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Two problems

polyhedron P described by linear inequalities, aT
i x ≤ bi, i = 1, . . . ,m

PSfrag replacements
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P

Problem 1: find minimum volume ellipsoid ⊇ P

Problem 2: find maximum volume ellipsoid ⊆ P

are these (computationally) difficult? or easy?
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problem 1 is very difficult

• in practice

• in theory (NP-hard)

problem 2 is very easy

• in practice (readily solved on small computer)

• in theory (polynomial complexity)

IAM-PIMS, Vancouver 3/15/04 2



Moral

very difficult and very easy problems can look quite similar

. . . unless you’re trained to recognize the difference
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Linear program (LP)

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m

c, ai ∈ Rn are parameters; x ∈ Rn is variable

• easy to solve, in theory and practice
• can solve dense problems with n = 1000 vbles, m = 10000 constraints
easily; far larger for sparse or structured problems
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Polynomial minimization

minimize p(x)

p is polynomial of degree d; x ∈ Rn is variable

• except for special cases (e.g., d = 2) this is a very difficult problem

• even sparse problems with size n = 20, d = 10 are essentially intractable

• all algorithms known to solve this problem require effort exponential in n

IAM-PIMS, Vancouver 3/15/04 5



Moral

• a problem can appear∗ hard, but be easy

• a problem can appear∗ easy, but be hard

∗ to the untrained eye
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What makes a problem easy or hard?

classical view:

• linear is easy

• nonlinear is hard(er)
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What makes a problem easy or hard?

emerging (and correct) view:

. . . the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.

— R. Rockafellar, SIAM Review 1993
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Convex optimization

minimize f0(x)
subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0, Ax = b

x ∈ Rn is optimization variable; fi : R
n → R are convex:

fi(λx+ (1− λ)y) ≤ λfi(x) + (1− λ)fi(y)

for all x, y, 0 ≤ λ ≤ 1

• includes least-squares, linear programming, maximum volume ellipsoid
in polyhedron, and many others

• convex problems are fundamentally tractable
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Maximum volume ellipsoid in polyhedron

• polyhedron: P = {x | aT
i x ≤ bi, i = 1, . . . ,m}

• ellipsoid: E = {By + d | ‖y‖ ≤ 1}, with B = BT Â 0
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E

sd

maximum volume E ⊆ P, as convex problem in variables B, d:

maximize log detB
subject to B = BT Â 0, ‖Bai‖+ aT

i d ≤ bi, i = 1, . . . ,m
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Moral

• it’s not easy to recognize convex functions and convex optimization
problems

• huge benefit, though, when you do
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Convex Analysis and Optimization



Convex analysis & optimization

nice properties of convex optimization problems known since 1960s

• local solutions are global
• duality theory, optimality conditions
• simple solution methods like alternating projections

convex analysis well developed by 1970s Rockafellar

• separating & supporting hyperplanes
• subgradient calculus
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What’s new (since 1990 or so)

• primal-dual interior-point (IP) methods
extremely efficient, handle nonlinear large scale problems,
polynomial-time complexity results, software implementations

• new standard problem classes
generalizations of LP, with theory, algorithms, software

• extension to generalized inequalities
semidefinite, cone programming
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Applications and uses

• lots of engineering applications
control, combinatorial optimization, signal processing,
circuit design, communications, . . .

• robust optimization
robust versions of LP, least-squares, other problems

• relaxations and randomization
provide bounds, heuristics for solving hard (e.g., combinatorial
optimization) problems
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Recent history

• 1984–97: interior-point methods for LP
– 1984: Karmarkar’s interior-point LP method
– theory Ye, Renegar, Kojima, Todd, Monteiro, Roos, . . .
– practice Wright, Mehrotra, Vanderbei, Shanno, Lustig, . . .

• 1988: Nesterov & Nemirovsky’s self-concordance analysis
• 1989–: LMIs and semidefinite programming in control
• 1990–: semidefinite programming in combinatorial optimization
Alizadeh, Goemans, Williamson, Lovasz & Schrijver, Parrilo, . . .

• 1994: interior-point methods for nonlinear convex problems
Nesterov & Nemirovsky, Overton, Todd, Ye, Sturm, . . .

• 1997–: robust optimization Ben Tal, Nemirovsky, El Ghaoui, . . .
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New Standard Convex Problem Classes



Some new standard convex problem classes

• second-order cone program (SOCP)
• geometric program (GP) (and entropy problems)
• semidefinite program (SDP)

for these new problem classes we have

• complete duality theory, similar to LP
• good algorithms, and robust, reliable software
• wide variety of new applications
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Second-order cone program

second-order cone program (SOCP) has form

minimize cT0 x

subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

with variable x ∈ Rn

• includes LP and QP as special cases
• nondifferentiable when Aix+ bi = 0

• new IP methods can solve (almost) as fast as LPs
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Example: robust linear program

minimize cTx
subject to Prob(aT

i x ≤ bi) ≥ η, i = 1, . . . ,m

where ai ∼ N (āi,Σi)

equivalent to

minimize cTx

subject to āT
i x+Φ−1(η)‖Σ1/2

i x‖2 ≤ 1, i = 1, . . . ,m

where Φ is (unit) normal CDF

robust LP is an SOCP for η ≥ 0.5 (Φ(η) ≥ 0)
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Geometric program (GP)

log-sum-exp function:

lse(x) = log (ex1 + · · ·+ exn)

. . . a smooth convex approximation of the max function

geometric program:

minimize lse(A0x+ b0)

subject to lse(Aix+ bi) ≤ 0, i = 1, . . . ,m

Ai ∈ Rmi×n, bi ∈ Rmi; variable x ∈ Rn
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Entropy problems

unnormalized negative entropy is convex function

− entr(x) =

n
∑

i=1

xi log(xi/1
Tx)

defined for xi ≥ 0, 1Tx > 0

entropy problem:

minimize − entr(A0x+ b0)

subject to − entr(Aix+ bi) ≤ 0, i = 1, . . . ,m

Ai ∈ Rmi×n, bi ∈ Rmi
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Solving GPs (and entropy problems)

• GP and entropy problems are duals (if we solve one, we solve the other)

• new IP methods can solve large scale GPs (and entropy problems)
almost as fast as LPs

• applications in many areas:
– information theory, statistics
– communications, wireless power control
– digital and analog circuit design
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Semidefinite program

semidefinite program (SDP):

minimize cTx
subject to x1A1 + · · ·+ xnAn ¹ B

• B, Ai are symmetric matrices; variable is x ∈ Rn

• ¹ is matrix inequality; constraint is linear matrix inequality (LMI)
• SDP can be expressed as convex problem as

λmax(x1A1 + · · ·+ xnAn −B) ≤ 0

or handled directly as cone problem
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Early SDP applications

(around 1990 on)

• control (many)
• combinatorial optimization & graph theory (many)
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More recent SDP applications

• structural optimization: Ben-Tal, Nemirovsky, Kocvara, Bendsoe, . . .
• signal processing: Vandenberghe, Stoica, Lorenz, Davidson, Shaked,
Nguyen, Luo, Sturm, Balakrishnan, Saadat, Fu, de Souza, . . .

• circuit design: El Gamal, Vandenberghe, Boyd, Yun, . . .
• algebraic geometry:
Parrilo, Sturmfels, Lasserre, de Klerk, Pressman, Pasechnik, . . .

• communications and information theory:
Rasmussen, Rains, Abdi, Moulines, . . .

• quantum computing:
Kitaev, Waltrous, Doherty, Parrilo, Spedalieri, Rains, . . .

• finance: Iyengar, Goldfarb, . . .
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Moment problems

µi = E ti, i = 1, . . . , 2n

for some probability distribution on R if and only if

H(µ) =













1 µ1 . . . µn−1 µn

µ1 µ2 . . . µn µn+1
... ... ... ...

µn−1 µn . . . µ2n−2 µ2n−1

µn µn+1 . . . µ2n−1 µ2n













º 0

• an LMI in µ
• similar results for bounded and half-bounded intervals; trigonometric
moments
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Moment bounds via SDP

problem: given bounds on moments, µ
i
≤ E ti ≤ µi, find bounds on

E
(

c0 + c1t+ · · ·+ c2nt
2n
)

= cTµ

maximize (minimize) E(c0 + c1t+ · · ·+ c2nt
2n)

subject to µ
i
≤ E ti ≤ µi, i = 1, . . . , 2n

over all probability distributions on R
can be expressed as SDP

maximize (minimize) cTµ

subject to µ
i
≤ µi ≤ µi, H(µ) º 0
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Portfolio risk

• portfolio of n assets invested for single period
• wi is amount of investment in asset i

• returns of assets is random vector r with mean r, covariance Σ
• portfolio return is random variable rTw

• mean portfolio return is rTw; variance is V = wTΣw

value at risk & probability of loss are related to portfolio variance V
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Risk bound with uncertain covariance

now suppose:

• w is known (and fixed)

• have only partial information about Σ, i.e.,

Lij ≤ Σij ≤ Uij, i, j = 1, . . . , n

problem: how large can portfolio variance V = wTΣw be?
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Risk bound via SDP

can get (tight) bound on V via SDP:

maximize wTΣw

subject to Σ º 0

Lij ≤ Σij ≤ Uij

(note extra constraint Σ º 0)

many extensions possible, e.g., optimize portfolio w with worst-case
variance limit
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Risk bounding example

variance bounding with sign constraints on Σ:

w =









1

2

−.5

.5









, Σ =









1 + + ?

+ 1 − −

+ − 1 +

? − + 1









(i.e., Σ12 ≥ 0, Σ23 ≤ 0, . . . )

result: maximum value of V is 10.1, with

Σ =









1.00 0.80 0.00 0.50

0.80 1.00 −.58 0.00

0.00 −.58 1.00 0.46

0.50 0.00 0.46 1.00









(which has rank 3, so LMI Σ º 0 is active)
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Relaxations & Randomization



Relaxations & randomization

convex optimization is increasingly used

• to find good bounds for hard (i.e., nonconvex) problems, via relaxation

• as a heuristic for finding good suboptimal points, often via
randomization
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Example: Boolean least-squares

Boolean least-squares problem:

minimize ‖Ax− b‖2
subject to x2

i = 1, i = 1, . . . , n

• basic problem in digital communications
• could check all 2n possible values of x . . .

• an NP-hard problem, and very hard in practice
• many heuristics for approximate solution
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Boolean least-squares as matrix problem

‖Ax− b‖2 = xTATAx− 2bTAx+ bT b

= TrATAX − 2bTATx+ bT b

where X = xxT

hence can express BLS as

minimize TrATAX − 2bTAx+ bT b
subject to Xii = 1, X º xxT , rank(X) = 1

. . . still a very hard problem
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SDP relaxation for BLS

ignore rank one constraint, and use

X º xxT ⇐⇒
[

X x
xT 1

]

º 0

to obtain SDP relaxation (with variables X, x)

minimize TrATAX − 2bTATx+ bT b

subject to Xii = 1,

[

X x
xT 1

]

º 0

• optimal value of SDP gives lower bound for BLS
• if optimal matrix is rank one, we’re done
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Interpretation via randomization

• can think of variables X, x in SDP relaxation as defining a normal
distribution z ∼ N (x,X − xxT ), with E z2

i = 1

• SDP objective is E ‖Az − b‖2

suggests randomized method for BLS:

• find X?, x?, optimal for SDP relaxation

• generate z from N (x?, X? − x?x?T )

• take x = sgn(z) as approximate solution of BLS
(can repeat many times and take best one)
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Example

• (randomly chosen) parameters A ∈ R150×100, b ∈ R150

• x ∈ R100, so feasible set has 2100 ≈ 1030 points

LS approximate solution: minimize ‖Ax− b‖ s.t. ‖x‖2 = n, then round

yields objective 8.7% over SDP relaxation bound

randomized method: (using SDP optimal distribution)

• best of 20 samples: 3.1% over SDP bound

• best of 1000 samples: 2.6% over SDP bound
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Interior-Point Methods



Interior-point methods

• handle linear and nonlinear convex problems Nesterov & Nemirovsky
• based on Newton’s method applied to ‘barrier’ functions that trap x in
interior of feasible region (hence the name IP)

• worst-case complexity theory: # Newton steps ∼ √problem size
• in practice: # Newton steps between 20 & 50 (!)
— over wide range of problem dimensions, type, and data

• 1000 variables, 10000 constraints feasible on PC; far larger if structure
is exploited

• readily available (commercial and noncommercial) packages
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Log barrier

for convex problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

we define logarithmic barrier as

φ(x) = −
m
∑

i=1

log(−fi(x))

• φ is convex, smooth on interior of feasible set

• φ→∞ as x approaches boundary of feasible set
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Central path

central path is curve

x?(t) = argmin
x

(tf0(x) + φ(x)) , t ≥ 0

• x?(t) is strictly feasible, i.e., fi(x) < 0

• x?(t) can be computed by, e.g., Newton’s method

• intuition suggests x?(t) converges to optimal as t→∞
• using duality can prove x?(t) is m/t-suboptimal
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Barrier method

a.k.a. path-following method

given strictly feasible x, t > 0, µ > 1

repeat

1. compute x := x?(t)

(using Newton’s method, starting from x)

2. exit if m/t < tol

3. t := µt

duality gap reduced by µ each outer iteration
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Typical convergence of IP method
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Typical effort versus problem dimensions

• LPs with n vbles, 2n
constraints

• 100 instances for each of
20 problem sizes

• avg & std dev shown
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Computational effort per Newton step

• Newton step effort dominated by solving linear equations to find
primal-dual search direction

• equations inherit structure from underlying problem

• equations same as for least-squares problem of similar size and structure

conclusion:

we can solve a convex problem with about the same effort as
solving 20–50 least-squares problems
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Problem structure

common types of structure:

• sparsity
• state structure
• Toeplitz, circulant, Hankel; displacement rank
• Kronecker, Lyapunov structure
• symmetry
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Exploiting sparsity

• well developed, since late 1970s

• direct (sparse factorizations) and iterative methods (CG, LSQR)

• standard in general purpose LP, QP, GP, SOCP implementations

• can solve problems with 105, 106 vbles, constraints
(depending on sparsity pattern)
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Other interior-point methods

more sophisticated IP algorithms

• primal-dual, incomplete centering, infeasible start
• use same ideas, e.g., central path, log barrier
• readily available (commercial and noncommercial packages)

typical performance: 20 – 50 Newton steps (!)
— over wide range of problem dimensions, problem type, and problem data
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Conclusions



Conclusions

convex optimization

• theory fairly mature; practice has advanced tremendously last decade

• qualitatively different from general nonlinear programming

• cost only 30× more than least-squares, but far more expressive

• lots of applications still to be discovered
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Shameless promotion

Convex Optimization, Boyd & Vandenberghe

• published by Cambridge University Press 2003; ready soon

• complete text available now (and in future) at
www.stanford.edu/~boyd/cvxbook.html
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