+ i N . A% Ab
q(—)r + Zie[[] Aiqi o+ Zie[[] AiTs b"A b'b

Because of the additional variable p, the conditions become more flexible, and might be feasible even if Qq

fails to be positive semidefinite.
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B Alternative approaches to approximate (MVE)

B.1 Scaled MVIE

Consider the polytope P = {x € R¥ : S < t}. It is known that the ellipsoid {Bu +d : u € RX |jul < 1}

with maximum volume that lies inside P can be found by solving the optimization problem (see, e.g., [10]):

sup log det(B)
BeSK, deRK (27)
s.t. HBS7|| + S]Td <t; Vje [J]

Also, if (B,d) is optimal to (27), then Envie = {KBu + d : ||u|]| < 1} contains P. Therefore, Egnvie =
{Bu+d: ||u| <1} if B and d are optimal in the following problem:

sup log det(B)
BeSK, deRK (28)
S.t. ||BSJH + KSJTd < Kt; Vje [J]

The objective function provides the logarithm of Vol(Egmyie). The Lagrange dual of (28) is given by

inf Kp't— K —logdet (—; (STA +ATS)>
st. AeRXE pecR/,

STp=0,

1Al < pj V5 elJ].

(29)

To show that strong duality holds, a Slater point can be constructed in the primal problem as follows.
Consider a feasible solution to (28) where B = kI and d is any point in the interior of P. By choosing a
sufficiently small x, the inequalities in (28) can be made strict. Therefore, the objective function of (29) is

the logarithm of Vol(Esmvie)-

B.2 S-procedure

In this section, we use the S-procedure to derive an approximation to (MVE). The constraint Z(A,b) <1
can be written as

inf {-a' A%z~ 2" Az +1-b"b} > 0.
EAS

Using Lemma 7 and the definition of P from (16), the above inequality is satisfied if there exist variables
p € R{ and \; > 0 Vi € [I] such that
A2 Ab 0 38Tkl | @ Qi

_ ) -
bTA bTb—1|  |luTS —uTt +ZA1 TQ: q'q—1 =0
1L 7 -1 |4 Qi 4 @
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which—using the Schur complement—is satisfied if and only if

0 iSTw A I Q; Qiq; 0
TS 1-pTt BT 4D N lg/Qi ¢fai—1 of =0 (30)
A b | 7 0 0 0

Hence, by replacing the constraint Z(A,b) < 1 in (MVE) with a stronger constraint (30), we get the

following conservative approximation of (MVE):

minimize —logdet(A)
subject to A € SK b RE| MER‘_{_, A € Ry Vi e [,
(30) holds.

B.3 The decision rule approach of [47]

Consider a polytope P = {x € RX : Sz < t}, where S € R’*K and ¢ € R’. In [47, Lemma 1], the authors
prove that
sup ||[Az + b| <1, (31)
xzcP
if there exist V € R7*M and v € R’ such that the following constraints hold:
[VTt+b]+tTv<1,
A=V'S,
STv =0,
Vil < ;. V5 € [J].
These sufficient conditions are based on rewriting (31) as an equivalent two-stage robust optimization prob-

lem, and then applying a linear decision rule approximation. Substituting these conditions for the constraint

Z(A,b) <1in (MVE) yields the following conservative approximation:

minimize —logdet(A)
subject to A €SK, beRX, V e R/*K vy eR/, (33)
(32) holds.

B.4 The containment approach of [26]

In [26], the authors provide the following sufficient conditions such that a set representable as a linear matrix

inequality contains another such set.

Theorem 5 ([26, Theorem 4.3]). Let the set Sy = {x € RX : Yy + > kelk) TkYr = 0}, and the set
Sy={xeRE:Zy+ > oke(r] ki = 0}, where Y, = (Yr) € S7 and Zy € S* for all k € {0} U [K]. Then
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Sy C Sy if there exist matrices Ci; € REXL i j € [J], such that the following constraints hold:

J J
C=(Cy)lci =0,  Zy= Y YSCiy,  Zp= )Y YiCi; Vke[K]. (34)
i,j=1 ,5=1
We summarize how we use this result to generate an approximation to Eve. We are interested in finding
conditions under which a polytope P := {z € RX : Sz <t} = {x € R¥ : Diag(t — Sz) = 0} is contained
in an ellipsoid £(A,b) = {x € RX : |Az +b||> <1} = {x € RE : F(x) = 0}, where
1 Az +b I b E 0 A

F(z)= = +Z$k

(Afl? + b)T ]. bT 1 k=1 A;— 0

Now, we can use Theorem 5 with Sy = P and Sz = £(A, b) to generate constraints that ensure that £(A,b)
contains P. Since the matrices Y = Diag(t) and Y; = — Diag(S;) are diagonal, the variables Cj, j # k do
not appear in the second and third constraints of (34). Therefore, we can eliminate these variables from the
first constraint as well, by forcing C;; = 0. In light of this observation and by redefining C;; as C;, we can

rewrite the constraints (34) as

0 Ap| _ > —S8iC; ke [K].  (35)

I b
) K+1 . . .
C; €SI VjelJ], . - E ]tJC], AT 0 2
: J

L jew
Minimizing — log det(A) subject to the constraints in (35) provides a conservative SDP approximation to

(MVE). The elimination of these redundant variables leads to a tremendous increase in the solution speed.
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1 Reachability in Linear Dynamical Systems

1.1 Ellipsoidal Approximation

We consider a discrete-time linear dynamical system
x(0) =0, x(t+1)=Wiz(t) + Wou(t) Vt € [T —1].

Here T is the number of time steps, x(t) € R¥ represents the state at time ¢, and u(t) € R’ is a vector
of controls selected from a convex and compact control set U. At any time, the state x(t) depends on the
previous state and the control exercised in the previous time step. Finally, the matrices W; € RE*¥X and
W, € RE*J determine the dynamics of the system.

The reachable set Wr—the set of all states reachable at time T—is defined as follows:
Wr ={x(T):x(t+1) = Wiz(t) + Wau(t) Vit € [T — 1], u(t) eU vt € [T — 1], =(0) = 0}.
Note that the reachable set can be defined recursively as
Wo = {0} and Wiy1 = WiW, + Wold = (Wi + Wou : @ € Wy, u € U} Yt € [T). (EC.1)

A fundamental problem in the study of linear dynamical systems involves verifying whether a state is
reachable at time T' [2, Chapter 3]. For a single state, reachability can be determined by solving a convex
feasibility problem whose size is quadratic in the number of time steps T' (since both the number of variables
and constraints are proportional to T').

When T grows large, determining the reachability of multiple states becomes computationally expensive
(since the feasibility problem must be solved separately for every state). For this reason, several authors

have proposed outer ellipsoidal approximations for Wr [1, 3]. A state is then deemed reachable if it falls



within the approximating ellipsoid. Checking this condition is much faster than solving the convex feasibility
problem. The reduction in time, however, can lead to false positives (states which lie inside the ellipsoid but
are not reachable). Thus, generating a tight ellipsoidal approximation is desirable.

The previous studies describe ellipsoidal approximations for Wy only when the control set U is an
ellipsoid. In contrast, in this section, we consider the case when the control set i = {u € R’ : Su <t} is a
polytope, where § € RM*J and t € RM.

We find the ellipsoidal approximation for Wr as follows. Let £(A¢, b;) be the ellipsoid found at time
t that contains W;. First, note that W, = Wold = {Whu : Su < t}, which is a polytope. Therefore, we
can use Theorem 2 to find an ellipsoid £(A1, by) that contains W;. Next, at each step, we use the ellipsoid
E(A¢, by) that contains W, to generate the ellipsoid £(As41,bit1) that contains Wiy1. To find E(Asy1, bryr)

from E(A¢, b;), we solve the following optimization problem:

minimize —logdet(A)
subject to A €SK, beRK N ERiX‘], F cSX, geRE, heR,

F g T
< -8 ' NS+ \J;,
g’ h-1 (EC.2)

F g (AW)T
g’ h b' = 0,
AW b I

where
A2 0 Alb
W:[Wl Wz}, S:{o -S t}eRMX(K”“), and J;=| 0 0 0 e sE+T+L
bJA; 0 b/b—1

If (A*,b*, N* F* g* h*) is an optimal solution to (EC.2), then we use £(A;y1,bir1) = E(A*,b*) as the
ellipsoid for next time step. In Proposition EC.1, presented below, we prove that £(A*, b*) indeed contains
Wit1. Thus, repeating this procedure, we obtain the ellipsoidal approximation £(Ar, br) that contains Wry.

In Figure 1, we depict the evolution of £ and Wy as T is increased for the case when J = K = 2,

0.9202 —0.0396 9
W, = Wi=I and U={uecR*:—-e<u<e,l|u|, <14}
0.0777  0.9800
Proposition EC.1. Let £(A;,by) = {x € RE : ||Ayx + by| < 1} be the ellipsoid containing Wy. If the
matriz A € S, and the vector b € R¥ satisfy the constraints of (EC.2), then the ellipsoid E(A,b) contains

Wt+1,

Proof. See Section 2.1 of the electronic companion. O
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Figure 1. Reachability in Linear Dynamical Systems. For different values of T, the dotted
curves depict the boundary of the actual reachable set Wy, and the solid curves depict the

ellipsoidal approximation Er generated by our method.

Note that the time needed to generate ellipsoidal approximation to Wy is linear in T, since we solve
T semidefinite programs whose size does not depend on 7. This is an improvement from checking the
reachability exactly, where the size of the problems is quadratic in T. We now provide numerical experiments

to demonstrate the effectiveness of our approach on randomized instances of linear dynamical problems.

1.2 Numerical Experiments

For our experiments, we consider the control set U = {u € RX : —e < u < e, ||lul, < VK}, T = 30 time
steps, J = K and W5 = 1. We randomly generate W7 such that the maximum eigenvalue is less than 1 and
the condition number is at most 2, which ensures that the system is stable. For given lengths of the state

vector K, this is achieved with the following MATLAB code:

function W1 = generate_.W1 (K)
max_eigenvalue = 1;
condition_number = 1 + rand(); % choose randomly between 1 and 2
X = randn(K);
[U, S, V] = svd(X);
singular_values = linspace(condition_number, 1, K);
W1 = U % diag(singular_values) x V’; % update the singular wvalues
W1 = max_eigenvalue * W1 / max(abs(eig(W1)));

end

Next, we explain the metric that we use to compare the volumes of the sets £ and Wr. For a convex



K | v | MVE Time (s) | Exact Time (s)
2 ] 1.18 0.13 52.3
5 | 1.24 0.48 87.1
10 | 1.30 3.2 205
20 | 1.39 55.5 325

Table 1. Reachability in Linear Dynamical Systems: The quality of the approximation of &1
(), the time required to generate Er and check the membership of 10,000 points in &7 (“MVE
Time”), and the time required to check the membership of the same points in Wr (“Exact

Time”) for different lengths of the state vector.

and compact set S C RE let v(S) = (Hszl pk(S))l/K, where pi(S) = max{xy : ® € S} — min{zy : ¢ €
S}, k € [K]. Here, pi,(S) represents the length of the projection of S onto the k*® coordinate, and ~(S)
represents the geometric mean of these lengths. We use the parameter v = v(Er)/v(Wr) to measure the
closeness of the sizes of & and Wy. We can see that v > 1 since W C &, and the closer v is to one, the
better Ep approximates Wy. As an example, in the case depicted in Figure 1, v = 1.06 at time step T" = 30.

For different values of K, we perform the experiment on 100 randomly generated instances. For each
instance, we record the time that it takes to check the membership within £&r and Wr of 10,000 points
sampled randomly from [—10,10]%. In Table 1, we present 1) average solution quality (), 2) the total
computational time required for generating & and then checking the membership of the randomly sampled
points inside &7, and 3) the computational time required to establish the membership of these points in Wr.
We can observe that, for K = 20, & is about 39% bigger in size than Wy. However, the computational
time needed to find &r and then checking the membership inside it is much less than checking the feasibility

of these points exactly.



2 Proofs

2.1 Propositions

Proof of Proposition 1: For the set {x € RX : Sz <t,|Qx + q|* <1}, then Eproc = E(A, b), where A

and b are optimal in the following optimization problem (see Appendix B.2):

minimize —logdet(A)
subject to A€ SK becRE, NeR,, pe ]R_{_,

0 18T A Q2 Qg O (EC.3)
in™S 1-p"t BT +A|q'Q ¢q'q—1 0| =0.
A b I 0 0 0

The dual of (EC.3) can be written as

maximize K + logdet(—2F) — k — tr(T")
subject to 2 €SK, ¢ cRE, FeSK, T €SK kR,

S¢ < xt,
! 2
wl |59 Qe 1), (EC.4)
¢" k| |4'Q a'q-1
Q ¢ F

&k 0| =0.

F 0T

To prove the theorem, we construct a pair of primal and dual feasible solutions which generate the same
objective function values to their respective problems. To this end, consider the following solution to the
primal problem (EC.3):

A=Q,b=q, p=0, A=1.

This solution is feasible since g > 0, A > 0 and

.
0 lsTu 4 @ Q o [@ ai q Q

su'S 1—p't bT| +X21q"Q q'q¢-1 0/ =1¢'Q q'q q"|=|q"| |q"| =0
A b1 0 0o 0 Q q I 1]

Next, consider the following solution to the dual problem (EC.4):

K
F=-0Q '\ T=, k=", = rze, Q= rzcw] +2F,

where . = —Q~1q is the center of the ellipsoid £. We claim that this solution is feasible to (EC.4). Under
the assumption that the center of the ellipsoid lies inside the polytope, we get that Sz, < t, which implies



that S€ < kt. Next, we have that

T T
Q ¢ F kx.x, +2F? kx. F z.| |z 2F| |2F
¢ Kk 0= Kkx) kK 0|l=r|1 1| +51]0 ol =0,
F oT F 0o I of|o I I

where the last inequality uses the fact that xk = K/2 > 0. Also,

Q Q? Qq
tr ¢ =tr(2Q?) +26"Qq +k(q'q—1)
€T k| |¢d'Q q'q-1
= tr((kzcw! +2F?)Q°) + 2kx, Qq + k(q g — 1)
1
— ;m:CTQza:C + itr(ﬂ) + QAmCTQq + n(qTq -1
1 K K

:§tr(ﬂ)—n:5—5:0.
Therefore, all constraints in the dual problem are satisfied. Finally, both of these solutions give an objective
function value of —logdet(Q). Thus, A = @ and b = g is an optimal solution to the primal problem,
which implies that Epoc = E(A,b) = £(Q,q). Furthermore, the solution is unique because the feasible
region is convex and the objective function —logdet(A) is strictly convex in the space of positive definite

matrices. O

Proof of Proposition 2: To prove this result, we demonstrate that any feasible solution in (33) can be used
to construct a feasible solution to (29) with the same or lower objective value. To this end, consider a feasible

solution (A, b, V,v) of (33). Now consider the following solution to (29):
A=-V, p=w.
The last two constraints of (33) imply that the constraints of (28) are satisfied. Also note that
—logdet(A) =logdet <;(VTS + STV)>
> log det (;(VTS + SW)) + K(t'v—1) (EC.5)

(ATS + STA)> +K(t'p-1).

1
= logdet [ —=
oge<2

Here, the first equality follows since A is symmetric, which implies that A = (A+AT)/2 = (V'S+S8TV)/2,
and the inequality follows from the first constraint of (33) since ||VTt + b” > 0. Therefore, the result
holds. O

Proof of Proposition 8: The PLD restriction of (21) can be written as follows:
inf ¢+ sup Eg[(D€ +d) y(€)],
:c,y() QGQ
st. xelX, (EC.6)

To(x) &+ ho(z) < (We€ +wp) (Y€ +y,;) VEEE; VeIVl elL.



First, for the objective function, observe that

sup Eg[(DE+d) y(@)] = sp 3 / (DE +d)" (Y + y,)v(de)
QeQ V()20 oy Jees;

s.t. Z/ﬁeau(dﬁ):l,

JE[J]

3 /E )=

jelJ]
D / £€T v (dg) <
jel)) 74

By weak duality, we get that

sup Bg[(DE + d) "y(§)] <inf a+BTp+tr(TE)
QeQ

st. aeR,BeRE T eSSk
a+BTE+E'TE> (DE+d) (YiE+y;) VEEE;Vjel[]]

The constraint of the optimization problem above holds if and only if, for all j € [J], the optimal value of
the problem
Juf a+BTE+ETTE— (DE+d) (Vi€ +y))
st S;E<t;, [A;&+b,]° <1,

is > 0. Next, using the S-procedure (Lemma 7), we get that this constraint holds if the first semidefinite
constraint of (22) holds. Therefore, replacing the former by the latter, we get an upper bound on the optimal
decision rules problem. Similarly, the final constraint of (EC.6) is equivalent to the constraint that, for all
j € [J] and £ € [L], the optimal value of the following optimization problem is greater than or equal to 0:

(ol (Wek +we) T (Y€ +y;) — To(x) "€ + he(x)

st S;E<t;, [Aj&+b]° <1

Using Lemma 7, we get that the above constraint holds if the second semidefinite constraint of (22) holds.

Therefore, the SDP (22) provides a feasible decision rule approximation, and the optimal value of (22)

O

provides an upper bound to the optimal value of the DRO model (21).

Proof of Proposition EC.1:  Consider the set W = WiE(Ay, b)) + Wod = {Wiz + Wou : Su <
t, ||Asx + b,|” < 1}. Since W, C E(Ay, by), we get that Wi 1 = WiW,+Wald C W1 E(A, b)) +Wald = W.
Therefore, Wy 1 € W. Next, we find sufficient conditions that imply that an ellipsoid contains V), which,
in turn, implies that the ellipsoid contains W; ;. To this end, note that W is an special case of the setup

in Remark 2 with P = {(z,u) € RE+/ . Su <t, |Awx+b,° <1}, C = W and d = 0. Therefore, the



ellipsoid (A1, bs11) contains W if and only if there exist F € S5+ g € RE+T/ h € R such that

P F g (ApwW)T
g
0T Aol =c(x) 0 and gTi h b, =0,
A W by I

where K = {(z,u,7) € REF/H . Sy < 7t, ||Ayx + 7b]|> < 72}. Since the set P is defined by linear
and quadratic inequalities, using Theorem 4, we get that the constraints of (EC.2) imply that £(A¢4+1,bi41)

contains W. Hence, £(A4y1,bs41) contains Wiy, 1. O

2.2 Claims in Example 1

In this section, we prove that in Example 1, Reop = O(K U4 and Rynvie = O(VK). Consider the solution

0 kJ O
A=Fkl+kee ,b=kse, N= |kd 0 ksel,
0 kse' 0
TS Y Bk M YL L L S
W. N 1= (\/F_l)KQ, 2_K K 1), 3 — \/E’ 4_27 5 — h2 1 2 2 ) -

It can be checked that this solution is feasible to (13). Therefore, Reop < (1/det(A))/ 5. The eigenvalues
of A are k1 + Kko, and ky with a multiplicity of K — 1. Therefore,

Reop < (1/det(A)YE = ((ky + Kko) K1) 7% = ((1 + ;) kf(‘l)_}( 0 <]:1> -0 (KZ) .

-

Next, for Egmyie, consider the following solution to the primal problem (28): B = mil+moee’, d = mge,
and the following solution to the dual problem (29): p = 1/\/? {0; e; 1} , A= [0; mal + msee’ ; mGeT} ,

where

K 1 1 NS K+1 1-VE+1 1
, Mo = — , M3 = ———, My=——"—, My = ——————— = .
K+1 > K+1 JK+1 ° K+1 K 5

It can be verified that these solutions have the same objective function value, and are feasible—and therefore
optimal—to their respective problems. The eigenvalues of B are m; + Kms, and m; with a multiplicity of

K — 1. Therefore

K K \5! KK
det(B) = K K-1 e
et(B) = (m + Kmg)m, K+1< K+1> (VK t 1)K+

which implies that
Rymvie det(B)Y/X

lim = lim ——— =1

Therefore, Rymvie = O(VK).



2.3 Claims in Example 2

Using S-procedure (Lemma 7), we substitute the semidefinite programming approximation for the inequali-

ties of (23), yielding the following approximation to (23):

inf x

s.t. xeRerRKXKayERK7p1207p220aAlZOaAQZOa

(Y +YT) 28Tt Yiety) J(s) =0 (EC.7)
3(8Tp+YTe+y)” —l+ely—tTp e '
2 -
-y +Y" 1(8Tpo+YTe—
2( ) 2( P2 y) —|—)\2J(S)EO,
_%(STpg ~-YTe—y)T" z—ely—tpy
where
J(s) 1 41 —2e
s) = —
K |27 —Ks
The dual of the SDP (EC.7) is given by
sup hp
s.t. Fl,FQESK, g1,QQERK, hi,hes €R
F F:
1 g1 =0 2 g2 =0,
9/ I 95 ho
F; FE:
tr | J(s) Lo <0, tr|J(s) 2 9 <0,
91 M g; ha

g1 — g2 = (ha —hi)e,
Fi-F,=e(g2—91)",
Sg1 < hit, Sg2 < hat,
ho = 1.

Consider the following cases:

e Case 1: 0 < s < 2. Consider the following solution to the dual problem:

1 1 1+s 1+s
F, = —ee' — e ho=1h1=—— F, =F T —qg, — —°
2 4ee , 92 267 2 s 101 8_87 1 2+8—$ee y 91 g2 8_Se7
and the following solution to the primal problem:
1 8 2 1
)\:05)\:77 :07 :Oa :77YZ_7 ]I — T
2 C e R A ¢ K(8s)(+Kee>

e Case 2: 2 < s < 4. Consider the following solution to the dual problem:

2
Fzz(Z) ee’, 92229, hy =1, h1:1+3 F1:F2+Zee—r, 91292—2920,



and the following solution to the primal problem:

A2 =0, A

1 _2(s—2) |0 0w 44 2s . 2
At s PP T RAs) |G| PP TV T KA T T Kt

1
I+ KeeT>

e Case 3: s > 4. Consider the following solution to the dual problem:
F,=ee', go=e ho=1, h =2, F, =2e', g, =0,
and the following solution to the primal problem:

110 1 |e 1
—e, Y =0.

? o 7[)2:? 0 ay:K

A=0, M1 =0, p1 =

In all the three cases, the primal and the dual solutions are feasible to their respective problems, and

provide the same objective value which corresponds to the one presented in Example 2.
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