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Abstract

We study the problem of finding the Löwner-John ellipsoid, i.e., an ellipsoid with minimum volume

that contains a given convex set. We reformulate the problem as a generalized copositive program, and

use that reformulation to derive tractable semidefinite programming approximations for instances where

the set is defined by affine and quadratic inequalities. We prove that, when the underlying set is a

polytope, our method never provides an ellipsoid of higher volume than the one obtained by scaling the

maximum volume inscribed ellipsoid. We empirically demonstrate that our proposed method generates

high-quality solutions faster than solving the problem to optimality. Furthermore, we outperform the

existing approximation schemes in terms of solution time and quality. We present applications of our

method to obtain piecewise-linear decision rule approximations for dynamic distributionally robust prob-

lems with random recourse, and to generate ellipsoidal approximations for the set of reachable states in

a linear dynamical system when the set of allowed controls is a polytope.

1 Introduction

We consider the minimum volume ellipsoid problem (MVEP), which can be stated as follows [10, 44]: “Given

a set P ⊂ RK , find an ellipsoid Emve with minimum volume that contains P.” In this paper, we focus on

sets P that satisfy the following assumption.

Assumption 1. The set P is compact, convex, and full-dimensional.

Compactness guarantees the existence of a bounding ellipsoid. The convexity assumption is made without

loss of generality; if the set is not convex, then we can instead consider its convex hull without affecting

Emve. If P is not full-dimensional, then the ellipsoid Emve is degenerate with zero volume. For sets P
satisfying Assumption 1, such an ellipsoid, also known as the Löwner-John ellipsoid, is unique and affine-

invariant, making it an attractive outer approximation of P [10, Section 8.4.1]. The MVEP arises in many
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applications studied in the literature. Several authors discuss outer ellipsoidal approximations for the set

of reachable points in control systems [29, 14], as it is easier to check whether a point lies in an ellipsoid

than in the comparatively complicated reachable set. Rimon and Boyd [37] advocate the use of Emve for

collision detection in robotics. Here, one checks whether the ellipsoids intersect as opposed to the sets that

they approximate. Other applications of the MVEP include outlier detection [1, 41], pattern recognition

[18], computer graphics [15], and facility location [16]. We refer the reader to [23] for an excellent article

about the lives of the eponymous researchers Karel Löwner and Fritz John, the history of the MVEP which

dates back to late 1930s, and some important properties of Löwner-John ellipsoids.

For some sets P, it is possible to identify Emve in polynomial time. For example, if P is defined as the

convex hull of a finite number of points, then the complexity of finding Emve is polynomial in the problem

size [27, 43]. When P is a union of ellipsoids, one can employ the S-lemma to compute Emve in polynomial

time [46]. However, excluding these special cases, finding Emve is, in general, a difficult problem. For example,

if P is a polytope defined by affine inequalities, or if P is an intersection of ellipsoids, then finding Emve is

NP-hard [10, 17].

Gotoh and Konno [19] present a constraint-generation approach to solve the MVEP exactly when P is

a polytope defined by affine inequalities. The method starts with a collection of points contained in P and

finds the ellipsoid of minimum volume containing those points. Then feasible points lying outside the current

ellipsoid are successively generated, and the ellipsoid is updated to include the new point, until a desired

optimality tolerance is reached. However, generating a point that lies in P but outside the current candidate

ellipsoid at each iteration is very slow, as it entails solving a non-convex optimization problem. Therefore,

this approach is computationally expensive, and one has to resort to approximation schemes.

One popular approximation method for the MVEP is based on identifying and scaling the maximum

volume inscribed ellipsoid (MVIE), i.e., the ellipsoid with maximum volume contained in P. In particular,

it is known that scaling the MVIE around its center by a factor of K results in an ellipsoid that contains P,

thereby serving as an approximation of Emve [25]. Moreover, the MVIE can be found in polynomial time if P
is defined by affine and quadratic inequalities [28]. However, this technique, which we refer to as the SMVIE

(scaled MVIE) approach, produces highly suboptimal ellipsoids because of the scaling factor K. Another

method for approximating the MVEP utilizes the well-known S-procedure. Boyd et al. [9] discuss the

application of the S-procedure to generate approximations for the MVEP when P is either an intersection

or a Minkowski sum of ellipsoids. Finally, in a recent paper, Zhen et al. [47] study approximations to

uncertain second order cone programs and demonstrate how this framework can be exploited to derive an

approximation to the MVEP.

Several authors have identified sufficient conditions under which a convex set contains another convex

set. Helton et al. [22] discuss sufficient conditions which guarantee that a semidefinite-representable set
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contains another such set. Kellner et al. [26] provide slightly improved sufficient conditions compared to the

ones in [22]. Although these articles do not focus on the MVEP specifically, their results can be used to

approximate Emve if P is semidefinite-representable (see Appendix B.4). To the best of our knowledge, there

are no results that provide a finite system of constraints that are necessary and sufficient to ensure that an

ellipsoid contains another set. This gap in knowledge is our main focus.

In this article, we prove that checking whether an ellipsoid contains P is equivalent to solving a finite-

dimensional generalized copositive (GC) feasibility problem. We use this result to reformulate the MVEP

exactly as a GC program. This representation of the MVEP enables us to leverage state-of-the-art approx-

imation schemes available for GC programming problems. In particular, GC programs yield a hierarchy of

optimization problems which provide an increasingly tight restriction to the original problem [30, 35, 49].

While our exact reformulation holds for any P satisfying Assumption 1, we focus primarily on developing

approximations in the case where P is defined by affine and convex quadratic inequalities. We demonstrate

that, for these sets, the resulting approximation can be formulated as a semidefinite program (SDP), which

can be solved in polynomial time. Since these SDPs are restrictions of the GC reformulation, they provide

a feasible ellipsoid that contains P. There has been previous work on developing exact copositive program-

ming reformulations for otherwise difficult problems, and using those reformulations to generate tractable

approximations [8, 11, 13, 32, 20, 34, 36]. Our results add to this literature by demonstrating the ability of

generalized copositive programs to exactly model the MVEP.

We demonstrate the utility of our approximations to the MVEP in two applications. First, we consider a

two-stage distributionally robust optimization (DRO) problem with random recourse. Such a problem is NP-

hard even in the absence of random recourse [6]. Bertsimas and Dunning [7] study a piecewise static decision

rules approximation for the case of dynamic robust optimization, which leads to a tractable reformulation.

Although they do not consider a DRO model, this approach can be extended to such a setting. In contrast, we

focus on piecewise linear decision (PLD) rules approximation. In the presence of random recourse, finding

the optimal PLD rule is NP-hard, although feasible PLD rules can be obtained using the S-procedure.

Unfortunately, these decision rules are often of poor quality. The effectiveness of the S-procedure in finding

good PLD rules can be improved by considering an ellipsoid that contains the support set, i.e., the set of

allowed values for the uncertain parameters. In the context of an inventory management problem, we show

that the size of this ellipsoid can have a large effect on the quality of the PLD rules. We also demonstrate

that the PLD rules generated using our method significantly outperform the piecewise static decision rules.

Second, we utilize our method to generate high-quality ellipsoidal approximations to the set of reachable

states in a linear dynamical system when the control set, i.e., the set of allowed controls, is a polytope. This

complements the existing schemes that provide similar approximations when the control set is an ellipsoid

[29, 14].
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We summarize the main contributions of the article below.

1) We provide necessary and sufficient finite-dimensional conic inequalities that certify whether an ellipsoid

contains a set P satisfying Assumption 1. We use these conditions to derive a generalized copositive

reformulation of the MVEP.

2) When P is defined by affine and convex quadratic inequalities, we derive a tractable SDP restriction to

the GC reformulation, which results in a feasible ellipsoid that contains P. We prove that the volume

of the resulting ellipsoid never exceeds that of the SMVIE approach. To the best of our knowledge, our

approximation is the first one to have this property. We further show that the ratio of the volume of the

SMVIE to the volume of the ellipsoid generated by our method can be arbitrarily high. We also prove

that both the S-procedure [9, Section 3.7] and the approximation suggested by Zhen et al. [47] never

generates ellipsoids of lower volumes than the SMVIE approach.

3) We demonstrate through extensive numerical experiments that our method is significantly faster than

solving the problem to optimality using the constraint-generation technique of [19]. The experiments

further indicate that our method significantly outperforms the SMVIE approach in terms of solution

quality. Also, our method outperforms the scheme which utilizes the sufficient conditions of Kellner et

al. [26] both in terms of solution time and quality.

4) We present two important applications of our approach. Firstly, we exploit the bounding ellipsoids to

obtain improved decision rule approximations to two-stage DRO models with random recourse, which

have resisted effective solution schemes so far. Secondly, we provide ellipsoidal approximations for the set

of reachable states in a linear dynamical system when the control set is a polytope.

This article is organized as follows. In Section 2, we describe the MVEP and reformulate it as an equivalent

GC program. In Section 3, we use that reformulation to derive a tractable SDP that generates a near-optimal

approximation to Emve when the set is defined by affine and quadratic inequalities. In Section 4, we explain

the application of our approach for obtaining improved decision rules approximation for a two-stage DRO

model with random recourse. In Section 5, we present numerical experiments comparing the volumes of the

ellipsoids generated by our method against those found using other approaches. We also demonstrate the

efficacy of our approach in solving a distributionally robust inventory management problem. Finally, we

conclude in Section 6. Auxiliary proofs and additional numerical experiments can be found in the electronic

companion to the paper.

1.1 Preliminaries

Notation For a positive integer I, we use [I] to denote the index set {1, 2, . . . , I}. We denote the vector of

ones by e, and the identity matrix by I; their dimensions will be clear from the context. We use RK(RK+ ) to

4



denote the set of (non-negative) vectors of length K, and SK(SK+ ) to denote the set of all K ×K symmetric

(positive semidefinite) matrices. In addition, SK++ represents the set of positive definite matrices. The

functions tr(·) and det(·) denote the trace and the determinant of the input matrix, respectively. We define

Diag(v) as a diagonal matrix with vector v on its main diagonal. The symbols ‖v‖1 and ‖v‖ denote the

`1-norm and `2-norm of vector v, respectively. The vertical concatenation of two scalars or vectors u and v

is denoted by [u;v]. For a matrix M ∈ RI×J , we use M:j ∈ RI to denote its j-th column, and Mi: ∈ RJ to

denote the transpose of its i-th row. We represent the interior and the conic hull of a set S by int(S) and

cone(S) respectively.

Generalized Copositive Matrices We use C(K) to denote the set of generalized copositive matrices

with respect to cone K ⊆ RK , i.e., C(K) = {M ∈ SK : x>Mx ≥ 0 ∀x ∈ K}. The set of copositive matrices

is a special case of such a set when K = RK+ . We use C∗(K) to denote the set of generalized completely

positive matrices with respect to cone K, i.e., C∗(K) = {M ∈ SK : M =
∑
i∈[I] xix

>
i ,xi ∈ K} where I is

a positive integer. The cones C(K) and C∗(K) are duals of each other [42]. For any P ,Q ∈ SK and cone

C̄ ⊆ SK , the conic inequality P �C̄ Q indicates that P −Q is an element of C̄. We drop the subscript and

simply write P � Q, when C̄ = SK+ . Finally, the relation M �C(K) 0 indicates that M is strictly copositive,

i.e., x>Mx > 0 for all x ∈ K,x 6= 0.

Ellipsoids We define E(A, b) = {x ∈ RK : ‖Ax+ b‖2 ≤ 1} as an ellipsoid with parameters A ∈ SK++ and

b ∈ RK . The volume of E(A, b), denoted by Vol(E(A, b)), is proportional to det(A−1) = 1/ det(A). In this

paper, we drop the proportionality constant, and say that Vol(E(A, b)) = 1/ det(A); since we use the volume

as a metric for comparing different ellipsoids, doing so does not affect the results. We define the radius of

a K-dimensional ellipsoid as Vol(·)1/K ; this metric is proportional to the radius of a sphere with the same

volume as that of the ellipsoid. Finally, we say the two ellipsoids are equal, i.e., E(A1, b1) = E(A2, b2), if

and only if A1 = A2 and b1 = b2.

2 Generalized Copositive Reformulation

In this section, we develop a generalized copositive reformulation for the MVEP. It is well-known that

Emve = E(A, b) if and only if (A, b) is the unique optimal solution to the following semi-infinite convex

optimization problem [44]:

minimize − log det(A)

subject to A ∈ SK , b ∈ RK , Z(A, b) ≤ 1,
(MVE)

where

Z(A, b) = sup
x∈P
‖Ax+ b‖2 = sup

x∈P

{
x>A2x+ 2b>Ax+ b>b

}
. (1)
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The objective function of (MVE) minimizes the logarithm of the volume, which implicitly restricts A to be

positive definite. Minimizing the logarithm of the volume makes the objective function convex in A. The

constraint Z(A, b) ≤ 1 forces every element of P to lie inside the ellipsoid. We are now ready to present

the main result of this section, where we derive necessary and sufficient conditions for certifying whether an

ellipsoid contains another set.

Theorem 1. Let P be a set satisfying Assumption 1. Let the cone K ⊆ RK+1 be defined as

K = cone ({[x; 1] : x ∈ P}) . (2)

If A ∈ SK++ and b ∈ RK , then the ellipsoid E(A, b) contains P if and only if there exist F ∈ SK , g ∈
RK , h ∈ R, such that F g

g> h− 1

 �C(K) 0 and


F g A

g> h b>

A b I

 � 0. (3)

Before proving Theorem 1, we discuss its implications. The theorem implies that the constraint Z(A, b) ≤ 1

in (MVE) can be replaced by the constraints in (3). Therefore, Emve = E(A, b) is the minimum volume

ellipsoid if and only if (A, b,F , g, h) is the unique optimal solution to the following generalized copositive

program:

minimize − log det(A)

subject to A ∈ SK , b ∈ RK , F ∈ SK , g ∈ RK , h ∈ R,

(3) holds.

(4)

Remark 1. In this article, we refer to a problem with − log det(·) minimization objective and semidefinite

(copositive) constraints as a “semidefinite (copositive) program,” albeit with a slight abuse of terminology.

The reason is that minimization of − log det(·) is equivalent to minimization of −(det(·))1/K ; the latter can

be reformulated as a problem with linear objective and additional semidefinite inequality constraints (see,

e.g., [4, Section 4.2]). Some modeling frameworks, like YALMIP [31] which we use for our experiments,

automatically carry out this conversion before sending the problem to the solver.

Next, we present the following technical lemmas which are needed for the proof of Theorem 1.

Lemma 1. Let K be the cone defined in (2). If [x; τ ] ∈ K, then τ ≥ 0. Furthermore, τ = 0 only if x = 0.

Proof. From the definition of K, there exist points xs ∈ P and coefficients λs ≥ 0, s ∈ [S], such that

[x; τ ] =
∑
s∈[S] λs[xs; 1]. By comparing the last element, we get τ =

∑
s∈[S] λs ≥ 0, since λs ≥ 0. In

addition, τ = 0 implies that λs = 0 for all s ∈ [S], which further implies that x = 0.

Lemma 2. The cone K defined in (2) is proper.
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Proof. The compactness of P implies that K is convex and closed. Since P has nonempty interior, any point

x in the interior of P yields a point [x; 1] in the interior of K; therefore K has nonempty interior. Finally

to see that K is pointed, let [x; τ ] ∈ K and −[x; τ ] ∈ K. Using Lemma 1, we have that τ ≥ 0 and −τ ≥ 0,

which implies that τ = 0. Again using Lemma 1, we get that [x; τ ] = 0, which implies that K is pointed.

Lemma 3. Let M ∈ SK be a symmetric matrix and S ⊆ RK be a set with nonempty interior. If v>Mv = 0

for all v ∈ S, then M = 0.

Proof. Let λ be an eigenvalue of M and q be the corresponding eigenvector of unit length. Since S has

nonempty interior, for any v ∈ int(S), there exists τ > 0 such that v + τq ∈ S for all τ ∈ [0, τ ]. Therefore,

(v + τq)>M(v + τq) = 0 for all τ ∈ [0, τ ]. Furthermore,

(v + τq)>M(v + τq) = v>Mv + 2τq>Mv + τ2q>Mq = 2τλq>v + τ2λq>q = λτ(2q>v + τ).

Thus, λτ(2q>v+ τ) = 0 for all τ ∈ [0, τ ]. Since the term τ(2q>v+ τ) is quadratic in the scalar τ , it cannot

be zero for more than two values of τ . This implies that the previous equality holds for all τ ∈ [0, τ ] only if

λ = 0. Therefore, any eigenvalue of M is zero, which implies that M = 0.

Lemma 4. Let K be the cone defined in (2). There exist X ∈ SK and x ∈ RK such thatX x

x> 1

 �C∗(K) 0.

Proof. We start by showing that C(K) is pointed. Let M ∈ SK+1 be such that M ∈ C(K) and −M ∈ C(K).

For this choice of M , for all x ∈ K, we have that x>Mx ≥ 0 and −x>Mx ≥ 0, which implies that

x>Mx = 0 for all x ∈ K. Since K has non-empty interior (by Lemma 2), Lemma 3 implies that M = 0.

Therefore C(K) is pointed, which implies that its dual cone, C∗(K), has non-empty interior [10, Section 2.6.1].

Consider M ∈ int(C∗(K)). The matrix M is positive definite (see discussion below Corollary 8.1 in [11]);

therefore any element on its diagonal, which includes the bottom-right component, is strictly positive. By

scaling M such that the bottom-right component is 1, we get another matrix in the interior of C∗(K). Hence

the lemma holds.

The following lemma is an extension of another recently proved result found in [32, Lemma 4].

Lemma 5. Let M ∈ SK be a symmetric matrix and A ∈ RJ×K be an arbitrary matrix. Then, for any

proper cone K ⊂ RK , the inequality M �C(K) A
>A is satisfied if and only if there exists a matrix H ∈ SK+

such that

M �C(K) H and

H A>

A I

 � 0. (5)
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Proof. (⇒) The statement holds immediately by setting H = A>A.

(⇐) Assume that there exists such a matrix H ∈ SK+ . By the Schur complement, the second inequality

in (5) implies that H � A>A, which in turn implies that H �C(K) A
>A (since SK+ ⊆ C(K) for any K).

Combining this with the first inequality in (5) implies that M �C(K) A
>A.

We now return to the proof of Theorem 1.

Proof of Theorem 1. The set P can be expressed in terms of the cone K as P = {x ∈ RK : [x; 1] ∈ K}.
Therefore, we can write (1) as

Z(A, b) = sup
[x;1]∈K

x>A2x+ 2b>Ax+ b>b. (6)

The optimization problem (6) is equivalent to the following completely positive program [11]:

Z(A, b) = sup tr(A2X) + 2b>Ax+ b>b

s.t. x ∈ RK , X ∈ SK ,X x

x> 1

 �C∗(K) 0.

(7)

The dual of this completely positive program can be written as:

Zd(A, b) = inf
ρ∈R

ρ

s.t.

 −A2 −Ab
−b>A ρ− b>b

 �C(K) 0.
(8)

Using Lemma 4, we conclude that a Slater point exists in the optimization problem (7). Hence, strong

duality holds and Z(A, b) = Zd(A, b). Furthermore, there exists a dual feasible solution which attains the

value Z(A, b), since a Slater point exists in the primal problem (7) [4, Theorem 1.4.2]. Using these facts, we

have that Z(A, b) ≤ 1 if and only if there exists a feasible solution to problem (8) whose objective function

value is at most 1. Therefore, Z(A, b) ≤ 1 if and only if there exists ρ ≤ 1 such that −A2 −Ab
−b>A ρ− b>b

 �C(K) 0,

which, in turn, holds if and only if  −A2 −Ab
−b>A 1− b>b

 �C(K) 0,

or equivalently, 0 0

0 1

 �C(K)

[
A b

]> [
A b

]
. (9)
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The conic inequality (9) has non-linearity because of the terms involving the product of the decision variables

A and b. However, by Lemma 5, this constraint is satisfied if and only if there exist variables F ∈ SK , g ∈ RK

and h ∈ R such that the constraints (3) hold. Therefore, the constraint Z(A, b) ≤ 1 is equivalent to

constraints (3). Hence, the claim follows.

Theorem 1 implies that Emve can be found by solving the GC program (4), which is difficult in general. In

the next section, we discuss tractable approximations of (4) for special cases of P. However, before doing

so, we provide some generalizations to the GC reformulation (4).

Remark 2 (Affine mapping of a set). Let P ⊆ RK be a set satisfying Assumption 1. Let P = CP + d =

{Cx + d : x ∈ P} ⊂ RJ be an affine mapping of P, where C ∈ RJ×K and d ∈ RJ . In order to obtain

conditions for an ellipsoid to contain P, note that Z(A, b) = supx∈P ‖A(Cx+ d) + b‖2 . Following the steps

of the proof of Theorem 1, we can see that if A ∈ SJ++ and b ∈ RJ , then the ellipsoid E(A, b) contains P if

and only if there exist F ∈ SK , g ∈ RK , h ∈ R, such that

F g

g> h− 1

 �C(K) 0 and


F g (AC)>

g> h (Ad+ b)>

AC Ad+ b I

 � 0,

where K = cone ({[x; 1] : x ∈ P}) .

Remark 3 (Union of sets). Let P = ∪`∈[L]P`, where the set P` satisfies Assumption 1 for all ` ∈ [L]. The

set P does not satisfy Assumption 1 since it may not be convex. However, it is possible to extend Theorem 1

to this case as follows. Note that an ellipsoid contains the union of sets if and only if it contains every set.

We can apply Theorem 1 to every set P` to arrive at the fact that ellipsoid E(A, b) contains P if and only

if there exist F` ∈ SK , g` ∈ RK , h` ∈ R ∀` ∈ [L], such that

F` g`

g>` h` − 1

 �C(K`) 0 and


F` g` A

g>` h` b>

A b I

 � 0 ∀` ∈ [L],

where K` = cone ({[x; 1] : x ∈ P`}) , ` ∈ [L].

Remark 4 (Minkowski sum of sets). For all ` ∈ [L], let the set P` satisfy Assumption 1 and K` be the

corresponding cone defined as in (2). Let P =
{∑

`∈[L] x` : x` ∈ P` ∀` ∈ [L]
}

be the Minkowski sum of

these sets. Although P satisfies Assumption 1, it might not have a polynomial sized representation. As an

example, if every P` is a polytope, then P is a polytope defined by constraints whose number can potentially

grow exponentially with L. However, we can still reformulate (MVE) for P as a GC program of polynomial
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size as follows. Observe that

Z(A, b) = sup
x`∈P`∀`∈[L]


∑
`∈[L]

x`

>A2

∑
`∈[L]

x`

+ 2b>A

∑
`∈[L]

x`

+ b>b


= sup
x=[x1;x2;··· ;xL],
x`∈P` ∀`∈[L]

{
x>ÃÃ>x+ 2b>Ã>x+ b>b

}
,

where Ã =
[
A A · · · A

]>
∈ RLK×K . By defining the cone K as

K = {[x1;x2; · · · ;xL; τ ] ∈ RLK+1 : [x`; τ ] ∈ K` ∀` ∈ [L]}

and repeating the steps in the proof of Theorem 1, we arrive at the fact that ellipsoid E(A, b) contains P if

and only if there exist F ∈ SLK , g ∈ RLK , h ∈ R such that

F g

g> h− 1

 �C(K) 0 and


F g Ã

g> h b>

Ã> b I

 � 0.

In the previous three remarks, minimizing the function − log det(A) subject to the corresponding constraints

leads to a GC reformulation of (MVE).

3 Tractable Approximations for Polytopes

In this section, we use the reformulation (4) to present tractable semidefinite programming approximations

for (MVE) in the case where the set P is a polytope defined as

P =
{
x ∈ RK : Sx ≤ t

}
, (10)

where S ∈ RJ×K and t ∈ RJ . We start with our proposed approximation, and then present theoretical

comparisons with alternative approaches to approximate Emve.

Theorem 2. Let P be a polytope defined as in (10) that satisfies Assumption 1. Consider any A ∈ SK++

and b ∈ RK . Then, an ellipsoid E(A, b) contains P if there exist N ∈ RJ×J+ , F ∈ SK , g ∈ RK , h ∈ R such

that F g

g> h− 1

 � −
−S>
t>

N [
−S t

]
, and


F g A

g> h b>

A b I

 � 0. (11)

Proof. For the polytope P, the coneK defined in (2) can be written asK =
{

[x; τ ] ∈ RK+1 : τ ≥ 0, Sx ≤ τt
}
.

We show that the constraints (11) imply the constraints (3). Since the second constraints in (11) and (3)

10



are the same, we show that the first constraint of (11) implies the generalized copositive constraint in (3)

which proves our claim. For any [x; τ ] ∈ K, we have thatx
τ

> F g

g> h− 1

x
τ

 ≤ −
x
τ

> −S>
t>

N [
−S t

]x
τ

 = −(τt− Sx)>N(τt− Sx) ≤ 0,

where the first inequality follows from the first semidefinite inequality in (11) and the final inequality holds

since N ≥ 0 and τt− Sx ≥ 0. Thus, F g

g> h− 1

 �C(K) 0.

Hence, the claim follows.

Theorem 2 provides a way to approximate (MVE). We choose the ellipsoid with minimum volume among

those that satisfy the conditions of Theorem 2. This can be achieved by solving the following tractable SDP:

minimize − log det(A)

subject to A ∈ SK , b ∈ RK , N ∈ RJ×J+ , F ∈ SK , g ∈ RK , h ∈ R,

(11) holds.

(12)

If (A, b,N ,F , g, h) is an optimal solution to (12), then we propose the use of the ellipsoid Esdp = E(A, b)

as an approximation of Emve.

Next, we present a theoretical comparison of the quality of Esdp with the other methods of approximating

Emve. We denote by Esmvie the ellipsoid obtained by scaling the maximum volume inscribed ellipsoid by

a factor of K. We discuss the SDP formulation for determining Esmvie in Appendix B.1. In Theorem 3,

presented below, we show that the volume of Esdp cannot exceed the volume of Esmvie. For the theoretical

analysis, it is convenient to combine the two semidefinite inequalities of (11) using the Schur complement,

and write (12) equivalently as follows:

minimize − log det(A)

subject to A ∈ SK , b ∈ RK , N ∈ RJ×J+ ,A
b>

[A b
]
�

0 0

0 1

−
−S>
t>

N [
−S t

]
.

(13)

We begin with the following lemma which we use for comparing the volumes of Esdp and Esmvie.

Lemma 6 ([24, Theorem 7.8.7]). If M ∈ RK×K is a square matrix with real entries such that M +M> � 0,

then

det

(
1

2

(
M +M>)) ≤ det(M).

Theorem 3. If P is a polytope defined as in (10), then Vol(Esdp) ≤ Vol(Esmvie).

11



Proof. The logarithm of the volume of Esmvie is equal to the optimal value of the following optimization

problem (see Appendix B.1):

minimize Kρ>t−K − log det

(
−1

2

(
S>Λ + Λ>S

))
subject to Λ ∈ RJ×K , ρ ∈ RJ ,

S>ρ = 0,

‖Λj:‖ ≤ ρj ∀j ∈ [J ].

(14)

We can compare the volumes of Esdp and Esmvie by comparing the optimal values of the minimization problems

(13) and (14). To prove the theorem, we show that any feasible solution in (14) can be used to construct

a feasible solution to (13) with the same or lower objective function value. To this end, consider a solution

(Λ,ρ) which satisfies the constraints of (14). Define κ = exp(1 − ρ>t). Also, let Λ>S = UΣV > be the

singular value decomposition of Λ>S, where U ,V ∈ RK×K are orthonormal matrices, and Σ ∈ SK is a

diagonal matrix. We note for later use that det(Λ>S) = det(U) det(Σ) det(V >) = det(Σ). Consider the

following solution to (13):

A = κV ΣV >, b = κV U>Λ>t, N = κ2
(
ρρ> −ΛΛ>

)
. (15)

We demonstrate that this solution satisfies the constraints of (13). Note that

A2 = κ2V ΣV >V ΣV > = κ2V ΣU>UΣV > = κ2S>ΛΛ>S,

since V >V = U>U = I. Similarly Ab = κ2S>ΛΛ>t, and b>b = κ2t>ΛΛ>t. Therefore,−S>
t>

N [
−S t

]
=

 S>NS −S>Nt
−t>NS t>Nt

 = κ2

 S> (ρρ> −ΛΛ>
)
S −S>

(
ρρ> −ΛΛ>

)
t

−t>
(
ρρ> −ΛΛ>

)
S t>

(
ρρ> −ΛΛ>

)
t


= κ2

−S>ΛΛ>S S>ΛΛ>t

t>ΛΛ>S (ρ>t)2 − t>ΛΛ>t


=

0 0

0 (κρ>t)2

−
 A2 Ab

b>A b>b

 ,
where the third equality follows from the constraint S>ρ = 0. We claim that (κρ>t)2 ≤ 1. To see this,

first note that since the polytope P is non-empty, by Farkas’ Lemma, any vector ρ satisfying S>ρ = 0 and

ρ ≥ 0 also satisfies ρ>t ≥ 0. Secondly, using the inequality exp(ν) ≥ 1 + ν with ν = ρ>t − 1, we get that

κ−1 = exp(ρ>t − 1) ≥ ρ>t, which implies that κρ>t ≤ 1. Combining these two inequalities, we get that

0 ≤ κρ>t ≤ 1, which implies that (κρ>t)2 ≤ 1. Therefore, we have thatA
b>

[A b
]

=

0 0

0 (κρ>t)2

−
−S
t

N [
−S t

]
�

0 0

0 1

−
−S
t

N [
−S t

]
.

12



Next, since N = κ2
(
ρρ> −ΛΛ>

)
, we have that Nij = κ2

(
ρiρj −Λ>i: Λj:

)
≥ κ2 (ρiρj − ‖Λi:‖ ‖Λj:‖) ≥ 0,

where the two inequalities follow from Cauchy-Schwarz and the constraint ‖Λj:‖ ≤ ρj respectively. Therefore,

N ≥ 0. Next, we compare the objective values. Note that

− log det(A) = − log det(κV ΣV >) = − log(κK det(V ΣV >))

= −K log(κ)− log(det(V ) det(Σ) det(V >)

= K(ρ>t− 1)− log det(Λ>S)

≤ K(ρ>t− 1)− log det

(
1

2
(Λ>S + S>Λ)

)
,

where the final inequality follows from Lemma 6. Hence, the feasible solution (15) gives a lower objective

function value. Thus, the claim follows.

Corollary 1. If the polytope P is a simplex, then Emve = Esdp = Esmvie.

Proof. It is known that Emve = Esmvie, if the set P is a simplex [10, Section 8.4.1]. Therefore, Vol(Esmvie) =

Vol(Emve), which implies that Vol(Esdp) = Vol(Emve). Because of the uniqueness of the minimum volume

ellipsoid, we get that Esdp = Emve.

In the next example, we demonstrate that the difference between the volumes of the ellipsoids Esdp and

Esmvie can be arbitrarily large.

Example 1 (Chipped Hypercube). Consider the polytope: P = {x ∈ RK : 0 ≤ x ≤ e, e>x ≤
√
K}

formed by adding one constraint to the unit hypercube. This polytope forms a special case of (10) with

S =
[
I; −I; e>

]
, and t =

[
e; 0;

√
K
]
. Let Rmve, Rsmvie and Rcop be the radii (defined in Section 1.1) of

the ellipsoids Emve, Esmvie and Esdp, respectively. In the e-companion, we prove that Rcop = O
(
K1/4

)
and

Rsmvie = Θ
(
K1/2

)
. Therefore, Rsmvie grows at a strictly faster rate with the dimension K than Rcop. This

example demonstrates that the ratio Rsmvie/Rcop can be arbitrarily high, if a large enough K is chosen. We

compute the three radii for K = 2 to K = 50, and plot the values in Figure 1(b). We observe that Rmve

is very close to Rcop, and the two appear to be growing at the same rate with K. Figure 1(a) shows the

ellipsoids generated by the three methods for K = 2.

Next, we present the comparison of Vol(Esdp) with the volume of the ellipsoid provided by the S-procedure

described in Appendix B.2. However, the application of S-procedure requires an ellipsoidal constraint in

addition to the affine inequalities that define the polytope P (see Remark 7 in Appendix A). This can

be achieved by using any ellipsoid E(Q, q) = {x ∈ RK : ‖Qx+ q‖2 ≤ 1} that contains the polytope P, and

adding ‖Qx+ q‖2 ≤ 1 as a redundant constraint in the definition of P. The ellipsoid E(Q, q) already serves

as an approximation of Emve. We can then apply the S-procedure in the hope of finding an ellipsoid with

lower volume; we use Esproc to denote this ellipsoid. However, in Proposition 1, presented below, we show

that if the center of E(Q, q) lies inside P, then applying the S-procedure provides no improvement and, in
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Figure 1. Chipped Hypercube Example: a) The ellipsoids generated by the exact method and

the two approximation methods for K = 2. b) Radii (i.e.,Vol(·)1/K) of the ellipsoids generated

by the three methods for different dimensions K.

fact, returns the ellipsoid Esproc = E(Q, q) as its unique optimal solution. This result is counter-intuitive

since the S-procedure has been successfully applied in cases where P is defined as either the intersection or

Minkowski sum of ellipsoids. Furthermore, if E(Q, q) = Esmvie is used in the redundant quadratic constraint,

then Proposition 1 implies that the S-procedure does not improve upon Esmvie, since the center of Esmvie lies

inside P. In that case, Vol(Esdp) ≤ Vol(Esmvie) = Vol(Esproc).

Proposition 1. Let P be a polytope defined as in (10) that satisfies Assumption 1, and let E(Q, q) = {x ∈
RK : ‖Qx+ q‖2 ≤ 1} be an ellipsoid containing P such that the center of E(Q, q) lies inside P. Then, for

the set {x ∈ RK : Sx ≤ t, ‖Qx+ q‖2 ≤ 1}, we have that Esproc = E(Q, q).

Proof. See the e-companion.

Finally, another method of approximating (MVE) uses the decision rule approach described in [47,

Section 6], which we summarize in Appendix B.3. We denote the ellipsoid generated using this approach

by Ezrh. In the following proposition, we show that Vol(Ezrh) is never lower than Vol(Esmvie). Thus, by

Theorem 3, Vol(Ezrh) ≥ Vol(Esdp).

Proposition 2. Vol(Ezrh) ≥ Vol(Esmvie).

Proof. See the e-companion.
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3.1 Sets with Quadratic Constraints

Next, we provide a semidefinite programming approximation to (MVE) when the set P is defined by affine, as

well as quadratic inequalities. This generalizes the approximation (12) developed for the case of a polytope.

Specifically, we consider the following set:

P =
{
x ∈ RK : Sx ≤ t, ‖Qix+ qi‖2 ≤ 1 ∀i ∈ [I]

}
, (16)

where S ∈ RJ×K , t ∈ RJ , Qi ∈ SK and qi ∈ RK . In the next theorem, we derive sufficient conditions that

an ellipsoid E(A, b) contains the set P defined as in (16).

Theorem 4. Let the set P be defined as in (16). Consider any A ∈ SK++ and b ∈ RK . Then, an ellipsoid

E(A, b) contains P if there exist N ∈ RJ×J+ , F ∈ SK , g ∈ RK , h ∈ R, λi ≥ 0 ∀i ∈ [I], αij ∈ RK , κij ∈
R ∀i ∈ [I] ∀j ∈ [J ] such that

‖αij‖ ≤ κij ∀i ∈ [I] ∀j ∈ [J ],F g

g> h− 1

 � −S>NS +
∑
i∈[I]

λiJi −
∑

i∈[I],j∈[J]

Mij(αij , κij),
F g A

g> h b>

A b I

 � 0,

(17)

where

S =
[
−S t

]
∈ RJ×(K+1), Ji =

 Q2
i Q>i qi

q>i Qi q>i qi − 1

 ∈ SK+1 ∀i ∈ [I], and

Mij(α, κ) =

 − 1
2

(
Sj:α

>Qi +QiαS
>
j:

)
1
2

(
tjQiα− (α>qi + κ)Sj:

)
1
2

(
tjQiα− (α>qi + κ)Sj:

)>
(α>qi + κ)tj

 ∀i ∈ [I] ∀j ∈ [J ].

Proof. For the set P, the cone K as defined as in (2) can be written as

K =
{

[x; τ ] ∈ RK+1 : τ ≥ 0, Sx ≤ τt, ‖Qix+ τqi‖2 ≤ τ2 ∀i ∈ [I]
}
.

We show that the conditions (17) imply the conditions (3), which proves the claim. Let

P =

F g

g> h− 1

 .
Also, consider [x; τ ] ∈ K. From the first semidefinite inequality, we have thatx

τ

>P
x
τ

 ≤
x
τ

>−S>NS +
∑
i∈[I]

λiJi −
∑

i∈[I],j∈[J]

Mij(αij)

x
τ

 .
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We show that all three terms in the expression on the right hand side are non-positive. The first term

is non-positive as shown in the proof of Theorem 2. Next, observe that for all i ∈ [I], we have that

[x; τ ]>Ji[x; τ ] = ‖Qix+ τqi‖2 − τ2 ≤ 0, since [x, τ ] ∈ K. Also,

[x; τ ]>Mij(αij)[x; τ ] = (τtj − S>j:x)(τκij +α>ij(Qix+ τqi)) ≥ 0.

The previous inequality follows because both terms in the product are non-negative since Sx ≤ τt and

τκij +α>ij(Qix+ τqi) ≥ τκij −‖αij‖ ‖Qix+ τqi‖ ≥ τκij − τκij = 0. Hence, [x; τ ]>P [x; τ ] ≤ 0 ∀[x; τ ] ∈ K,

which implies that P �C(K) 0. Hence the claim follows.

Theorem 4 implies that the following SDP serves as a restriction to (MVE):

minimize − log det(A)

subject to A ∈ SK , b ∈ RK , F ∈ SK , g ∈ RK , h ∈ R,

N ∈ RJ×J+ , λi ≥ 0 ∀i ∈ [I], αij ∈ RK ,

(17) holds.

(18)

Remark 5. The approximation discussed above is motivated by the Relaxation Linearization Technique

(RLT) discussed in [2, 40], and SOC-RLT constraints discussed in [12].

4 Application to Distributionally Robust Optimization

In this section, we demonstrate how our approximation to (MVE) can be used to obtain good solutions to

the two-stage DRO model with random recourse given by

inf
x∈X

{
c>x+ sup

Q∈Q
EQ[R(x, ξ̃)]

}
, (19)

where

R(x, ξ) = inf
y

(Dξ + d)>y

s.t. T`(x)>ξ + h`(x) ≤ (W`ξ +w`)
>y ∀` ∈ [L].

(20)

Here, x ∈ RN1 and y ∈ RN2 represent the first- and the second-stage decision variables respectively, X
is a set defined by tractable convex constraints on x, and ξ ∈ RK is the vector of uncertain parameters.

Also, c ∈ RN1 ,D ∈ RN2×K ,W` ∈ RN2×K ,d ∈ RN2 , and w` ∈ RN2 are problem parameters. The functions

T` : X → RK and h` : X → R are affine in the input parameter. We consider the following moment-

based ambiguity set: Q = {Q ∈ Q0(Ξ) : EQ[ξ̃] = µ, EQ[ξ̃ξ̃>] � Σ}, where Ξ = {ξ ∈ RK : Sξ ≤ t} is

the bounded support set, and Q0(Ξ) is the set of all probability measures supported on Ξ. The objective

function minimizes the sum of the first-stage and the expected recourse cost, where the expectation is taken

with respect to the worst case distribution among those in the ambiguity set Q. The results presented here

can be extended to other types of ambiguity sets, including the simpler case where Q = Q0(Ξ) (i.e., robust
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optimization) [7, 45], the more sophisticated data-driven Wasserstein ambiguity set [20], and to the classical

stochastic programming setting.

The problem (19) can be written equivalently as:

inf
x,y(·)

c>x+ sup
Q∈Q

EQ[(Dξ + d)>y(ξ)],

s.t. x ∈ X ,
T`(x)>ξ + h`(x) ≤ (W`ξ +w`)

>y(ξ) ∀ξ ∈ Ξ,∀` ∈ [L],

(21)

where the second-stage decision variable y is a function of the uncertain parameters ξ. The problem (21)

is difficult to solve. To generate a tractable approximation to (21), we explore the use of piecewise-linear

decision (PLD) rules. Specifically, we partition Ξ into regions Ξ1, . . . ,ΞJ , and restrict y(·) to be of the form

y(ξ) = Yjξ+ yj if ξ ∈ Ξj , where Yj ∈ RN2×K and yj ∈ RN2 . For constructing the partitions, we start with

a set of constructor points {ξj}j∈[J] in Ξ. Then, we define the partition Ξj to be the set of all points in Ξ

which are closer to ξj than any other constructor point. In other words,

Ξj = {ξ ∈ RK : Sξ ≤ t, ‖ξ − ξj‖ ≤ ‖ξ − ξi‖ ∀i ∈ [J ], i 6= j}
= {ξ ∈ RK : Sξ ≤ t, 2(ξi − ξj)>ξ ≤ ξ>i ξi − ξ>j ξj ∀i ∈ [J ], i 6= j}
= {ξ ∈ RK : Sjξ ≤ tj},

where the matrix Sj ∈ RLj×K and the vector tj ∈ RLj are formed by combining the linear constraints in

the definition of Ξj . These partitions are known as Voronoi regions.

Because of random recourse (i.e., uncertainty in the coefficients of y(·)), finding the optimal PLD rule

is NP-hard, even if there is only one piece [3]. However, we can approximate the problem of finding the

optimal PLD rule using the S-procedure. However we need a quadratic constraint in the definition of Ξj

for an effective application of S-procedure (see Remark 7 in Appendix A). To this end, let E(Aj , bj) be an

ellipsoid that contains Ξj . Since Ξj is a polytope, we can exploit the results developed in Section 3 to find

E(Aj , bj). We can write Ξj equivalently as Ξj = {ξ ∈ RK : Sjξ ≤ tj , ‖Ajξ + bj‖2 ≤ 1}. We illustrate the

procedure of partitioning and covering with ellipsoids in Figure 2.

In the next proposition, we derive a tractable SDP that generates a feasible PLD rule. The optimal value

of the resulting SDP approximation provides an upper bound to the optimal value of (21). In Example

2 presented after the proposition, we demonstrate that the size of the bounding ellipsoids E(Aj , bj) can

drastically impact the upper bound provided by the SDP approximation; in particular, the tighter the

ellipsoids, the better the upper bound.
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Figure 2. Voronoi Regions: The outer square represents the support set, and the black dots are

the constructor points. The points are used to construct partitions, and an ellipsoid containing

each partition is found by solving the SDP (12).

Proposition 3. Consider the following SDP:

inf c>x+ α+ β>µ+ tr(ΓΣ)

s.t. x ∈ X , Γ ∈ SK+ , β ∈ RK , α ∈ R,

Yj ∈ RN2×K , yj ∈ RN2 , γj ∈ RLj

+ , δj ∈ R+ ∀j ∈ [J ],

λj` ∈ R+, ρj` ∈ RLj

+ ∀j ∈ [J ] ∀` ∈ [L], Γ 1
2β

1
2β
> α

−
 1

2 (D>Yj + Y >j D) 1
2 (D>yj + Y >j d)

1
2 (D>yj + Y >j d)> d>yj

+ Pj(γj) + δjJj � 0 ∀j ∈ [J ],

 1
2 (W>

` Yj + Y >j W`)
1
2 (W>

` yj + Y >j w`)

1
2 (W>

` yj + Y >j w`)
> w>` yj

−M`(x) + Pj(ρj`) + λj`Jj � 0 ∀j ∈ [J ] ∀` ∈ [L],

(22)

where

M`(x) =

 0 1
2T`(x)

1
2T`(x)> h`(x)

 , Pj(ρ) =

 0 1
2S
>
j ρ

1
2ρ
>Sj −t>j ρ

 , and Jj =

 A2
j A>j bj

b>j Aj b>j bj − 1

 .
Let y(ξ) = Yjξ+yj if ξ ∈ Ξj. Then, (x,y(·)) provides a feasible solution to (21). Furthermore, the optimal

value of (22) provides an upper bound to the optimal value of (21).

Proof. See e-companion.

Example 2. Consider the following special case of (21):

z = inf
x,y(·)

x

s.t. 1 ≤ (ξ + e)>y(ξ) ≤ x ∀ξ ∈ Ξ,
(23)

18



where Ξ = {ξ ∈ RK : 0 ≤ ξ ≤ e} is the unit hypercube, and J = 1. This problem is a special case of (21)

with L = 2, D = 0, d = 0, W1 = I, w1 = e, T1(x) = 0, h1(x) = 1, W2 = −I, w2 = −e, T2(x) =

0, and h2(x) = −x. The true optimal value is z = 1, which is obtained by the non-linear decision function

y(ξ) = (ξ + e)/ ‖ξ + e‖2. In this case, Emve = {ξ ∈ RK : ‖ξ − e/2‖2 ≤ N/4}. For s ≥ 0, let z(s) be the

upper bound generated by the SDP approximation when {ξ ∈ RK : ‖ξ − e/2‖2 ≤ N(1 + s)/4} is used as the

bounding ellipsoid. In the e-companion, we show that

z(s) =


9/(8− s) if 0 ≤ s ≤ 2,

1 + s/4 if 2 ≤ s ≤ 4,

2 if 4 ≤ s.

Therefore, the linear decision rule obtained with Emve generates an objective value of z(0) = 9/8 = 1.125. The

objective value z(s) increases as the size of the ellipsoid increases. The case when s approaches∞ corresponds

to dropping the ellipsoidal constraint; in that case, we obtain an objective value of lims→∞ z(s) = 2. Hence,

ignoring the ellipsoidal constraint can increase the suboptimality of the decision rules approximation from

12.5% to 100%.

Example 2 demonstrates the importance of generating good outer ellipsoids. We further elaborate on

this point in Section 5.2, where we perform experiments on randomly generated instances of an inventory

management model. We note that the task of finding the outer ellipsoids E(Aj , bj) can be parallelized, which

leads to a substantial reduction in the computation time.

Remark 6 (Two-Stage Stochastic Programming). In the classical stochastic programming setting, the ran-

dom parameters ξ̃ are assumed to be governed by a known distribution P. The semi-infinite constraints in (21)

remain unchanged and can be approximated in the same manner using the S-procedure. On the other hand,

the worst-case expectation in the objective function of (21) reduces to the expectation EP[(Dξ̃+d)>y(ξ̃)]. Ap-

plying the law of total expectation and employing the proposed PLD rules, we can reformulate the expectation

as ∑
j∈[J]

P(ξ̃ ∈ Ξj) EP

[
(Dξ̃ + d)>y(ξ̃)

∣∣ ξ̃ ∈ Ξj

]
=

∑
j∈[J]

P(ξ̃ ∈ Ξj) EP

[
(Dξ̃ + d)>(Yj ξ̃ + yj)

∣∣ ξ̃ ∈ Ξj

]
=

∑
j∈[J]

P(ξ̃ ∈ Ξj)
(

tr
(
D>YjEP[ξ̃ξ̃>|ξ̃ ∈ Ξj ]

)
+ (y>j D + d>Yj)EP[ξ̃|ξ̃ ∈ Ξj ] + d>yj

)
.

This expression is affine in the decision variables Yj and yj, j ∈ [J ]. Note that the partition probabilities

P(ξ̃ ∈ Ξj), j ∈ [J ], and conditional moments EP[ξ̃|ξ̃ ∈ Ξj ] and EP[ξ̃ξ̃>|ξ̃ ∈ Ξj ], j ∈ [J ], can be estimated

using the Monte Carlo sampling method.
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5 Numerical Experiments

In this section, we present numerical experiments that demonstrate the improved performance of our scheme

for approximating (MVE) over the existing methods. First, we show that our approach outperforms the

existing approaches in terms of solution quality and computational time on randomly generated polytopes.

Second, we demonstrate the efficacy of our method in generating quality solutions for a distributionally

robust inventory management model. All optimization problems are solved using the YALMIP interface [31]

on a 16-core 3.4 GHz computer with 32 GB RAM. We use MOSEK 8.1 to solve SDPs and CPLEX 12.8 to

solve non-convex quadratic programs to optimality.

5.1 Random Polytopes

Here, we compare our method of approximating (MVE) with (i) the constraint generation approach [19],

(ii) the SMVIE approach, and (iii) the method using sufficient conditions proposed by Kellner, Theobald,

and Trabandt [26]. We refer to the last method as the KTT approach, and denote the corresponding ellipsoid

by Ektt (see Appendix B.4 for details on the formulation).

For our experiments, we generate polytopes randomly as follows. We start with the hyper-rectangle

{x ∈ RK : 0 ≤ x ≤ e} with center c = e/2. Then we add M linear inequalities in the following way. For

j ∈ [M ], we generate a vector sj ∈ RK uniformly distributed on the surface of the unit hypersphere. We

generate a distance rj uniformly at random from the interval [−‖sj‖1 /2, ‖sj‖1 /2], and add the constraint

s>j (x − c) ≤ rj if rj > 0 and s>j (x − c) ≥ rj if rj ≤ 0. Choosing rj from the specified interval leads to

a constraint that cuts the hyper-rectangle (i.e., the constraint is not redundant). Also, the construction

ensures that the polytope is non-empty since c satisfies all the constraints.

For several values of K, we solve the problem exactly and apply each approximation method on 50

randomly generated instances for M = K, 2K, 3K. We report the suboptimality results of the three

approximation methods in Table 1. For higher values of K, for which we were not able to solve the problem

exactly within 30 minutes, we report the suboptimality of the radius of Esmvie and Ektt with respect to Esdp

in Table 2. Finally, the solution times of different methods are reported in Table 3. We do not report the

solution time of the SMVIE approach. Even for the largest problem size that we solved, the SMVIE approach

produces solutions in less than 2 seconds, dominating every other approach.

It can be observed that the radius (and therefore, volume) of Esdp is significantly lower than that of

Esmvie. Furthermore, the suboptimality of the radius of Esmvie relative to that of Esdp increases with the

dimension K (from 246% for K = 15 to 481% for K = 40). This is perhaps because the scale factor of K

becomes very conservative for higher values of K. This increase in solution quality of Esdp comes at the cost

of higher solution times compared to that of finding Esmvie.

We also observe that the radius of Esdp is slightly better than that of Ektt; the solution time, however, is
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M = K M = 2K M = 3K

K Copos KTT SMVIE Copos KTT SMVIE Copos KTT SMVIE

2 3.41% 4.68% 34.3% 5.20% 6.48% 32.8% 5.33% 6.63% 31.9%

5 4.88% 7.02% 105% 9.92% 13.16% 91.9% 13.2% 16.4% 93.7%

10 2.53% 3.72% 188% 7.48% 9.51% 176% 13.6% 16.9% 164%

15 1.29% 1.84% 250% 5.57% 7.16% 230% N/A N/A N/A

Table 1. Random Polytopes: Mean suboptimality of the radii of Esdp (‘Copos’), Ektt (’KTT’),

and Esmvie (‘SMVIE’) for different problem sizes. We use ‘N/A’ when the problem cannot be

solved to optimality within 30 minutes.

M = K M = 2K M = 3K

K KTT SMVIE KTT SMVIE KTT SMVIE

15 0.54% 246% 1.50% 212% 2.07% 191%

20 0.30% 310% 1.01% 268% 1.65% 245%

25 0.28% 357% 0.66% 318% – 292%

30 – 401% – 364% – 329%

35 – 440% – 405% – 372%

40 – 481% – 447% – 414%

Table 2. Random Polytopes: Mean suboptimality of the radii of Ektt (‘KTT’) and Esmvie

(‘SMVIE’) relative to Esdp for the cases which could not be solved to optimality within 30

minutes. We use “–” for the cases when the KTT approach does not provide a solution within

30 minutes.

significantly lower (1-2 orders of magnitude). As an example, for K = M = 30, the KTT approach does not

provide solutions within 30 minutes, whereas our method generates an solution in 13.7 seconds on average.

Finally, we observe that for small problem instances, our method finds a solution much faster than

solving the problem to optimality. For higher dimensional problems (K > 15), where solving the problem

exactly becomes intractable, our approximation continues to provide ellipsoids of lower volume than the

other approximation methods.

5.2 Risk-Averse Inventory Management

Next, we consider an inventory management problem, where we decide the purchase amount of N products

before observing their demands. We incur a holding cost if we purchase more than the demand, and a
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M = K M = 2K M = 3K

K Exact Copos KTT Exac Copos KTT Exact Copos KTT

2 1.52 0.004 0.011 1.53 0.005 0.027 1.69 0.005 0.059

5 8.56 0.014 0.036 9.13 0.023 0.073 9.59 0.050 0.096

10 72.6 0.106 0.925 81.7 0.290 2.09 133 0.754 3.78

15 406 0.542 10.0 1191 1.82 25.8 – 5.21 49.7

20 – 2.01 73.2 – 7.60 210 – 22.2 438

25 – 5.65 368 – 22.8 1067 – 68.0 –

30 – 13.7 – – 54.7 – – 207 –

35 – 28.8 – – 133 – – 492 –

40 – 53.2 – – 302 – – 1155 –

Table 3. Random Polytopes: Mean solution times (in seconds) of the exact method (‘Exact’),

our proposed method (‘Copos’), and the KTT approach (‘KTT’) for different problem sizes. We

use “–” when the corresponding method does not provide a solution within 30 minutes.

stockout cost if we purchase less than the demand. We assume that the demands and the stockout costs

are random. The objective is to minimize the worst-case conditional value at risk (CVaR) [38, 48, 33] of the

total cost. We can write the model as follows:

minimize sup
Q∈Q

Q-CVaRε[R(x, ξ̃, s̃)]

subject to x ∈ RN , x ≥ 0, e>x ≤ B,
where

R(x, ξ, s) = inf g>y1 + s>y2

s.t. y1 ∈ RN+ ,y2 ∈ RN+ ,

y1 ≥ x− ξ, y2 ≥ ξ − x.
Here, the variables x, y1 and y2 represent the vector of purchase decisions, excess amounts and shortfall

amounts, respectively. The vector g ∈ RN represents the known holding costs, and B denotes budget on the

total purchase amount. Also, ξ ∈ RN and s ∈ RN are random parameters which represent the vectors of

demand and stock-out costs respectively. The ambiguity set Q is as described in Section 4. By employing
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the definition of CVaR, it can be shown that the above problem is equivalent to

minimize κ+
1

ε
sup
Q∈Q

EQ[τ(ξ̃, s̃)]

subject to κ ∈ R, x ∈ RN , x ≥ 0, e>x ≤ B,
τ(ξ, s) ≥ 0, y1(ξ, s) ≥ 0, y2(ξ, s) ≥ 0,

τ(ξ, s) ≥ g>y1(ξ, s) + s>y2(ξ, s)− κ,
y1(ξ, s) ≥ x− ξ, y2(ξ, s) ≥ ξ − x

 ∀(ξ, s) ∈ Ξ,

(24)

which is of the form (21) [21, 39].

We generate the parameters for this problem as follows. We use N = 7 products, which leads to 2N = 14

random parameters. We choose Ξ = {[ξ; s] : ξl ≤ ξ ≤ ξu, sl ≤ s ≤ su}, and ε = 5%. We partition Ξ

into J = 4 regions, and select the constructor points {[ξj ; sj ]}j∈[J] by sampling uniformly at random from

Ξ. We choose B = 30, ξl = 0, ξu = 10e, sl = 8e, su = 12e. For constructing the ambiguity set, we use

µ = [µξ;µs] ∈ R2N , where µs = 10e and every element of µξ is generated uniformly from the interval [0, 2].

We select a random correlation matrixC ∈ S2N
+ with the MATLAB command “gallery(‘randcorr’,2*N)”,

and set Σ = Diag(σ)C Diag(σ) + µµ>, where σ = [σξ;σs] ∈ R2N , σs = e/2 and σξ = µξ/4.

We approximate (24) using our proposed SDP (22), where the ellipsoids E(Aj , bj) are generated using

the SDP (12) developed in Section 3. We refer to this approach here as ‘PWL’. We compare the solution

time and quality of the PWL approach with those of the following schemes:

• Piecewise static decision rules (‘PWS’) [7]: Here, the second stage decision variables are restricted to

be constant within each partition, i.e., Yj = 0 in Proposition 3. This approach leads to a tractable

approximation, and, to the best of our knowledge, is state-of-the-art for solving DRO problems with

random recourse.

• Linear decision rules (‘LDR’): This is similar to PWL except we do not partition the support set (i.e.,

J = 1). We compare against LDR to demonstrate the advantage of partitioning the support set.

• Ellipsoids of double radius (‘PWL-2’): To demonstrate the importance of the size of the ellipsoid, we

present comparisons against the scheme similar to PWL, except we double the radii of the ellipsoids

E(Aj , bj) used in PWL.

We perform the experiment on 100 randomly generated instances, and present the relative objective gaps in

Table 4. We also report the average solution times in Table 5. We assume that we can parallelize the task

of generating the ellipsoids for each partition on 4 machines. Since we consider J = 4, for the solution time

of the PWL approach, we choose the maximum among the solution times to find the 4 ellipsoids, and add

that to the solution time of solving the SDP (22).
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Statistic PWS LDR PWL-2

Mean 75.1% 24.5% 47.4%

10th Percentile 33.3% 1.23% 25.6%

90th Percentile 130% 49.4% 71.4%

Table 4. Inventory Management: Objective gaps of other models relative to PWL model.

Statistic PWL PWS LDR PWL-2

Solution Time (ms) 622 91.8 219 617

Table 5. Inventory Management: Average solution times of the models (in milliseconds).

The results indicate that we outperform the other methods in terms of the quality of the approximation.

We observe that neglecting the linear term in the decision rules (i.e., using static decision rules) can lead

to 75% increase in the objective value. Thus, although static decision rules lead to a tractable formulation

that requires less computational time, they also generate significantly worse solutions. Furthermore, not

partitioning the support set can lead to 24% higher objective values. Finally, doubling the radii of the

bounding ellipsoids can increase the objective by 47%. For two-stage DRO models with random recourse,

these results exhibit the importance of (i) using piecewise linear instead of piecewise static decision rules,

(ii) partitioning the support set, and (iii) having good ellipsoidal approximations to the partitions of the

support set.The improvement in solution quality comes at the expense of increased computational time.

However, if one is willing to spend computational resources, significant improvement in the solution quality

can be achieved by using our method.

6 Conclusions

In this article, we propose a GC reformulation for the minimum volume ellipsoid problem. We use that refor-

mulation to generate tractable approximations when the set is defined by affine and quadratic inequalities.

We prove the volume of the ellipsoids that our approach provides never exceeds the volume of Esmvie. Fur-

thermore, we demonstrate empirically that our method performs better than the other competing schemes

for providing approximate solutions to the MVEP, in terms of solution time and quality. Finally, we use our

method to efficiently generate high-quality approximations in the context of distributional robust optimiza-

tion and linear dynamical systems.

The work presented in this paper leaves room for further investigation. First, it would be interesting to

study the suboptimality bounds of the radii of the ellipsoids generated by our method. In particular, for
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Esmvie, it is known that Radius(Esmvie) ≤ K · Radius(Emve). It would be interesting to see if a better upper

bound can be proved for the radius of Esdp. A second possible direction is to utilize the GC reformulation

to generate approximation for other types of sets. Studying such approximations would add to the entire

copositive programming literature, and not only to the minimum volume ellipsoid problem.

Acknowledgments

This research was supported by the National Science Foundation grant no. 1752125.

References
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A S-procedure

In this section, we discuss the S-procedure [4, 9].

Lemma 7 (S-procedure). Let Qi ∈ SK , qi ∈ RK , ri ∈ R, i ∈ {0} ∪ [I]. Then the optimal value of the

non-convex quadratic optimization problem

minimize x>Q0x+ 2q>0 x+ r0

subject to x ∈ RK ,

x>Qix+ 2q>i x+ ri ≤ 0 ∀i ∈ [I]

(25)

is ≥ 0 if there exist λi ≥ 0 ∀i ∈ [I] such thatQ0 q0

q>0 r0

+
∑
i∈[I]

λi

Qi qi

q>i ri

 � 0. (26)

The S-procedure has been used in literature to provide sufficient conditions that certify that the optimal

value of a non-convex quadratic problem is non-negative [5, 9, 20]. In the following remark, we discuss a

special case when we only have linear inequalities in the optimization problem (25).

Remark 7. In the case when all the constraints are linear, i.e., Qi = 0, i ∈ [I], the semidefinite con-

straint (26) reduces to  Q0 q0 +
∑
i∈[I] λiqi

q>0 +
∑
i∈[I] λiqi r0 +

∑
i∈[I] λiri

 � 0,

which implies that Q0 � 0. Therefore, if Q0 is not positive semidefinite, then the sufficient conditions are

never feasible; hence they do not provide any certification on the optimal value of (25). We can overcome this

limitation by adding a redundant quadratic constraint ‖Ax+ b‖2 ≤ 1 to the original problem (25). Doing so

does not change the optimal value of (25), but the sufficient conditions (26) can now be written as Q0 q0 +
∑
i∈[I] λiqi

q>0 +
∑
i∈[I] λiqi r0 +

∑
i∈[I] λiri

+ µ

 A2 Ab

b>A b>b

 � 0.

Because of the additional variable µ, the conditions become more flexible, and might be feasible even if Q0

fails to be positive semidefinite.
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B Alternative approaches to approximate (MVE)

B.1 Scaled MVIE

Consider the polytope P = {x ∈ RK : Sx ≤ t}. It is known that the ellipsoid {Bu+ d : u ∈ RK , ‖u‖ ≤ 1}
with maximum volume that lies inside P can be found by solving the optimization problem (see, e.g., [10]):

sup
B∈SK , d∈RK

log det(B)

s.t. ‖BSj:‖+ S>j:d ≤ tj ∀j ∈ [J ].

(27)

Also, if (B,d) is optimal to (27), then Esmvie = {KBu + d : ‖u‖ ≤ 1} contains P. Therefore, Esmvie =

{Bu+ d : ‖u‖ ≤ 1} if B and d are optimal in the following problem:

sup
B∈SK , d∈RK

log det(B)

s.t. ‖BSj:‖+KS>j:d ≤ Ktj ∀j ∈ [J ].

(28)

The objective function provides the logarithm of Vol(Esmvie). The Lagrange dual of (28) is given by

inf Kρ>t−K − log det

(
−1

2

(
S>Λ + Λ>S

))
s.t. Λ ∈ RJ×K , ρ ∈ RJ ,

S>ρ = 0,

‖Λj:‖ ≤ ρj ∀j ∈ [J ].

(29)

To show that strong duality holds, a Slater point can be constructed in the primal problem as follows.

Consider a feasible solution to (28) where B = κI and d is any point in the interior of P. By choosing a

sufficiently small κ, the inequalities in (28) can be made strict. Therefore, the objective function of (29) is

the logarithm of Vol(Esmvie).

B.2 S-procedure

In this section, we use the S-procedure to derive an approximation to (MVE). The constraint Z(A, b) ≤ 1

can be written as

inf
x∈P

{
−x>A2x− 2b>Ax+ 1− b>b

}
≥ 0.

Using Lemma 7 and the definition of P from (16), the above inequality is satisfied if there exist variables

µ ∈ RJ+ and λi ≥ 0 ∀i ∈ [I] such that

−

 A2 Ab

b>A b>b− 1

+

 0 1
2S
>µ

1
2µ
>S −µ>t

+

I∑
i=1

λi

 Q2
i Qiqi

q>i Qi q>i qi − 1

 � 0,
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which—using the Schur complement—is satisfied if and only if
0 1

2S
>µ A

1
2µ
>S 1− µ>t b>

A b I

+

I∑
i=1

λi


Q2
i Qiqi 0

q>i Qi q>i qi − 1 0

0 0 0

 � 0. (30)

Hence, by replacing the constraint Z(A, b) ≤ 1 in (MVE) with a stronger constraint (30), we get the

following conservative approximation of (MVE):

minimize − log det(A)

subject to A ∈ SK , b ∈ RK , µ ∈ RJ+, λi ∈ R+ ∀i ∈ [I],

(30) holds.

B.3 The decision rule approach of [47]

Consider a polytope P = {x ∈ RK : Sx ≤ t}, where S ∈ RJ×K and t ∈ RJ . In [47, Lemma 1], the authors

prove that

sup
x∈P
‖Ax+ b‖ ≤ 1, (31)

if there exist V ∈ RJ×M and v ∈ RJ such that the following constraints hold:∥∥V >t+ b
∥∥+ t>v ≤ 1,

A = V >S,

S>v = 0,

‖Vj:‖ ≤ vj ,∀j ∈ [J ].

(32)

These sufficient conditions are based on rewriting (31) as an equivalent two-stage robust optimization prob-

lem, and then applying a linear decision rule approximation. Substituting these conditions for the constraint

Z(A, b) ≤ 1 in (MVE) yields the following conservative approximation:

minimize − log det(A)

subject to A ∈ SK , b ∈ RK , V ∈ RJ×K , v ∈ RJ ,

(32) holds.

(33)

B.4 The containment approach of [26]

In [26], the authors provide the following sufficient conditions such that a set representable as a linear matrix

inequality contains another such set.

Theorem 5 ([26, Theorem 4.3]). Let the set SY = {x ∈ RK : Y0 +
∑
k∈[K] xkYk � 0}, and the set

SZ = {x ∈ RK : Z0 +
∑
k∈[K] xkZk � 0}, where Yk = (Y kij) ∈ SJ and Zk ∈ SL for all k ∈ {0} ∪ [K]. Then
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SY ⊆ SZ if there exist matrices Cij ∈ RL×L, i, j ∈ [J ], such that the following constraints hold:

C = (Cij)
J
i,j=1 � 0, Z0 �

J∑
i,j=1

Y 0
ijCij , Zk =

J∑
i,j=1

Y kijCij ∀k ∈ [K]. (34)

We summarize how we use this result to generate an approximation to Emve. We are interested in finding

conditions under which a polytope P := {x ∈ RK : Sx ≤ t} = {x ∈ RK : Diag(t − Sx) � 0} is contained

in an ellipsoid E(A, b) = {x ∈ RK : ‖Ax+ b‖2 ≤ 1} = {x ∈ RK : F (x) � 0}, where

F (x) =

 I Ax+ b

(Ax+ b)> 1

 =

 I b

b> 1

+

K∑
k=1

xk

 0 Ak:

A>k: 0

 .
Now, we can use Theorem 5 with SY = P and SZ = E(A, b) to generate constraints that ensure that E(A, b)

contains P. Since the matrices Y0 = Diag(t) and Yi = −Diag(Si) are diagonal, the variables Cjk, j 6= k do

not appear in the second and third constraints of (34). Therefore, we can eliminate these variables from the

first constraint as well, by forcing Cjj � 0. In light of this observation and by redefining Cjj as Cj , we can

rewrite the constraints (34) as

Cj ∈ SK+1
+ ∀j ∈ [J ],

 I b

b> 1

 � ∑
j∈[J]

tjCj ,

 0 Ak:

A>k: 0

 =
∑
j∈[J]

−SjkCj ∀k ∈ [K]. (35)

Minimizing − log det(A) subject to the constraints in (35) provides a conservative SDP approximation to

(MVE). The elimination of these redundant variables leads to a tremendous increase in the solution speed.
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1 Reachability in Linear Dynamical Systems

1.1 Ellipsoidal Approximation

We consider a discrete-time linear dynamical system

x(0) = 0, x(t+ 1) = W1x(t) +W2u(t) ∀t ∈ [T − 1].

Here T is the number of time steps, x(t) ∈ RK represents the state at time t, and u(t) ∈ RJ is a vector

of controls selected from a convex and compact control set U . At any time, the state x(t) depends on the

previous state and the control exercised in the previous time step. Finally, the matrices W1 ∈ RK×K and

W2 ∈ RK×J determine the dynamics of the system.

The reachable set WT—the set of all states reachable at time T—is defined as follows:

WT = {x(T ) : x(t+ 1) = W1x(t) +W2u(t) ∀t ∈ [T − 1], u(t) ∈ U ∀t ∈ [T − 1], x(0) = 0}.

Note that the reachable set can be defined recursively as

W0 = {0} and Wt+1 = W1Wt +W2U = {W1x+W2u : x ∈ Wt,u ∈ U} ∀t ∈ [T ]. (EC.1)

A fundamental problem in the study of linear dynamical systems involves verifying whether a state is

reachable at time T [2, Chapter 3]. For a single state, reachability can be determined by solving a convex

feasibility problem whose size is quadratic in the number of time steps T (since both the number of variables

and constraints are proportional to T ).

When T grows large, determining the reachability of multiple states becomes computationally expensive

(since the feasibility problem must be solved separately for every state). For this reason, several authors

have proposed outer ellipsoidal approximations for WT [1, 3]. A state is then deemed reachable if it falls

1



within the approximating ellipsoid. Checking this condition is much faster than solving the convex feasibility

problem. The reduction in time, however, can lead to false positives (states which lie inside the ellipsoid but

are not reachable). Thus, generating a tight ellipsoidal approximation is desirable.

The previous studies describe ellipsoidal approximations for WT only when the control set U is an

ellipsoid. In contrast, in this section, we consider the case when the control set U = {u ∈ RJ : Su ≤ t} is a

polytope, where S ∈ RM×J and t ∈ RM .

We find the ellipsoidal approximation for WT as follows. Let E(At, bt) be the ellipsoid found at time

t that contains Wt. First, note that W1 = W2U = {W2u : Su ≤ t}, which is a polytope. Therefore, we

can use Theorem 2 to find an ellipsoid E(A1, b1) that contains W1. Next, at each step, we use the ellipsoid

E(At, bt) that containsWt to generate the ellipsoid E(At+1, bt+1) that containsWt+1. To find E(At+1, bt+1)

from E(At, bt), we solve the following optimization problem:

minimize − log det(A)

subject to A ∈ SK , b ∈ RK , N ∈ RJ×J+ , F ∈ SK , g ∈ RK , h ∈ R,F g

g> h− 1

 � −S>NS + λJt,
F g (AW )>

g> h b>

AW b I

 � 0,

(EC.2)

where

W =
[
W1 W2

]
, S =

[
0 −S t

]
∈ RM×(K+J+1), and Jt =


A2
t 0 A>t bt

0 0 0

b>t At 0 b>t bt − 1

 ∈ SK+J+1.

If (A∗, b∗,N∗,F ∗, g∗, h∗) is an optimal solution to (EC.2), then we use E(At+1, bt+1) = E(A∗, b∗) as the

ellipsoid for next time step. In Proposition EC.1, presented below, we prove that E(A∗, b∗) indeed contains

Wt+1. Thus, repeating this procedure, we obtain the ellipsoidal approximation E(AT , bT ) that containsWT .

In Figure 1, we depict the evolution of ET and WT as T is increased for the case when J = K = 2,

W1 =

0.9202 −0.0396

0.0777 0.9800

 W1 = I, and U = {u ∈ R2 : −e ≤ u ≤ e, ‖u‖1 ≤ 1.4}.

Proposition EC.1. Let E(At, bt) = {x ∈ RK : ‖Atx+ bt‖ ≤ 1} be the ellipsoid containing Wt. If the

matrix A ∈ SK++ and the vector b ∈ RK satisfy the constraints of (EC.2), then the ellipsoid E(A, b) contains

Wt+1.

Proof. See Section 2.1 of the electronic companion.
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Figure 1. Reachability in Linear Dynamical Systems. For different values of T , the dotted

curves depict the boundary of the actual reachable set WT , and the solid curves depict the

ellipsoidal approximation ET generated by our method.

Note that the time needed to generate ellipsoidal approximation to WT is linear in T , since we solve

T semidefinite programs whose size does not depend on T . This is an improvement from checking the

reachability exactly, where the size of the problems is quadratic in T . We now provide numerical experiments

to demonstrate the effectiveness of our approach on randomized instances of linear dynamical problems.

1.2 Numerical Experiments

For our experiments, we consider the control set U = {u ∈ RK : −e ≤ u ≤ e, ‖u‖1 ≤
√
K}, T = 30 time

steps, J = K and W2 = I. We randomly generate W1 such that the maximum eigenvalue is less than 1 and

the condition number is at most 2, which ensures that the system is stable. For given lengths of the state

vector K, this is achieved with the following MATLAB code:

function W1 = generate W1 (K)

max eigenvalue = 1 ;

condit ion number = 1 + rand ( ) ; % choose randomly between 1 and 2

X = randn(K) ;

[U, S , V] = svd (X) ;

s i n g u l a r v a l u e s = linspace ( condit ion number , 1 , K) ;

W1 = U ∗ diag ( s i n g u l a r v a l u e s ) ∗ V’ ; % update the s i n gu l a r va l u e s

W1 = max eigenvalue ∗ W1 / max(abs ( eig (W1) ) ) ;

end

Next, we explain the metric that we use to compare the volumes of the sets ET and WT . For a convex

3



K γ MVE Time (s) Exact Time (s)

2 1.18 0.13 52.3

5 1.24 0.48 87.1

10 1.30 3.2 205

20 1.39 55.5 325

Table 1. Reachability in Linear Dynamical Systems: The quality of the approximation of ET

(γ), the time required to generate ET and check the membership of 10, 000 points in ET (“MVE

Time”), and the time required to check the membership of the same points in WT (“Exact

Time”) for different lengths of the state vector.

and compact set S ⊆ RK , let γ(S) =
(∏K

k=1 ρk(S)
)1/K

, where ρk(S) = max{xk : x ∈ S} −min{xk : x ∈
S}, k ∈ [K]. Here, ρk(S) represents the length of the projection of S onto the kth coordinate, and γ(S)

represents the geometric mean of these lengths. We use the parameter γ = γ(ET )/γ(WT ) to measure the

closeness of the sizes of ET and WT . We can see that γ ≥ 1 since WT ⊆ ET , and the closer γ is to one, the

better ET approximates WT . As an example, in the case depicted in Figure 1, γ = 1.06 at time step T = 30.

For different values of K, we perform the experiment on 100 randomly generated instances. For each

instance, we record the time that it takes to check the membership within ET and WT of 10, 000 points

sampled randomly from [−10, 10]K . In Table 1, we present 1) average solution quality (γ), 2) the total

computational time required for generating ET and then checking the membership of the randomly sampled

points inside ET , and 3) the computational time required to establish the membership of these points inWT .

We can observe that, for K = 20, ET is about 39% bigger in size than WT . However, the computational

time needed to find ET and then checking the membership inside it is much less than checking the feasibility

of these points exactly.
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2 Proofs

2.1 Propositions

Proof of Proposition 1: For the set {x ∈ RK : Sx ≤ t, ‖Qx+ q‖2 ≤ 1}, then Esproc = E(A, b), where A

and b are optimal in the following optimization problem (see Appendix B.2):

minimize − log det(A)

subject to A ∈ SK , b ∈ RK , λ ∈ R+, µ ∈ RJ+,
0 1

2S
>µ A

1
2µ
>S 1− µ>t b>

A b I

+ λ


Q2 Qq 0

q>Q q>q − 1 0

0 0 0

 � 0.

(EC.3)

The dual of (EC.3) can be written as

maximize K + log det(−2F )− κ− tr(Γ)

subject to Ω ∈ SK , ξ ∈ RK , F ∈ SK , Γ ∈ SK , κ ∈ R,

Sξ ≤ κt,

tr

Ω ξ

ξ> κ

 Q2 Qq

q>Q q>q − 1

 ≤ 0,


Ω ξ F

ξ> κ 0

F 0 Γ

 � 0.

(EC.4)

To prove the theorem, we construct a pair of primal and dual feasible solutions which generate the same

objective function values to their respective problems. To this end, consider the following solution to the

primal problem (EC.3):

A = Q, b = q, µ = 0, λ = 1.

This solution is feasible since µ ≥ 0, λ ≥ 0 and
0 1

2S
>µ A

1
2µ
>S 1− µ>t b>

A b I

+ λ


Q2 Qq 0

q>Q q>q − 1 0

0 0 0

 =


Q2 Qq Q

q>Q q>q q>

Q q I

 =


Q

q>

I



Q

q>

I


>

� 0.

Next, consider the following solution to the dual problem (EC.4):

F = −1

2
Q−1, Γ =

I
2
, κ =

K

2
, ξ = κxc, Ω = κxcx

>
c + 2F 2,

where xc = −Q−1q is the center of the ellipsoid E . We claim that this solution is feasible to (EC.4). Under

the assumption that the center of the ellipsoid lies inside the polytope, we get that Sxc ≤ t, which implies
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that Sξ ≤ κt. Next, we have that
Ω ξ F

ξ> κ 0

F 0 Γ

 =


κxcx

>
c + 2F 2 κxc F

κx>c κ 0

F 0 I
2

 = κ


xc

1

0



xc

1

0


>

+
1

2


2F

0

I




2F

0

I


>

� 0,

where the last inequality uses the fact that κ = K/2 ≥ 0. Also,

tr

Ω ξ

ξ> κ

 Q2 Qq

q>Q q>q − 1

 = tr(ΩQ2) + 2ξ>Qq + κ(q>q − 1)

= tr((κxcx
>
c + 2F 2)Q2) + 2κx>c Qq + κ(q>q − 1)

= κx>c Q
2xc +

1

2
tr(I) + 2κx>c Qq + κ(q>q − 1)

=
1

2
tr(I)− κ =

K

2
− K

2
= 0.

Therefore, all constraints in the dual problem are satisfied. Finally, both of these solutions give an objective

function value of − log det(Q). Thus, A = Q and b = q is an optimal solution to the primal problem,

which implies that Esproc = E(A, b) = E(Q, q). Furthermore, the solution is unique because the feasible

region is convex and the objective function − log det(A) is strictly convex in the space of positive definite

matrices.

Proof of Proposition 2: To prove this result, we demonstrate that any feasible solution in (33) can be used

to construct a feasible solution to (29) with the same or lower objective value. To this end, consider a feasible

solution (A, b,V ,v) of (33). Now consider the following solution to (29):

Λ = −V , ρ = v.

The last two constraints of (33) imply that the constraints of (28) are satisfied. Also note that

− log det(A) = log det

(
1

2
(V >S + S>V )

)
≥ log det

(
1

2
(V >S + S>V )

)
+K(t>v − 1)

= log det

(
−1

2
(Λ>S + S>Λ)

)
+K(t>ρ− 1).

(EC.5)

Here, the first equality follows sinceA is symmetric, which implies thatA = (A+A>)/2 = (V >S+S>V )/2,

and the inequality follows from the first constraint of (33) since
∥∥V >t+ b

∥∥ ≥ 0. Therefore, the result

holds.

Proof of Proposition 3: The PLD restriction of (21) can be written as follows:

inf
x,y(·)

c>x+ sup
Q∈Q

EQ[(Dξ̃ + d)>y(ξ̃)],

s.t. x ∈ X ,

T`(x)>ξ + h`(x) ≤ (W`ξ +w`)
>(Yjξ + yj) ∀ξ ∈ Ξj ∀j ∈ [J ] ∀` ∈ [L].

(EC.6)
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First, for the objective function, observe that

sup
Q∈Q

EQ[(Dξ̃ + d)>y(ξ̃)] = sup
ν(·)≥0

∑
j∈[J]

∫
ξ∈Ξj

(Dξ + d)>(Yjξ + yj)ν(dξ)

s.t.
∑
j∈[J]

∫
ξ∈Ξj

ν(dξ) = 1,

∑
j∈[J]

∫
ξ∈Ξj

ξν(dξ) = µ,

∑
j∈[J]

∫
ξ∈Ξj

ξξ>ν(dξ) � Σ.

By weak duality, we get that

sup
Q∈Q

EQ[(Dξ̃ + d)>y(ξ̃)] ≤ inf α+ β>µ+ tr(ΓΣ)

s.t. α ∈ R,β ∈ RK ,Γ ∈ SK+ ,

α+ β>ξ + ξ>Γξ ≥ (Dξ + d)>(Yjξ + yj) ∀ξ ∈ Ξj ∀j ∈ [J ].

The constraint of the optimization problem above holds if and only if, for all j ∈ [J ], the optimal value of

the problem

inf
ξ∈RK

α+ β>ξ + ξ>Γξ − (Dξ + d)>(Yjξ + yj)

s.t. Sjξ ≤ tj , ‖Ajξ + bj‖2 ≤ 1,

is ≥ 0. Next, using the S-procedure (Lemma 7), we get that this constraint holds if the first semidefinite

constraint of (22) holds. Therefore, replacing the former by the latter, we get an upper bound on the optimal

decision rules problem. Similarly, the final constraint of (EC.6) is equivalent to the constraint that, for all

j ∈ [J ] and ` ∈ [L], the optimal value of the following optimization problem is greater than or equal to 0:

inf
ξ∈RK

(W`ξ +w`)
>(Yjξ + yj)− T`(x)>ξ + h`(x)

s.t. Sjξ ≤ tj , ‖Ajξ + bj‖2 ≤ 1.

Using Lemma 7, we get that the above constraint holds if the second semidefinite constraint of (22) holds.

Therefore, the SDP (22) provides a feasible decision rule approximation, and the optimal value of (22)

provides an upper bound to the optimal value of the DRO model (21).

Proof of Proposition EC.1: Consider the set W = W1E(At, bt) + W2U = {W1x + W2u : Su ≤
t, ‖Atx+ bt‖2 ≤ 1}. SinceWt ⊆ E(At, bt), we get thatWt+1 = W1Wt+W2U ⊆W1E(At, bt)+W2U =W.

Therefore, Wt+1 ⊆ W. Next, we find sufficient conditions that imply that an ellipsoid contains W, which,

in turn, implies that the ellipsoid contains Wt+1. To this end, note that W is an special case of the setup

in Remark 2 with P = {(x,u) ∈ RK+J : Su ≤ t, ‖Atx+ bt‖2 ≤ 1}, C = W and d = 0. Therefore, the
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ellipsoid E(At+1, bt+1) contains W if and only if there exist F ∈ SK+J , g ∈ RK+J , h ∈ R such that

F g

g> h− 1

 �C(K) 0 and


F g (At+1W )>

g> h b>t+1

At+1W bt+1 I

 � 0,

where K = {(x,u, τ) ∈ RK+J+1 : Su ≤ τt, ‖Atx+ τbt‖2 ≤ τ2}. Since the set P is defined by linear

and quadratic inequalities, using Theorem 4, we get that the constraints of (EC.2) imply that E(At+1, bt+1)

contains W. Hence, E(At+1, bt+1) contains Wt+1.

2.2 Claims in Example 1

In this section, we prove that in Example 1, Rcop = O(K1/4), and Rsmvie = Θ(
√
K). Consider the solution

A = k1I + k2ee>, b = k3e, N =


0 k4I 0

k4I 0 k5e

0 k5e
> 0

 ,

where, k1 =

√
K2 − 1

(
√
K − 1)K2

, k2 =
1

K

(
1 +

1

K
− k1

)
, k3 = − 1√

K
, k4 =

k2
1

2
, k5 = k2

(
k1 +

K

2
k2

)
.

It can be checked that this solution is feasible to (13). Therefore, Rcop ≤ (1/ det(A))1/K . The eigenvalues

of A are k1 +Kk2, and k1 with a multiplicity of K − 1. Therefore,

Rcop ≤ (1/ det(A))1/K =
(
(k1 +Kk2) kK−1

1

)− 1
K =

((
1 +

1

K

)
kK−1

1

)− 1
K

= O

(
1

k1

)
= O

(
K

1
4

)
.

Next, for Esmvie, consider the following solution to the primal problem (28): B = m1I+m2ee>, d = m3e,

and the following solution to the dual problem (29): ρ = 1/
√
K
[
0; e; 1

]
, Λ =

[
0; m4I +m5ee>; m6e

>
]
,

where

m1 =
K√
K + 1

, m2 =
1

K + 1
− 1√

K + 1
, m3 =

√
K

K + 1
, m4 =

√
K + 1

K
, m5 =

1−
√
K + 1

K2
, m6 = − 1

K
.

It can be verified that these solutions have the same objective function value, and are feasible—and therefore

optimal—to their respective problems. The eigenvalues of B are m1 +Km2, and m1 with a multiplicity of

K − 1. Therefore

det(B) = (m1 +Km2)mK−1
1 =

K

K + 1

(
K√
K + 1

)K−1

=
KK

(
√
K + 1)K+1

,

which implies that

lim
K→∞

Rsmvie√
K

= lim
K→∞

det(B)1/K

√
K

= 1.

Therefore, Rsmvie = Θ(
√
K).
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2.3 Claims in Example 2

Using S-procedure (Lemma 7), we substitute the semidefinite programming approximation for the inequali-

ties of (23), yielding the following approximation to (23):

inf x

s.t. x ∈ R, Y ∈ RK×K , y ∈ RK , ρ1 ≥ 0, ρ2 ≥ 0, λ1 ≥ 0, λ2 ≥ 0, 1
2 (Y + Y >) 1

2 (S>ρ1 + Y >e + y)

1
2 (S>ρ1 + Y >e + y)> −1 + e>y − t>ρ1

+ λ1J(s) � 0,

 − 1
2 (Y + Y >) 1

2 (S>ρ2 + Y >e− y)

1
2 (S>ρ2 − Y >e− y)> x− e>y − t>ρ2

+ λ2J(s) � 0,

(EC.7)

where

J(s) =
1

K

 4I −2e

−2e> −Ks

 .
The dual of the SDP (EC.7) is given by

sup h1

s.t. F1,F2 ∈ SK , g1, g2 ∈ RK , h1, h2 ∈ RF1 g1

g>1 h1

 � 0,

F2 g2

g>2 h2

 � 0,

tr

J(s)

F1 g1

g>1 h1

 ≤ 0, tr

J(s)

F2 g2

g>2 h2

 ≤ 0,

g1 − g2 = (h2 − h1)e,

F1 − F2 = e(g2 − g1)>,

Sg1 ≤ h1t, Sg2 ≤ h2t,

h2 = 1.

Consider the following cases:

• Case 1: 0 ≤ s ≤ 2. Consider the following solution to the dual problem:

F2 =
1

4
ee>, g2 =

1

2
e, h2 = 1, h1 =

9

8− s , F1 = F2 +
1 + s

8− see>, g1 = g2 −
1 + s

8− se,

and the following solution to the primal problem:

λ2 = 0, λ1 =
1

8− s , ρ1 = 0, ρ2 = 0, y =
8

K(8− s)e, Y = − 2

K(8− s)

(
I +

1

K
ee>

)
• Case 2: 2 ≤ s ≤ 4. Consider the following solution to the dual problem:

F2 =
(s

4

)2

ee>, g2 =
s

4
e, h2 = 1, h1 = 1 +

s

4
, F1 = F2 +

s

4
ee>, g1 = g2 −

s

4
e = 0,

9



and the following solution to the primal problem:

λ2 = 0, λ1 =
1

4 + s
, ρ1 =

2(s− 2)

K(4 + s)

0

e

 , ρ2 = 0, y =
4 + 2s

K(4 + s)
e, Y = − 2

K(4 + s)

(
I +

1

K
ee>

)

• Case 3: s ≥ 4. Consider the following solution to the dual problem:

F2 = ee>, g2 = e, h2 = 1, h1 = 2, F1 = 2ee>, g1 = 0,

and the following solution to the primal problem:

λ2 = 0, λ1 = 0, ρ1 =
1

K

0

e

 , ρ2 =
1

K

e

0

 , y =
1

K
e, Y = 0.

In all the three cases, the primal and the dual solutions are feasible to their respective problems, and

provide the same objective value which corresponds to the one presented in Example 2.
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[3] A. B. Kurzhanskĭı and I. Vályi. Ellipsoidal calculus for estimation and control. Nelson Thornes, 1997.

10


