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Abstract

The starting point used by an interior point algorithm for linear and convex quadra-
tic programming may significantly influence the behaviour of the method. A widely used
heuristic to construct such a point consists of dropping variable nonnegativity constraints
and computing a solution which minimizes the Euclidean norm of the primal (or dual) point
while satisfying the appropriate primal (or dual) equality constraints, followed by shifting
the variables so that all their components are positive and bounded away from zero. In this
Short Communication a new approach for finding a starting point is proposed. It relies on
a few inexact Newton steps performed at the start of the solution process. A formal justifi-
cation of the new heuristic is given and computational results are presented to demonstrate
its advantages in practice. Computational experience with a large collection of small- and
medium-size test problems reveals that the new starting point is superior to the old one and
saves 20-40% of iterations needed by the primal-dual method. For larger and more difficult
problems this translates into remarkable savings in the solution time.
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1 Introduction

We are concerned in this paper with the efficient solution of linear and convex quadratic pro-
gramming problems using interior point methods (IPMs). Such problems are at the heart of
many more complicated optimization techniques and progress in their solution impacts the whole
optimization area. Following the notation of [9] we consider the following general primal-dual
pair of convex quadratic programming (QP) problems

Primal Dual

min cTx+ 1
2x

TQx max bT y − 1
2x

TQx
s.t. Ax = b, s.t. AT y + s−Qx = c,

x ≥ 0; y free, s ≥ 0,

(1)

where A ∈ Rm×n has full row rank m ≤ n, Q ∈ Rn×n is a positive semidefinite matrix,
x, s, c ∈ Rn and y, b ∈ Rm. In the special case when Q = 0 the problems become the pair of
primal-dual linear programming (LP) problems.

Standard interior point methods are very sensitive to the choice of a starting point. Many codes
use an idea of Mehrotra [17] and construct a point by solving an auxiliary quadratic programming
problem: min cTx + 1

2x
TQx + 1

2x
Tx s.t. Ax = b. In this problem all equality constraints are

satisfied, but the simple inequalities are ignored. The solution of such a problem may be obtained
by an explicit formula at a cost comparable to a single interior point iteration. Since the non-
negativity constraint x ≥ 0 is dropped in it, the solution might contain negative components.
Therefore to become an eligible starting point for an IPM, they need to be shifted to positive
values. A similar auxiliary problem is formulated to determine an initial dual solution (y, s).
Several attempts have been made to improve on this (heuristic) starting point selection and,
although some of them offered attractive alternative initialization methods for particular classes
of problems, to the best of the author’s knowledge, they do not offer a competitive approach
for the general case. It is worth mentioning that if a self-dual emdedding [21] is used then it is
possible to accommodate an arbitrary point and convert it into a starting point [19]. However,
the implementation of self-dual emdedding needs a slightly more involved linear algebra step
(one more back-solve per iteration) and we are not going to use it here.

In this paper we propose a new approach which finds a good initial point for interior point
methods applied to a general convex quadratic programming problem. We call it a crash start
technique because it follows a similar principle to that employed by simplex solvers and attempts
to guess a starting point which is closer to optimality than a default one. Crash start has proved
very useful in the context of simplex method for linear programming [2, 13, 14, 16]. Such
procedures usually look for an advanced initial basis in which columns corresponding to slack
and artificial variables are replaced by those corresponding to structural variables. The heuristics
are based on a general expectation that the more those structural columns are inserted into the
initial basis the closer it might be to the optimal basis.

The situation in interior point methods is significantly more complicated. Modern IPMs owe
their efficiency to the ability to follow closely the central path [9, 20]. Indeed, both the theory
and the computational practice confirm that, as long as the iterates remain in the proximity of
the central path, fast progress to optimality can be made. Conversely, if the iterates leave the
vicinity of the central path and prematurely approach the boundary of the feasible region, the
algorithm might get stuck taking small steps in the Newton direction and the convergence might
be disappointingly slow. This means in particular that IPMs cannot be started successfully from
an arbitrary point. An ideal initial point should satisfy several requirements:
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• it should be close to primal and dual feasibility;

• it should be well centred;

• it should be as close to optimality as possible.

Finding such a point is by no means easy!

In this paper we propose a practical method to construct a point which satisfies all three require-
ments. Recently there has been a major increase in interest in the use of iterative methods to
compute Newton directions in IPMs [5, 9] and a variety of preconditioners for Krylov subspace
methods applied in this context have been proposed. Many preconditioners have already been
proposed for the normal equations (Schur complement of the KKT system) [3, 4, 18] as well as
for the indefinite augmented form of the KKT system [7, 8, 15]. There is increasing evidence that
using inexact Newton directions [6] in interior point methods is well supported by the theory
[1, 11] and works well in practice [9]. Our crash start technique builds upon these developments.

We observe that at the beginning of the solution process an infeasible interior point method
works with large infeasibilities in the primal and dual spaces and a large duality gap. Therefore
computing highly accurate Newton directions is not necessary at this stage; very crude inexact
directions are able to offer noticeable progress in reducing infeasibilities and the duality gap.
Such inexact directions can be computed at a significantly lower cost than exact ones. Conse-
quently we propose to run several initial iterations with directions computed by a preconditioned
Krylov subspace method using a very simple (and inexpensive) preconditioner and asking only
for very relaxed accuracy to make sure that a few Krylov iterations are enough to deliver an
inexact solution. Our choice is a partial Cholesky preconditioner which was designed specially
for the matrix-free IPM [10]. This preconditioner has several advantages including simplicity
and ability to work with very limited (and easy to control) memory requirements.

In our developments in this Short Communication we will follow very closely the recent EJOR
survey [9] and therefore we will focus only on several computational aspects which are relevant to
the understanding of our crash start approach. Hence this short paper has the following simple
structure. In Section 2 we will present the key ideas of interior point methods and in Section 3
we will discuss in detail our new crash start procedure and its implementation. Although our
approach to generate an advanced initial solution is only a heuristic, we will provide some simple
theoretical justification for it. In Section 4 we will present a comparison of two variants of the
interior point method, one using a standard default starting point and one initialized with the
proposed crash start solution. Finally, in Section 5 we will give our conclusions.

2 Basics of Interior Point Methods

Path-following interior point methods are well-understood [9, 20] and very powerful optimization
techniques. An IPM for quadratic programming may be interpreted as an iterative method which
follows the path of solutions of the following perturbed first order optimality conditions for (1)

Ax = b,
AT y + s−Qx = c,

XSe = µe,
(x, s) ≥ 0.

(2)

We use a standard IPM notation in which X and S are diagonal matrices in Rn×n with elements
of vectors x and s spread across the diagonal, respectively and e ∈ Rn is the vector of ones.
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IPMs use the notion of a primal-dual central path, being the set of solutions of (2) for any µ > 0.
It can be shown that the set of such solutions forms a continuous path {(x(µ), y(µ), s(µ)) : µ > 0}
and much evidence has been gathered to date that interior point methods benefit from following
this path closely [12]. In this paper we consider a primal-dual infeasible IPM and therefore
define the symmetric primal-dual infeasible neighbourhood of the central path as follows

NS(γ, β) = {(x, y, s) | ‖ξp‖ ≤ βµ

µ0
‖ξ0p‖, ‖ξd‖ ≤ βµ

µ0
‖ξ0d‖, γµ ≤ xjsj ≤

1

γ
µ}, (3)

where ξp = b− Ax and ξd = c− AT y − s +Qx are the violations of primal and dual feasibility
constraints, respectively, the superscript zero denotes the initial values of the barrier parameter
µ and the infeasibilities ξp and ξd, γ ∈ (0, 1) controls the width of the neighbourhood and
β is a constant. From a computational perspective the most demanding task in IPMs is the
computation of the Newton direction (∆x,∆y,∆s) for the nonlinear system (2) which requires
solving the following system of linear equations





A 0 0
−Q AT I
S 0 X



 ·





∆x
∆y
∆s



 =





ξp
ξd
ξµ



 =





b−Ax
c−AT y − s+Qx

σµe−XSe



 . (4)

The parameter σ ∈ (0, 1) controls the aspiration of how much one would like to reduce the
barrier term µk+1 = σµk. Given the Newton direction, a maximum stepsize α which keeps the
new iterate (x̄, ȳ, s̄) = (x, y, s)+α(∆x,∆y,∆s) in the neighbourhood (3) is determined and then
the algorithm makes this step to a new iterate. We summarize the algorithm below.

Infeasible path-following method for quadratic programming

Parameters

σ ∈ (0, 1) barrier reduction parameter;
γ = 0.1, β = 2 parameters of the infeasible neighbourhood;
εp, εd, εo primal feasibility, dual feasibility and optimality tolerances:

IPM stops when
‖ξkp‖

‖ξ0p‖
≤ εp,

‖ξk
d
‖

‖ξ0
0
‖
≤ εd and (xk)T sk/n

1+|cTxk+1/2(xk)TQxk|
≤ εo.

Initialize IPM

iteration counter k = 0;
primal-dual point (x0, y0, s0) ∈ NS(γ, β);
barrier parameter µ0 = (x0)T s0/n;
primal and dual infeasibilities ξ0p = b−Ax0 and ξ0d = c−AT y0 − s0 +Qx0.

Interior Point Method

while (
‖ξkp‖

‖ξ0p‖
> εp or

‖ξk
d
‖

‖ξ0
d
‖
> εd or (xk)T sk/n

1+|cTxk+1/2(xk)TQxk|
> εo ) do

Update (reduce) the barrier µk+1 = σµk;

Solve the KKT system (4): find the primal-dual Newton direction (∆x,∆y,∆s).

Find α = max{α : (xk + α∆x, yk + α∆y, sk + α∆s) ∈ NS(γ, β) };
Make step

(xk+1, yk+1, sk+1) = (xk + α∆x, yk + α∆y, sk + α∆s).

Compute the infeasibilities: ξk+1
p = b−Axk+1 and ξk+1

d = c−ATyk+1−sk+1+Qxk+1;
Update the iteration counter: k := k + 1.

end-while
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The theory of IPMs requires a tight control of the speed at which the sequence {µk} converges to
zero. The right balance needs to be struck between keeping the iterates (x, y, s) in the interior,
that is satisfying XSe ≈ µe with x > 0 and s > 0, and forcing progress to optimality. Hence
to guarantee convergence IPMs gradually shrink the barrier term µ. If the iterates stay in the
neighbourhood (3) then the primal and dual infeasibilities are reduced at the same speed as the
barrier parameter µ. When µ gets sufficiently close to zero then, by virtue of (3), the violations
in all three equations in (2) get small and the algorithm terminates by finding an (approximate)
optimal solution.

We skip any detailed convergence analysis of the method and refer the interested reader to
[9, 20]. Instead, in the next section we will draw reader’s attention to several interesting features
of interior point methods which will then be exploited to construct an advanced initial point. In
particular, it is worth having a closer look at the structure of the first order optimality conditions
(2) and the corresponding Newton system (4).

3 Crash Start Procedure and its Implementation

The first two equations in (2) which correspond to primal and dual feasibility conditions in (1)
are linear. Using simple linear algebra manipulations it is easy to show that after a step to a
new point is made in the Newton direction (4) the new primal and dual infeasibilities satisfy
ξ̄p = (1 − α)ξp and ξ̄d = (1 − α)ξd. Hence as long as the stepsize α is bounded away from zero
the progress in reducing infeasibilities is very fast. The third equation in (2) corresponds to the
perturbed complementarity condition and is (mildly) nonlinear, bilinear in fact. Consequently,
the third equation in (4) displays a “symmetric” structure S∆x +X∆s = ξµ and proves very
handy when one evaluates what happens to the complementarity product after a step is taken
in the Newton direction. The gap at the new point becomes

x̄T s̄ = (x+ α∆x)T (s+ α∆s) = xT s+ α(sT∆x+ xT∆s) + α2∆xT∆s. (5)

Only the term ∆xT∆s which involves the second-order error remains difficult to handle and,
indeed, much of the effort of any theoretical analysis of IPMs focuses on obtaining bounds on
this term. If the second order term ∆xT∆s is kept small then significant progress can be made
in reducing the complementarity gap when making a step in the Newton direction.

IPMs work with perturbed optimality conditions and the barrier term µ in (4) is systematically
reduced by a factor of σ at each iteration. Therefore, for the efficiency of interior point algorithms
it is not necessary to solve this system of nonlinear equations to a high degree of accuracy. Recall
that (2) is only an approximation of the optimality conditions for (1) corresponding to a specific
choice of the barrier parameter µ and the barrier term will have to be reduced further to force
convergence.

Rather than solving (4) exactly, we will assume that the system is solved only approximately,
that is, an inexact Newton direction (∆x̃,∆ỹ,∆s̃) is computed which satisfies





A 0 0
−Q AT I
S 0 X



 ·





∆x̃
∆ỹ
∆s̃



 =





ξp
ξd
ξµ



+





rp
rd
rµ



 , (6)

where rp and rd denote errors in the primal and dual feasibility constraints, respectively and rµ
is the error in complementarity condition. We observe the following important property.
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Observation 3.1 Let δ ∈ [0, 1) be given. Assume an inexact solution (∆x̃,∆ỹ,∆s̃) of (6)
satisfies

‖rp‖ ≤ δ‖ξp‖, ‖rd‖ ≤ δ‖ξd‖ and ‖rµ‖ ≤ δ‖ξµ‖ (7)

and a step in this direction is taken with a maximum stepsize α which keeps the new iterate

(x̃, ỹ, s̃) = (x, y, s) + α(∆x̃,∆ỹ,∆s̃) (8)

in the infeasible symmetric neighbourhood (3). Then the new primal and dual infeasibilities
satisfy

‖ξ̃p‖ ≤ (1− α(1− δ))‖ξp‖ and ‖ξ̃d‖ ≤ (1− α(1 − δ))‖ξd‖. (9)

It is worth comparing what happens to infeasibilities when a step in the exact Newton direction
(4) is taken and when a step in the inexact Newton direction (6) is made. The use of exact
directions guarantees a fast reduction of infeasibilities as long as large stepsizes α are used.
One would wish the stepsizes to be as close to 1 as possible. If at any iteration α = 1 and
a full Newton step is made then the infeasibilities are reduced to zero and are guaranteed to
remain zero until termination of the algorithm. The use of inexact directions might slow down
the reduction of infeasibilities, but not so much. For example if δ ≤ 0.5 then ξ̃p and ξ̃d are
still guaranteed to be reduced by a factor of at least 1 − 0.5α. Considering that the first two
equations in (2) are linear, the fast reduction of errors in these equations is observed regardless
of whether exact or inexact Newton directions are used.

It is also interesting to analyze how the use of inexact directions affects the reduction of the
complementarity product (5). The gap at the new point (8) becomes

x̃T s̃ = (x+ α∆x̃)T (s+ α∆s̃) = xT s+ α(sT∆x̃+ xT∆s̃) + α2∆x̃T∆s̃. (10)

The second term in the summation is determined by the third equation in (6) hence

sT∆x̃+ xT∆s̃ = eT ξµ + eT rµ. (11)

In this case, an assumption similar to (7) which controls the norm of the error rµ is too general
to derive a rigorous bound which would guarantee that (11) forces sufficient reduction of the
complementarity gap. We would need a stronger condition, for example,

eT rµ ≤ −δeT ξµ. (12)

Such a requirement guarantees that the presence of the error rµ worsens the “optimizing” prop-
erties of inexact Newton direction only by a fraction. This is clearly an implementable condition
which can be verified while using any iterative method to solve (6).

A rigorous analysis of such a situation would also have to deliver bounds on the second-order term
∆x̃T∆s̃ to guarantee that this error is small in comparison with the other terms in (10). Such
analysis is very difficult. Besides we are not going to use inexact method to reach convergence.
Instead of that, we will use the inexact IPM only to provide an advanced starting point for the
standard (exact) method, i.e., we focus on providing a heuristic to generate a crash start point.

In summary, our crash start routine runs a few iterations of the inexact infeasible primal-dual
path-following algorithm. The method differs from an exact algorithm presented at the end of
Section 2 by using inexact directions obtained by solving (6) (instead of (4)). The accuracy
requirements (7) and (12) are imposed to guarantee sufficient progress of the algorithm. For the
success of our approach it is crucial to be able to solve equations (6) very fast. We expect to
achieve it by (i) using an iterative scheme with an inexpensive preconditioner, and (ii) asking
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only for a loose accuracy δ in (7) and (12). This will be delivered by applying the partial
Cholesky preconditioner used in the matrix-free interior point method [10]. We refer the reader
to [9, 10] for more detail.

The Newton equation system—whether exact (4) or inexact (6)—involves the same highly struc-
tured block 3x3 matrix. It is usually reduced to a 2x2 (or a 1x1) system by eliminating ∆s (or
both ∆s and ∆x). In a standard IPM such systems are usually solved by a direct approach. In
the approach proposed in this paper we apply the preconditioned conjugate gradient method to
solve the 1x1 system resulting from the reduction of (6). Below we describe in more detail the
proposed crash start technique.

We set very loose requirements on the accuracy of Newton directions, for example, by choosing
δ = 0.1 in (7) and run a few very inexpensive interior point iterations until the infeasibilities
in the primal and dual spaces and the duality gap are noticeably reduced compared with their
initial values. This corresponds to running a path-following algorithm similar to that presented
at the end of Section 2 with the following primal feasibility, dual feasibility and optimality
tolerances

εp = 10−3, εd = 10−3 and εo = 10−1, (13)

respectively. Inexact Newton directions are computed by reducing (6) to the normal equations
form and solving it using the special preconditioned conjugate gradient (PCG) method which
employs the partial Cholesky preconditioner [10] of the normal equation matrix. The precon-
ditioner is allowed to use at most kmax columns in the partial Cholesky. We set the accuracy
requirement in PCG to εPCG = 10−3, however, to avoid excessively long runs we additionally
limit the number of PCG iterations at a user-defined maximum, PCGmax. In fact, we are ready
to accept quite inaccurate directions following the logic justified by Observation 3.1 that even
such inexact directions guarantee good progress in reducing primal and dual infeasibilities.

When the inexact infeasible algorithm terminates by satisfying conditions (13), the last IPM
iterate (xk, yk, sk) is passed as a crash start point to a standard primal-dual path-following
interior point algorithm which then finds the optimal solution to high tolerances.

It is worth adding that it is possible to run the matrix-free method with more demanding stop-
ping criteria, that is with smaller feasibility and optimality tolerances. However, this would
require increasing the rank of the partial Cholesky factorization to produce a better precondi-
tioner and allowing it to perform more conjugate gradient iterations to reduce the error in the
inexact Newton directions.

4 Computational Results

The crash start procedure proposed in this paper has been implemented in the author’s research
interior point solver HOPDM [9]. Below we compare the crash start version against the standard
HOPDM solver by applying both to solve a large set of linear and quadratic programming
problems. All our tests have been performed on a MacBook Pro with Intel Core i7 processor
running at 2.3 GHz with 6MB level 3 cache and 16GB of RAM.

In our first experiment, we have tested the approach on a collection of 111 small- to medium-
scale linear programs: 95 problems available from netlib http://www.netlib.org/lp/data/

and 16 problems of Kennington http://www.netlib.org/lp/data/kennington/. The sizes
of netlib problems vary from a few hundred to a few thousand constraints and variables and
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therefore many of these problems are solved in a small fraction of a second. The sizes of network
problems in the Kennington collection are larger: there is one problem with more than 100,000
constraints, several problems have a few hundred thousand variables and just one problem with
the number of nonzero entries in the matrix A exceeding 1,000,000. The solution of each of
these problems usually takes a few seconds. These two collections still provide a reasonable set
of test examples and it is worth checking how a new method performs on them.

To evaluate the performance of the crash start heuristic we have applied it to all problems from
these two collections. We run the matrix-free method until conditions (13) are satisfied and then
switch to standard IPM which uses exact Newton directions. The matrix-free method is run
with the partial Cholesky preconditioner limited to kmax = 100 columns and the preconditioned
conjugate gradient method attempts to achieve the relative accuracy εPCG = 10−6, but if
it struggles with reaching this accuracy then it is interrupted after at most PCGmax = 100
iterations.

The aggregated results of these runs for both test collections are presented under the heading
“Simple Crash” in columns 5–8 of Table 1. We report the number of crash iterations (iC) and
the associated time spent in constructing crash start point (tC), followed with the performance
measures (its and time) of the standard IPM iterations executed to reach optimality. As a
reference, in columns 3 and 4 of Table 1, we report the number of IPM iterations and the CPU
time when the standard primal-dual code HOPDM [9] is used, employing a direct solver to
compute the exact Newton direction at each iteration.

Problem Set No of problems
HOPDM Simple Crash

its time iC tC its time
Netlib 95 1297 30.70 603 11.59 789 21.74
Kennington 16 297 157.91 93 18.49 219 118.38
Totals 111 1594 188.61 696 30.08 1008 140.12

Table 1: Crash start results for netlib and Kennington problems.

Observe that the use of inexact Newton directions in the first phase of optimization only
marginally increases the overall number of interior point iterations. The total numbers of iter-
ations needed to solve all 111 problems are reported in the last row of Table 1. It has grown
from 1594 (standard HOPDM) to 696+1008 = 1704, a growth of merely 7%. However, the
use of the crash start has reduced the number of expensive IPM iterations from 1594 to 1008
which is a reduction of nearly 37%. Naturally the reduction of such iterations usually translates
into CPU time savings and these are more significant for problems which need an expensive
Cholesky factorization. Indeed, the solution time of all 111 problems has been reduced from
188.61s to 30.08+140.12 = 170.20s, which is about 10% saving. Observe that if the problem is
very easy and the Cholesky factor of the normal equations matrix is very sparse (as is the case of
many linear programming problems) then an IPM iteration which computes the exact direction
by using a direct solver is hard to compete with. In such case an inexact solution of Newton
system which performs several CG iterations each involving multiplications with matrix A and
its transpose is simply too expensive. This is clearly seen in case of solving the netlib problems
for which the overall solution time has increased from 30.70s to 11.59+21.74 = 33.33s.

We illustrate this by reporting in Table 2 more details of the runs for a small but representative
subset of linear programs. For three problems from the Netlib collection and three problems
from the Kennington collection we report the number of nonzero entries in the matrix A and
in the Cholesky factor L of the normal equation matrix as well as the number of iterations and
CPU time in seconds for the standard primal-dual interior point method, HOPDM. Then in
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the last six columns of Table 2 we report the largest recorded number of nonzero entries in the
partial Cholesky preconditioner nz(P), the largest recorded number of CG iterations and, finally,
the numbers of crash iterations (iC) and exact IPM iterations (its) along with the CPU times
in seconds (tC and time, respectively).

Problem
HOPDM Simple Crash

nz(A) nz(L) its time nz(P) CG iC tC its time

pilot 43220 231045 17 0.65 67756 100 11 0.83 11 0.40
pilot87 73804 428310 16 1.70 93573 100 8 0.96 11 1.08
stocfor3 74004 264372 21 0.76 2294 100 7 1.03 16 0.54
ken-13 139834 204506 15 0.74 21261 39 2 0.20 13 0.59
pds-10 140063 1594136 18 12.56 10414 59 5 0.75 15 10.18
pds-20 304153 6678041 21 116.50 3646 100 6 2.79 17 92.93

Table 2: Simple Crash: Sparsity of factors and CPU times.

The analysis of these results confirms that if too much effort is spent in the conjugate gradient
algorithm to compute inexact Newton directions then the CPU time to construct the crash
start point exceeds the savings resulting from doing fewer exact IPM iterations. This is not
a surprise; similar observations were made when the matrix-free method [9, 10] was applied to
other sparse problems with inexpensive Cholesky factors of the normal equation matrix. Indeed,
unless the cost of computing this Cholesky factor is much higher than the cost of matrix-vector
multiplications with A and its transpose (required at each CG iteration), it is simpler and more
efficient to compute the exact Newton directions. This is demonstrated for example in the
time needed to perform 7 matrix-free iterations when solving stocfor3. To execute 100 CG
iterations, 200× 74004 floating point operations are needed to do matrix-vector products alone
and this significantly exceeds the effort to compute and apply the Cholesky factor which has
264372 nonzero entries.

These observations have led us to propose a significantly more aggressive strategy for computing
the crash start point. To avoid long runs of the iterative method when solving Newton equations,
we set the maximum number of inexact iterations to 6 and the maximum number of CG iterations
when solving any linear equation to PCGmax = 6. The results of runs of such a (better) crash
start strategy are presented in Table 3. The restrictions imposed on numbers of inexact iterations
and CG steps cut down the time spent to compute a crash start point significantly. Although
the numbers of exact IPM iterations might have increased slightly compared with the simple
crash (Table 2), this new strategy is more likely to guarantee time savings over the default exact
method.

Problem
HOPDM Better Crash

nz(A) nz(L) its time nz(P) CG iC tC its time

pilot 43220 231045 17 0.65 70209 6 6 0.09 14 0.50
pilot87 73804 428310 16 1.70 94889 6 6 0.13 15 1.51
stocfor3 74004 264372 21 0.76 2294 6 6 0.18 17 0.60
ken-13 139834 204506 15 0.74 23389 6 5 0.26 10 0.44
pds-10 140063 1594136 18 12.56 5656 6 6 0.31 17 11.64
pds-20 304153 6678041 21 116.50 2445 6 6 0.73 15 81.23

Table 3: Better Crash: Sparsity of factors and CPU times.

In our next experiment the same crash start is applied to solve larger linear programs made avail-
able by Dr C. Meszaros at http://www.sztaki.hu/~meszaros/public ftp/lptestset/, used
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also in Prof. H. Mittelmann’s benchmarks of LP solvers http://plato.asu.edu/bench.html.
In Table 4 we report problem sizes. Some of the problems have several hundred thousand con-
straints, more than a million of variables and tens of million nonzero entries in A. Then we
report the solution statistics for the standard primal-dual interior point method, HOPDM: the
number of nonzero entries in the Cholesky factor L of a 2x2 or 1x1 system (nz(L)), the number
of IPM iterations and CPU time in seconds. Finally in the last five columns we report the largest
recorded number of nonzero entries in the partial Cholesky preconditioner nz(P), the numbers
of crash iterations (iC) and exact IPM iterations (its) along with the CPU times in seconds (tC
and time, respectively).

Problem
Dimensions HOPDM Better Crash

rows columns nonzeros nz(L) its time nz(P) iC tC its time
dbic1 43200 183235 1217046 1827660 26 14.14 288104 6 1.71 21 10.96
degme 185501 659415 8714608 55486470 17 2299.81 18269758 6 41.62 16 2032.17
karted 46502 133115 1888729 38743737 10 841.61 4643676 6 8.44 9 700.28
neos 479119 36786 1084461 9719640 40 204.96 785236 6 6.48 32 158.61
rail4284 4284 1092610 12372358 5706959 21 198.99 302302 6 10.01 18 164.30
sgpf5y6 246077 308634 902275 1260077 22 8.24 2170 6 1.86 20 6.94
spal-004 10203 321696 46167727 43432068 20 2885.96 878200 5 11.69 19 2651.21
storm1000 528185 1259121 4228817 10698471 62 308.52 587 6 10.20 57 276.41
tp-6 142752 1014301 12440225 29154387 19 1074.00 14232942 6 42.81 16 859.22
ts-palko 22002 47235 1119043 15482659 11 206.49 2194964 6 3.33 11 190.19

Table 4: Crash start results for large linear programs.

The analysis of these results reveals that for more difficult linear programs crash start is an
attractive technique which reduces the overall time needed to solve the problems. To avoid
obfuscating the results, all runs reported in Table 4 have been obtained with the same rule
to decide when a switch from crash to standard (exact) iterations is made as those reported in
Tables 3 and 6. However, the analysis of these results indicates that it might be useful to perform
a fine-tuning of the heuristic and allow such a switching between crash and standard iterations to
become problem-dependent. Following the referee’s suggestion, we have implemented a simple
dynamic switching mechanism. We compare the flop estimates of the last inexact iteration Ci

with that of exact iteration Ce and as soon as Ci > 0.5Ce we switch to exact algorithm. The
estimates of costs are

Ci = flops(P ) + itsCG × (nz(P ) + 2nz(A))

Ce = flops(L) + 2× (nz(L) + 2nz(A)),

where flops(P ) and flops(L) are flop counts to compute the partial Cholesky preconditioner and
the Cholesky factor, respectively, and nz(K) denotes the number of nonzero entries in matrix K.
We also set εo = 10−3 in (13) to allow more inexact iterations if those are inexpensive. We have
repeated test runs for all large linear programs and report the results in Table 5. We observe
that a dynamic switch from inexact to exact iterations usually improves the solution time.

Problem
Better Crash Crash with Fallback

iC tC its time iC tC its time
dbic1 6 1.71 21 10.96 8 1.99 20 10.46
degme 6 41.62 16 2032.17 6 41.62 16 2032.17
karted 6 8.44 9 700.28 9 12.70 8 639.15
neos 6 6.48 32 158.61 7 7.33 34 168.61
rail4284 6 10.01 18 164.30 5 8.13 18 164.74
sgpf5y6 6 1.86 20 6.94 7 2.17 18 6.37
spal-004 5 11.69 19 2651.21 8 17.22 18 2544.18

Table 5: Crash start results for large linear programs.
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Problem
Better Crash Crash with Fallback

iC tC its time iC tC its time
storm1000 6 10.20 57 276.41 11 17.88 52 251.14
tp-6 6 42.81 16 859.22 7 50.19 15 801.46
ts-palko 6 3.33 11 190.19 10 5.26 10 174.39

Table 5: Crash start results for large linear programs.

In our final experiment we run the same crash start routine on medium-scale quadratic program-
ming problems made available by Prof. H. Mittelmann. The interested reader may generate
them using AMPL files from: ftp://plato.la.asu.edu/pub/vlgqp.txt. In Table 6 we com-
pare the performance of our better crash start routine and the standard primal-dual solver
HOPDM [9] using its default settings. The maximum number of inexact iterations is set to
6 and the maximum number of CG iterations at any stage is also limited to 6. For standard
HOPDM runs we report the number of nonzeros in the Cholesky factor L of a 2x2 or 1x1 system,
the number of IPM iterations and the CPU time in seconds. For crash start runs we report the
largest recorded number of nonzero entries in the partial Cholesky preconditioner nz(P), the
numbers of crash iterations and exact IPM iterations along with the CPU times in seconds.

Problem
HOPDM Better Crash

nz(L) its time nz(P) iC tC its time

aug2dcqp 456846 8 0.39 1105 5 0.20 3 0.10
aug2dqp 444184 9 0.34 1147 4 0.14 5 0.14
aug3d 2446246 9 10.41 763 6 0.37 8 8.28
aug3dc 5269968 19 61.70 677 6 0.68 17 54.57
aug3dcqp 5336157 17 54.97 665 6 0.50 15 49.03
aug3dqp 1507295 10 2.70 1634 4 0.13 6 0.92
sqp2500-1 1909672 14 17.16 179692 6 0.22 11 14.07
sqp2500-2 1909275 13 14.61 177263 6 0.21 10 12.44
sqp2500-3 9874267 13 164.07 410575 6 0.57 10 121.21

Table 6: Crash start results for quadratic programs.

5 Conclusions

A new strategy to construct a crash start solution for interior point methods has been proposed in
this paper. It exploits the inherent ability of IPMs to make very fast progress at the beginning
of optimization by using inexact (hence inexpensive to compute) Newton directions. A brief
theoretical justification of the crash start strategy has been provided and a practical algorithm
has been demonstrated to deliver noticeable improvement over a standard implementation of
the interior point method.
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