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Temporal Logic Can Be More Expressive 

PIERRE WOLPER* 

Computer Science Department, 
Stanford University, Stanford, California 94305 

It is first proved that there are properties of sequences that are not expressible in 
temporal logic, even though they are easily expressible using, for instance, regular 
expressions. Then, it is shown how temporal logic can be extended to express any 
property definable by a right-linear grammar and hence a regular expression. 
Finally, a complete axiomatization and a decision procedure for the extended 
temporal logic are given and the complexity of the extended logic is examined. 

1. INTRODUCTION 

To state or prove properties of  concurrent programs, it is often necessary 
to deal not only with the input/output behavior of  the program but also with 
its entire execution sequence. This has led to the development of  specification 
languages for concurrent programs that are oriented toward the description 
of  sequences. Among these languages, one can distinguish those based on 
regular expressions, like "path expressions" (Habermann, 1975) or "flow 
expressions" (Shaw, 1979) and those based on a logic of  sequences like 
Temporal  Logic (Manna and Pnueli, 1981; Gabbay,  Pnueli, Shelah, and 
Stavi, 1980). 

Temporal logic has been shown to be adequate for expressing a wide 
variety of  properties of  the execution sequences of  concurrent programs such 
as partial correctness, termination, mutual exclusion, accessibility, or 
liveness (Manna and Pnueli, 1981). Based on the fact that the propositional 
version of  temporal logic (PTL) is as expressive as the first-order theory of  
linear order, it has even been called expressively complete. 

In this paper, we prove that there are, nevertheless, properties of  sequences 
that cannot be expressed in PTL but that are easily expressible in languages 
based on regular expressions. An example of  such a property is that a given 
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event has to happen exactly every n steps of the computation and can either 
happen or not at other steps. This could, for instance, express that a program 
has to check for the occurrence of a given condition every n execution steps. 

We then introduce an extended temporal logic (ETL) that can express any 
property of a sequence definable by a right-linear grammar. To do this, we 
give a method for defining a temporal operator corresponding to any right- 
linear grammar. We show how to extend the axiomatization of PTL to 
include these operators and prove the extended axiomatization complete. We 
also give a decision procedure for ETL and characterize its complexity 
which turns out to be the same as that of PTL (PSPACE-complete). 

2. PROPOSITIONAL TEMPORAL LOGIC: DEFINITION 

Propositional temporal logic (PTL) is classical propositional logic 
extended with four "temporal" operators: O, ~,  r-q, and U. The first three are 
unary, the last binary. Intuitively, for a sequence, [ ] f  is true i f f  is true in all 
future states of that sequence; O f  is true if f is true in the next state in the 
sequence; ~ f  is true if f is true in some future state (is eventually true) and 
f l  U f2 is true if f~ is true for all states until the first state where f2 is true. 
More precisely, we have the following: 

Syntax 

PTLformulas are built from 

(i) A set 9 of atomic propositions: Pl ,  P2, P3 ..... 

(ii) Boolean connectives: A ,7 .  

(iii) Temporal operators: © ("next"), [] ("always"), ¢> ("eventually"), 
U ("until"). 

The formation rules are: 

(i) An atomic proposition p ~ 3 is a formula. 

(ii) If f l  and f2 are formulas, so are 

f l  A 72, -771, Of , ,  [2]fl , ~f~, A U A .  

We also use V and ~ as the usual abbreviations and parentheses to resolve 
ambiguities. 

Semantics 

A structure for a PTL formula (with a set 9 of atomic propositions) is a 
triple d = (S, N, n) where 
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(i) S is a finite or enumerable set of states. 

(ii) N: (S--, S) is a total successor function that for each state gives a 
unique next state. 

(iii) n: (S--* 2 3 )  assigns truth values to the atomic propositions of the 
language in each state. 

For a structure ~¢" and a state s G S we have 

( d , s ) ~ p  iff p E n ( s ) ,  

( d , s ) ~ f l A f 2  iff (5~¢' ,s)~fl  and ( d , s ) ~ f 2 ,  

(sO', s) ~ ~ f  iff not (sg, s) ~ f ,  

( d , s ) ~ O f  iff (se',N(s))m fi 

In the following definitions, we denote by Ni(s) the ith state in the sequence 

s, U(s), U(U(s)), N(N(N(s))) .... 

of successors of a state s: 

( d ,  s) ~ t3 f  iff 

( d ,  s) ~ ~ f  iff 

( d ,  s) ~ f l  U A  iff 

(Vi >i 0 ) ( ( d ,  Ni(s)) ~ f )  

(3i >1. O)((J,  Ni(s)) ~ f )  

(Vi >~ O)((d, Ni(s)) ~ fl)  or 

(~i >1 O) ( ( d ,  Ni(s)) ~ f2 

and Vj (0 <~j < i D ( d ,  NJ(s)) ~ f~)) 

An interpretation ~2" = (~t ,  So) for PTL consists of a structure d and an 
initial state s o ~ S. We will say that an interpretation • = (d,So) satisfies a 
formula f iff ( d ,  so) ~ f Since an interpretation 3" uniquely determines a 
sequence 

0 = So, N(so), N2(so), N3(so) .... 

we will often say "the sequence o satisfies a formula" instead of "the inter- 
pretation ~7 satisfies a formula." 

There are several variants of the definitions we have given here. For 
instance, in Gabbay, Pnueli, Shelah and Stavi (1980), an operator Ue that is 
similar to U but requires that f2 is eventually true is defined. It is 

( d , s ) ~ f ~  U e f  z iff (Si>~O)((d, N i ( s ) )~ f z  

and Vj(O ~< j < i ~ ( d ,  NJ(s)) ~ fO ) -  
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The relation between U and UE is 

f ,  UEf2-- f l  U f2 A ~f2. 
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3. PTL: AXIOMATIZATION, DECISION PROCEDURE, AND COMPLEXITY 

Propositional temporal logic has a simple complete axiomatization. The 
following is a variant of the system proved to be complete in Gabbay, 
Pnueli, Shelah, and Stavi, (1980) and also described in Manna, (1981). 

Axiom schemas: 

Inference rules: 

b D(p D q) ~ ( • p  ~ r-lq), 

b O ~ p  = ~ Op, 

~- © (p ~ q) D (©p ~ O q), 

~- [2p~ p A Op A OVlp, 

~- [] (p ~ O p) ~ (p ~ r-lp), 

b r q p ~ p U q ,  

F- p Uq =- q V (p A O(p Uq)). 

(A1) 

(A2) 

(A3) 

(A4) 

(A5) 

(16)  

(A7) 

(A8) 

If w is a propositional tautology, then b w, 

If t--w~ ~ w 2 and Hwl,  then ~-w2, 

If b w, then ~- [] w, 

(R1) 

(R2) 

(R3) 

As will be seen later, our results on extended temporal logic imply that the 
two axioms concerning "until" (U) can be replaced by 

~- p Uq Dq V (p A O ( p  Uq)), (19)  

~- [u A 13(u D q V (p A Ou)] ~ p Uq. (A10) 

The last axiom is an explicit induction axiom for U which makes proofs of 
statements involving U substantially easier. 

PTL has what is often called the small model property. This means that if 
a PTL formula of length l is satisfiable, then it is satisfiable in a structure 
(sg, So) of size at most k I for a fixed k (i.e., it has a model of size at most 
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U). This gives an obvious decision procedure for satisfiability of PTL 
formulas (check all possible models with less than k t states). 

This decision procedure can be quite wasteful as it always looks at all 
possible models. It can be improved. The idea is to use a tableau-like 
procedure that is more goal directed in the sense that it tries to construct a 
model satisfying the formula state by state instead of searching through all 
possible models. In the next section we will give such a decision procedure 
for ETL. This decision procedure will also be applicable to PTL, since ETL 
contains PTL. 

As far as characterizing the complexity of satisfiability for PTL, it turns 
out that one can apply to PTL the techniques developed in Halpern and Reif 
(1981) to prove that strict deterministic propositional dynamic logic is 
PSPACE-complete. We thus have the following result: 

THEOREM 3.1. Satisfiability f o r  PTL is PSPACE-complete.  

This theorem is proved in Sistla and Clarke (1982). 

4. EXPRESSIVENESS OF PTL 

Following Pnueli (1977) and Manna and Pnueli (1981), temporal logic 
can be used to express various properties of programs. Consider a system of 
m concurrent processes in which each atomic instruction i of process j is 
labeled l~. The "initial" label for process j is l~ and the "final" label l~. If the 
input predicate for the program is ¢ and the output predicate is ~, and if we 
denote the fact that process j is at location l~" by atl{ then, total correctness 
can be expressed as 

(afr o A ¢) ~ O (at-f e A ~), 

where /0 = (1 ol ..... 10)," [e=(l~ ..... l~) and for a set of labels l, atl=- 
A i  atli, li E [. 

Mutual exclusions between the instructions at locations lJi " and l~', can be 
expressed as 

(afr o A ¢) D [3~(atl~ A atl~:). 

That l{ will always be reached from l~ can be expressed as 

(afr o A ¢) ~ [] (atlJk D Oatl~). 

In his doctoral thesis Kamp (1968) proved that a propositional temporal 
logic including the "Until" operator is as expressive as the first order theory 
of linear order. This theory is the first order theory of N (the natural 
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numbers) with equality, the binary relation < and a set of unary predicates. 
Based on this result he called such temporal logics expressively complete. Let 
us immediately point out that though PTL and the first order theory of linear 
order are expressively equivalent, they have very different properties. For 
instance PTL is PSPACE-complete whereas the first order theory is 
nonelementary (Meyer, 1975). 

In Gabbay, Pnueli, Shelah, and Stavi (1980) Kamp's result was restated 
and the term "expressively complete" was applied to the logic we have 
defined here. This characterization appears to be ill-chosen at least for the 
use of PTL in computer science. Indeed, there are properties that are not 
expressible in PTL and hence also not expressible in the first-order theory of 
linear order. Many of these properties can be of interest when dealing with 
execution sequences of programs. A simple example of such a property is 
that a given proposition p has to be true in every even state of a sequence. 
We will denote that property by even(p). 

Note. A formula like 

p A [ ] (p  ~ O~p) A []] (-~p ~ Op) 

does not express even(p). Indeed it is not satisfied by the sequence where p 
is always true, which clearly satisfies even(p). 

To prove that even(p) is not expressible in PTL we will prove a slightly 
more general result. Let us denote by pi(~p)pO, the sequence where p is true 
in the first i states, false in the state i + 1 and true in all states after that. We 
can then prove 

THEOREM 4. I. Given a proposition p, any PTL formula f (p )  containing 
n "next" (0) operators has the same truth value on all sequences of the form 
pi(~p) p,O, i > n. 

Proof We have to prove that the truth value of a formula f (p )  on a 
sequence p((~p)pO,, where i > n does not depend on i. For convenience, let 
us denote the truth value o f f  on pi(_,p)pO, by Ifli. The proof proceeds by 
induction. We prove that the theorem holds for the formula f,  assuming that 
it holds for its subformulas. 

Case 1. f ( p )  is an atomic proposition. Thus f (p )=-p  and always 
I f ( P ) l , -  T. 

Case 2. f (p )  is f l  A f2, f l  V f2 or ~ f l .  This case follows immediately 
from the induction hypothesis. 

Case 3, f (p )  is [3f  By the definition of 13, 

It]fie = - I f  I, A I f ] , - ,  A ..- A I f l ,+ ,  A It:3ft, 
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and by the induction hypothesis, 

I t3 f l i -  lfln+ l A l[]fB. 

Case4. f ( p )  is Of. We have that tO f i t  = Ifl~-, and by the induction 
hypothesis ]fli-, is independent of i as i -  1 > n - 1 and f contains n - 1 
"next" (O) operators. 

Case 5. f ( p )  is f l  U f2. Given (A8), 

I f 1 U f 2 t , - t L I ,  v (If, le A (tAle , 

v ( I f l l , - ,  A ... A ( I A I . + I  v ( I f ,  l .+ l  A If,  U A I , ) ) . "  ))) 

and by the induction hypothesis, 

If ,  Uf21i = (IAI,+, V (If, l,+, A If, Uf~ln)) 

which is independent of i. | 

COROLLARY 4.2. For any given m ~/ 2, the property "p is true in every 
state s i, where i = km (integer k ~/0)" is not expressible in PTL. 

Proof. Consider a formula f ( p )  that would express that property for a 
given m. It has a fixed number l of O operators. Then by the theorem, its 
truth value on pkm(_~p)p,O and p~m-,(__,p)pO,, where k is such that 
k i n - 1  > l, is the same. But, the required property holds for the former 
sequence but not for the latter. So, the formula f ( p )  cannot express that 
property. | 

5. EXTENDED TEMPORAL LOGIC: DEFINITION 

As we saw in Section 4, a property like even(p) is not expressible in PTL. 
On the other hand, that property does not seem very difficult to express. This 
can be done in several ways. 

First, in a language based on regular expressions, a formula like 

(p; True) ~', 

where ~o denotes infinite repetition expresses even(p). A survey of the use of 
regular expressions to describe properties of sequences appears in Shaw 
(1979). 

If one wishes to stay within the framework of temporal logic, one could 
use a quantified version of PTL. The property even(p) would then be 
expressed by 

3q(q A Kq(q ~ O ~ q )  A rq(~q = Oq) A [3(q ~ p)). 
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Another alternative is to add to PTL an operator even denoting exactly 
the required property. This is a reasonable alternative as long as the new 
operator can be axiomatized and incorporated into the decision procedure 
for PTL. 

The problem, really, is not to express even(p)  but rather to be able to 
express it within a system that has useful properties like a complete 
axiomatization and a reasonable decision procedure. For instance, using a 
quantified version of tempotal logic seems to be a simple and elegant way of 
extending PTL. Unfortunately, the resulting language has a nonelementary 
decision problem (see Wolper, 1982b). 

On the other hand, we found that we could add to PTL and operator 
even(p)  without increasing the complexity of the decision problem. The 
natural question to ask of course, is whether other operators can be added in 
the same way, and if so, what is a characterization of the class of operators 
that can be added. It turns out that operators corresponding to any property 
definable by a right-linear grammar can be added to PTL without modifying 
the complexity of its decision problem. 

Temporal logic with operators corresponding to right-linear grammars will 
be our extended temporal logic. To interpret grammars as operators, we have 
to establsih a correspondence between words generated by a grammar and 
sequences. 

Given a word w (finite or infinite) over a finite alphabet 22 and an 
assignment of formulas to each of the letters of Z, we will say that a 
sequence satisfies the word w for the given assignment if, for all i, the 
formula associated with the letter appearing in the ith position of the word w 
is true in the ith state of the sequence. 

EXAMPLE. If S =  {a,b} and we assign the formula p to a and the 
formula True to b, the infinite word 

ababababab .... 

is satisfied by any sequence 

S ~ S 0 , S I ,  $2,$3, . . .  

in which p is true in every even state and nothing is required of odd states. 

With each right-linear grammar G =  (VNr, VT, P, Vo) we associate a 
temporal operator ~ (called a grammar operator) in the following way. If 
V r = ( v l , v  z ..... v,),  then the operator ~ has exactly n arguments and 
~ ( f l ,  f2 ..... fn) is true of a sequence if there is some word (finite or infinite) 
generated by G that is satisfied by that sequence when f l  is assigned to v l , f2  
to v 2 ..... and fn to v, .  

643/56/1-2-6 
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EXAMPLE. The grammar 

Vo-* vl Vl 

Vl --* v2 Vo 

generates only the infinite word v I VzV 1 v 2 .... Thus if ~ ( f l ,  f z )  is the operator 
associated with that grammar, ~ ( p ,  True) expresses the property even(p).  

Before we formalize our definition of grammar operators, one point has to 
be clarified. We mentioned that we consider both finite and infinite words 
generated by right-linear grammars. The concept of a grammar generating a 
finite word is a familiar one but the concept of a grammar generating an 
infinite word needs some explanation. Given a right-linear grammar having 
productions of the form V--, vV '  or V ~  v, a countably infinite word (co- 
word) is obtained by applying the productions of the first type co times. If, as 
in our preceding example, there are no productions of the second type, only 
infinite words are generated by the grammar. 

One can find a discussion of grammars for co-words in Cohen and Gold 
(1977). In this paper it is mentioned that the definition of an co-regular 
grammar should also contain a repetition set. A repetition set is a set of 
nonterminals that have to appear an infinite number of times in any 
generation of an co-word. Adding a repetition set to the definition of co- 
regular grammars does indeed extend the sets of words definable by such 
grammars. We will, however, consider here grammars without repetition sets, 
as this does not restrict the expressiveness of our ETL. This is due to the fact 
that it is possible to express by an ETL formula the condition corresponding 
to the existence of a repetition set (Wolper, 1982b). 

We will now give a precise definition of our grammar operators. Given a 
grammar G a = (VNr, V r, P, Vo), where 

vN~ = {v0, vl,..., vi}, 

v~={Vl,V2 ..... v,}, 

P is a set of productions of the form Vi --* v o Vij or V~ --* rig. 

We define l + 1 grammar operators ~}', one for each member of VNr. Each 
~ is an n-ary operator ~ ( f l , f 2  ..... f , )  (n = ]Vr[ ). Semantically, given a 
structure ~ = (S, N, 70 and a state s E S, 

(A, s) ~ ~7(L,. . . , f ,)  

if and only if there is a word w -- VwoVwl ... (1 ~ w i ~ n) generated by G a 
from V i such that for all j < 1 + ] w ], 

( d ,  Ni(s)) ~ fwi. 
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As we always define a grammar operator for each nonterminal, we will 
from now on omit the start symbol from the definition of grammars. A 
grammar operator will be denoted by fiT(f1 ,..., fn)- The superscript refers to 
the grammar defining that operator and the subscript to the nonterminal to 
which it corresponds. 

It is interesting to note that all the operators of PTL are expressible using 
grammar operators. The "always" operator (Iq) is the operator ff0D(fl) 
corresponding to the grammar having 

V0 ---~ u1V 0 

as its only production. The "eventually" operator (O) can then be defined as 
the dual of E]. 

If ~o( f~ , f2)  is the operator corresponding to the non-terminal V 0 of the 
grammar having 

V0--4/) 1 VI,  

V1 --3,/-)2, 

as productions, then ~°o(True, f )  expresses O f  
Finally fl U f2 is definable by the grammar 

Vo--, v , Vo, 

Vo--+ v 2 . 

We will still use O, l-q, O, U in ETL, but they can simply be viewed as a 
notation for the corresponding grammar operators. However, as we will see 
in Section 6, O and [] will play a special role in the axiomatization of ETL. 

6. ETL: AXIOMATIZATION 

We will present here a complete axiomatic system for ETL. It contains 
two axioms for the O operator, two axioms for each of the other grammar 
operators and four rules of inference. The axioms for the grammar operators 
will be given in a general form that involves the O operator. That is why we 
need to axiomatize O separately. The axioms for O are the same as those 
appearing in the axiomatization of PTL. They are 

O ~ P  -- -~Op, (N1) 

~- O ( p  D q) D (Op ~ Oq). (N2) 

The axioms for the other grammar operators are given in a generic form. 
That is, an instance of these axioms corresponds to each specific grammar 
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operator. They could be called "axiom schema schemas." Consider a 
grammar operator ~ ( f ~  ..... fn) corresponding to the nonterminal V t of a 
grammar G ~ = (Vur, V r, P). Suppose that the productions of the grammar 
G a are 

v,-+  ,jlv,A, 

where vii ~ Vr, V~j ~ VNr need not be present (we indicate this by double 
brackets), 0 ~< i ~  1 (=] VNrl) and 1 < . j ~  m i. That is, for each nonterminal 
V i there are m; productions. The axioms for the operator ~}' are then 

f- ~ ' ( p ,  .... , p , )  D V (Pv A I O ~ j ( p l  . . . . .  PnD), (Ol )  
l <.j<.mi 

O<~k<<.l l<j<~tn k 

where Pi~ is the member of {Pl ..... p~} associated with vif, and where 
u0,..., ul (one for each nonterminal in the grammar) are propositions not 
already appearing. Each ui is associated with the nonterminal 1,7,., ukj being 
the proposition associated with the nonterminal V~. of the relevant 
production. The terms within double brackets are omitted if the 
corresponding nonterminals are missing in the production. One can interpret 
the first axiom as stating that the grammar operators are fixed points of the 
relations corresponding to the productions of the grammar and the second as 
stating that they are greatest fixed points of these relations. The definition of 
temporal operators as fixed points is discussed in Emerson and Clarke 
(1980). 

The rules of inference of our axiomatic system are 

If  w is a propositional tautology, then ~ w. 

If  f- w I ~ w 2 and f- w 1 , then ~- w 2 . 

If  ~ w, then ~- O w. 

If ~ w, then ~- I--]w. 

(I1) 

(12) 

(i3) 

(I4) 

EXAMPLE I. The operators of PTL are grammar operators. They can 
thus be axiomatized by (GI )  and (G2). For [] the axioms are 

E]p ~ p  A OE]p, 

[u A [ ] (u ~ p A Ou)] ~ D p ;  

and for U they are 
~- p U q D  qV (pA  O(pVq)) ,  

~- [uA rq(uDqV (p A Ou))]D pUq.  
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EXAMPLE 2. To illustrate the use of the axioms (G1) and (G2), let us 
prove 

~- ~ a ( p l  ..... Pn) = V (pu A O.~ j (p l , . . . ,  p,,)). (6.1) 
1 ~ j < ~  m i 

For readability, we omit the double brackets indicating the possible missing 
terms. Given (G1), we only need to prove 

~- V (pu A o . ~ ( p l  ..... p, ,))D fiT(P1 ..... P,,). (6.2) 
1 < j  < m i 

This can be done by using (G2) and choosing u i to be 

V (pij A Off~.(pi ..... p , ) )  (6.3) 
1 < j <  m i 

and all the other u k to be ffT~(P, ..... Pn). With this choice it is straightforward 
to establish 

~- V (PuA o ,~ (p l  .... ,p,,)) 
l <~ j <~ rn i 

0 < k < l  1 < j < m  k 

and from (6.4) and (G2), (6.2) follows. 

In Section 9 we will prove the completeness of this axiomatic system. We 
have postponed the proof as it is based on the decision procedure for ETL 
given in Section 7. 

7. ETL: DECISION PROCEDURE 

As we mentioned earlier ETL is decidable. Like PTL, it has the small 
model property and hence an obvious decision procedure. Here we will 
describe the sometimes more efficient tableau decision procedure. It is 
closely related to the tableau decision procedure for PTL (see Ben-Ari, 
Manna, and Pnueli, 1981; Rescher and Urquart, 1971) which itself is an 
extension of the tableau method for porpositional calculus (see Smullyan, 
1968). The basic idea of the method is that an ETL formula can be decom- 
posed into sets containing formulas that are either atomic (an atomic 
propositions or its negation) or have O as their main connective. Following 
Ben-Ari, Manna, and Pnueli (1981), we will call such formulas elementary. 
This decomposition serves to separate the requirements expressed by the 
formula into a requirement on the first state (the atomic formulas) and on 
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the "rest" of the sequence (the O-formulas). One can thus try to construct a 
model state by state and hence test for satisfiability. The tableau (or decom- 
position) rules map each nonelementary formula f into a set Z of sets S; of 
formulas fy, the interpretation being that f is satisfiable iff all the formulas 
in at least one of the sets S~ are satisfiable. The rules include 

~ f ~  {{f}}, 

~Of--+ {{O~f}}, 

L A fz ~ {{L,f2}}, 

~(f l  VA)-+ {{-~fl, ~A}}, 

(f, V f2)--+ {{fl}{f2}}, 

~(f l  A f2)-~ {{~f,}{-~f2}}. 

For a grammar operator ~'7(fl,..., f , )  corresponding to the nonterminal V i 
of a grammar G a = (VNr, Vr, P) whose productions are of the form 

Vi--+ u i jV i j ,  

where Vii need not be present, 0 ~< i ~< l (=[ VNrl) and 1 <~ j <~ m i. The rules 
are the following (we have enclosed in double brackets the terms that are 
omitted when V o. is missing from a production): 

~//(fl ..... fn )  -'~ (..) { {f/j,  IO ~i j ( f l  .... , fn)~ } }, 
l <~j<~mi 

u l l ~j~m¢ 

To test a formula f for satisfiability, we use these decomposition rules to 
construct a graph that is a systematic search for a model of f Each node n 
of the graph is labeled by a set of formulas T~. Initially, the graph contains 
exactly one node labeled by {f}. The graph is then constructed node by node 
using the decomposition rules. During the construction, to avoid decom- 
posing the same formula twice, we will mark the formulas to which a decom- 
position rule has been applied (we do not simply discard them as we will 
need them when checking if eventualities are fulfilled). Once the graph is 
constructed, we eliminate unsatisfiable nodes. 

The graph construction proceeds as follows: 

(1) Start with a node labeled by {f} where f is the formula to be 
tested. We will call f the initial formula and the corresponding node the 
initial node. Then repeatedly apply steps (2) and (3). In these steps, when we 
say "create a son of node n labeled by a set of formulas T," we mean create 
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a node if the graph does not already contain a node labeled by T. If it does, 
we just create an edge from n to the already existing node. 

(2) If a node n labeled by T n contains an unmarked nonelementary 
formula f and the tableau rule for f is f ~  {Si}, then, for each Si, create a 
son of n labeled by (Tn - { f } ) U  {Si} U {f*}, where f *  is f marked. 

(3) If a node n contains only elementary or marked formulas, then 
create a son of n labeled by the O-formulas E T, with their outermost © 
removed. 

A node containing only elementary or marked formulas will be called a 
state. And, a node that is either the initial nodes or the immediate son of a 
state will be called a pre-state. 

Given the form of the tableau rules, the formulas labeling the nodes of the 
graph are either 

(i) Subformulas or negations of subformulas of the initial formula or 
such formulas preceded by O. 

(ii) Formulas of the form I©~I-~( f~ , . . . , f , , )  (i.e., ~ possibly 
preceded by O and ~) ,  where ~ is an operator corresponding to some 
nonterminal V k of a grammar G defining one of the operators appearing in 
the initial formula. The number of these formulas is equal to 41, where 1 is 
the length of the initial formula computed with the convention that the length 
of a grammar operator is equal to the number of nonterminals in the 
grammar defining it. The number of nodes in the graph is then at most equal 
to the number of sets of such formulas, that is 24t. 

At this point, to decide satisfiability, we have to eliminate the unsatisfiable 
nodes of the graph. We repeatedly apply the following three rules. 

(El)  If a node contains both a proposition p and its negation ~ p ,  
eliminate that node. 

(E2) If all the successors of a node have been eliminated, eliminate 
that node. 

(E3) If  a node which is a pre-state contains a set of formulas of the 
form ~ f f  that is not fulfillable (see below), eliminate that node. 

The last rule is needed for the following reason. A property of the form 
~ is what we call an eventuality property. For such a property to be 
satisfied by a sequence, there has to be a point in that sequence at which it 
differs from any sequence satisfying ~ .  We call the point where this happens 
the point that fulfills the eventuality. But, the tableau rule for - ~  allows us 
to indefinitely postpone that point. We thus have to check that such a point 
can actually exist. 
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EXAMPLE. Consider the grammar 

V0-+ Vl Vl, 

Vi -~ V2 Vo, 

and the corresponding operators ~0(f l , f2)  and ~ ( f l ,  f2). The tableau rules 
for ~ ~0 and -7 ~ are 

= 0(fl, v f2)/t, 

v o g(f ,A)ll. 

As we have mentioned earlier, ~0(P, True) expresses the property even (p). 
Thus, for =~0(P,  True) to be true there has to be an even state where p is 
false. The tableau rules, however, allow us to always postpone that state by 
satisfying the O - , ~  part of the disjunction. We need to make sure this does 
not happen° 

Let us now examine how to determine if a set of eventuality properties is 
fulfillable. The tableau rule for a formula - ~  is of the form 

--1 ~( f l  ""' fn)--+ I U { ( ~ f i j V O - - n ~ j ( f l  . . . . .  fn))} I " 
l <~j~m i 

That is, 7 3 "  is mapped into a set of disjunctions that we call the tableau 
formulas for - , ~ .  In each of these disjunctions, we will distinguish between 
the term of the form ~ f i j  and the term O ~ j .  We will call the former the 
finite term and the latter the inductive term. We have the following inductive 
definition: 

(F1) A set of eventualities { ~ }  is immediatelyfulfillable in a pre- 
state n if there is a path from n such that the first state on that path contains 
the finite term of each of the tableau formulas for each of the eventualities 
~ .  

(F2) A set of eventualities { ~ }  is fulfillable in a pre-state if 

(i) it is immediately fulfillable, or 

(ii) there is a path from that node such that the first state on that 
path satisfies the following condition: it contains a term from each of the 
tableau formulas for each of the ~ and all of these terms that are inductive 
terms are fulfillable in the next pre-state on that path. 

Note that we consider here sets of eventualities rather than single even- 
tualities as can be done for ordinary temporal logic. The reason for this is 
that, in ETL, the tableau rule for an eventuality can map it into several even- 
tualities. Now, if one considers these separately, one could erroneously 
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conclude that the eventualities are fulfillable. Indeed, the presence of a path 
that fulfills each one individually does not imply the presence of a path that 
fulfills all of them simultaneously. This is due to the fact that when fulfilling 
one eventuality, another one might get mapped into a set that contains the 
eventuality that has just been fulfilled, hence eliminating all progress. The 
example we give below for the decision precedure illustrates this. 

To determine if a set of eventualities is fulfillable one proceeds as follows: 

(i) Mark the sets that are immediately fulfillable, i.e., the sets that are 
fulfillable on a path containing just one state. These are obtained by going 
through the graph and marking all sets for which condition F1 is satisfied. 

(ii) Repeat the following step until no new sets are marked as 
fulfillable: 

Mark as fulfillable all sets of eventualities that can be deter- 
mined to be fulfillable, given the sets already marked. That is, in 
each pre-state, mark all sets of eventualities such that, there is a 
path from the pre-state satisfying the following: the first state on 
that path contains a term from each of the tableau formulas for 
each eventuality in the set and, the set of these terms that are 
inductive is marked as fulfillable in the next pre-state on the path. 

The algorithm thus proceeds by first finding all sets of eventualities 
fulfillable on paths of length 1, then on paths of length 2 ..... Each node 
contains at most l (the length of the initial formula) eventualities. Thus, in 
each pre-state there are at most 2 / sets of eventualities and the tableau 
contains no more than 2/X 2 4/ sets of eventualities. The elimination 
procedure thus iterates at most 2 / X 2 4/times (at least one set of eventualities 
is marked at each iteration) and is thus polynomial in the size of the graph. 
Also note that when a set of eventualities is determined to be fulfillable, one 
can actally find a path through the graph that fulfills all eventualities in that 
set. The path can easily be constructed as follows. Each time a set of even- 
tualities is marked to be fulfillable in a pre-state, a pointer is kept to the pre- 
state containing the set of fulfillable eventualities that enabled us to mark 
that set as fulfillable (as in the iterative step of the elimination procedure). 
To obtain the path, one then only needs to follow these pointers until 
reaching an immediately fulfillable set of eventualities. 

The decision precedure ends after all unsatisfiable nodes are eliminated. If 
the initial node has been eliminated then the formula is unsatisfiable, if not it 
is satisfiable. It is easy to see that the decision procedure requires time and 
space exponential in the length l of the initial formula (computed according 
to our convention on the size of grammar operators). 
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EXAMPLE. Consider the operators 
corresponding to a grammar G ~ for which 

~g ( f l ,  f2) and ~ ( L ,  f2) 

v,,~= {Vo, v,}, v~= {v~,v~}, P :  

Applying our satisfiability algorithm to the formula 

- ~ ( p ,  ~ p )  A ~ ( p ,  ~ p )  

we obtain the graph given in Fig. 1. 

V o ~ v I Vo 

V° ~ v l V1 I" 
V 1 --~ v 2 V 0 

VI --~ 1")2 VI 

For conciseness, we have denoted ~ ( p ,  ~ p )  by ~ and ~ ( p ,  ~ p )  
by ~ .  We have combined the expansion of the last four formulas of node 
4 and we have omitted the marked formulas in nodes 5, 6, 7, and 8. Node 8 
actually corresponds to 4 different nodes. However all these nodes contain p 
and ~ p  and are thus unsatisfiable. As they will anyway be eliminated we are 
not interested in them. Also, the arrows leading to node 2 should really lead 
to a node labeled by { ~ , ~ } .  However, this would simply lead to 
duplicating part of the tableau. 

/Y ' I-0 ~ o-~@I \ 

/ / r~g ^ ~. ~ X 
/ / I-~ ",-g~" I ~  
/ / , /-pv o - ~ [  \ 

V e / / o c-~,o I \ 

/ I 
t"p, o-9~, o-9~ / [p, O-~o, o-9~ J 

lo   ,o- rl <: 
8{p.~v,...} 

FIGURE 1 
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The elimination procedure will discard all nodes corresponding to node 8 
as they contain p and ~ p .  The pre-states are 1 and 2. Pre-state 2 is the only 
one containing formulas of the form ~ f f .  In that pre-state, the sets {~ff~} 
and { ~ }  are immediately fulfillable. But, no other set of eventualities can 
be fulfilled. Thus { ~ , ~ }  is not fulfilled and node 2 is eliminated and 
hence node 1. 

The conclusion is that the formula ~ g  A ~ is unsatisfiable. 

Before concluding this section we will prove that our decision precedure is 
sound and complete. We have 

THEOREr~ 1.1. An ETL formula f is satisfiable iff the initial node of the 
graph ge;terated by the tableau decision procedure for that formula is not 
eliminated. 

Proof (a) If the initial node is eliminated, then f is unsatisfiable. We 
prove by induction that if a node in the tableau labeled by Ifl,...,fs} is 
eliminated, then {fl ..... fs} is unsatisfiable. 

Case 1. The node was eliminated by rule (El). It thus contains a 
proposition and its negation and is unsatisfiable. 

Case 2. The node is eliminated by rule (E2) and is not a state. The sons 
of that node were created using a tableau rule f ~  {Si}. It is easy to check 
that for each of these tableau rules, f is satisfiable iff at least one of the S i is 
satisfiable. As all the successor nodes have been eliminated, they all contain 
unsatisfiable sets of formulas and the node contains the unsatisfiable 
f o r m u l a f  

Case 3. The node is eliminated by rule (E2) and is a state. Thus, the set 
of all the O-formulas in the node is unsatisfiable and so is the set of all 
formulas in the node. 

Case 4. The node was eliminated by using rule (E3). Hence, there is a 
set of eventualities in the node that it not fulfillable on any path in the 
tableau. As any model corresponds to some path in the tableau, the set of 
eventualities is unsatisfiable and so is the set of all formulas in the node. 

(b) If the initial node is not eliminated, then f is satisfiable. To prove this, 
we have to show that if the initial node is not eliminated, there is a model of 
the initial formula. First notice that except for fulfilling eventualities, a path 
through the tableau starting with the initial node defines a model of the 
initial formula. We thus only have to show that we can construct a path 
through the tableau on which all eventualities are fulfilled. It can be done as 
follows: 

For each pre-state in the graph,  unwind a path from that pre-state such 
that all the properties of the form ~ it contains are fulfilled on that path. 
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This is always possible as we pointed out after giving the elimination rule for 
unfulfillable sets of eventualities. The length of each of these paths is at most 
21 × 2 4/. 

Once all these paths are constructed, we link them together. The model 
obtained has the form 

S O ~ S 1 ~ S 2 -,,4 • • • S ~ S  m . 

It may have as many as 24l× 25t states. This bound is obtained by 
multiplying the number of pre-states (24l) by the length of the path satisfying 
the eventualities in each pre-state (25t). II 

8. ETL: COMPLEXITY 

The main result is that, like PTL, ETL is PSPACE-complete. The fact that 
it is PSPACE-hard follows immediately from the fact that PTL is PSPACE- 
hard. We will give here an alternative proof that uses the greater expressivity 
of ETL. 

LEMMA 8.1. Satisfiability f o r  ETL is PSPACE-hard .  

Proof. The proof is by reduction from f ini te  automaton inequivalence 
which is PSPACE-complete (see Garey and Johnson, 1979). The finite 
automaton inequivalence problem is to determine if two finite automata A 
and B over the same alphabet 2; recognize different languages. 

Given A , B ,  and 2 ;=  {vl,..., vn}, we will built an ETL formula as follows. 
1 1 2 2 Consider the alphabet S '  = { u 1 , . . .  , Un, V 1 ,..., Unt that has two symbols v] and 

v~ for every symbol v i of 2;. Also consider the grammars G A and G B over 2; 
corresponding to the finite automata A and B, respectively. We will 
transform these grammars into grammars G A' and G ~' over Z '  as follows. 
Each production of the form 

is replaced by 

and each production of the form 

is replaced by 

4 vj 

V i --4 V U 

Vi---~ u 2 
i j"  
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In other words the symbols of 27' with superscript 1 will correspond to letters 
appearing inside a word and those with superscript 2 to letters appearing at 
the end of word. 

Consider now a set of propositions Pl ..... Pk,  where k = [log2(127[) ]. This 
set of propositions can be used to encode the letters of S in the standard 
way. The letter v I is encoded by f o = - ~ p l  A . . .  A ~ p k  , v 2 by fl---  
Pl A ~ P 2  A . . .  A ~ P k  and v2k by f E k - - I  = Pl /~ " ' "  /~ Pk" If  2 k > n, we do not 
use the formulas f ,  ..... f zk_  1. 

To the grammars G A' and G 8' correspond two grammar operators: ,TA' 
and ,~0 • They both have 2 1271 = 2n arguments. If q is a new proposition and 

f0 ..... fn_ ~ are the encodings of the letters of 2;, then the following formula is 
satisfiable iff the finite automata A and B recognize different languages. 

~ q  A ~ (~oA'(fo A ~q,..., f , - i  A -~q, fo A q ..... f , _ ~  A q) 

-- ~ ' ( f o  A - - , q  ..... f , - 1 A - ~ q , f ,  A q ..... f , _ ,  A q)). 

The formula ~ q  ensures that we only consider the finite words accepted by 
the automata. I 

This proof partially answers the question of what operators can be added 
to PTL without increasing its complexity. Indeed it shows that satisfiability 
for ETL is at least as hard as the inequivalence problem for the languages 
corresponding to the operators. For instance, if we allowed grammar 
operators corresponding to context-free languages, then ETL would be 
undecidable. This is investigated further in the context of propositional 
dynamic logic in Harel, Pnueli, and Stavi (1981). 

To prove that ETL is in PSPACE, the techniques developed in Halpern 
and Reif (1981) are applicable. 

LEMMA 8.2. Satis f iabil i ty  f o r  ETL is in PSPACE. 

Proof.  We will show that satisfiability in ETL is in NSPACE and hence 
by a theorem due to Savitch (1970) in PSPACE. To show that that ETL is 
in NSPACE, we will give a nondeterministic version of the tableau method 
that only requires polynomial space. We saw in Section 7 that a satisfiable 
ETL formula has a model of the form 

S0---3, S 1 ~ S 2 --~ . . .  Sj----~ . . .  S m ~  

where m is less than 2 9l. What we will do here is construct this model 
directly in a nondeterministic way. While doing this, the only formulas we 
need to remember are those in the current state we are building and in s s. So 
the construction proceeds as in the tableau method except that we guess at 
each stage which successor node to consider and whether a state is sj or not. 
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Once we are past sj, we keep track of which of its eventualities are satisfied. 
Once all of these are satisfied, and we reach a state s m that can have sj as 
successor, the algorithm terminates and the formula is declared satisfiable. 
At each point we only need to remember the set of formulas in the current 
state and in sj and the maximal length of the path. This can clearly be done 
in polynomial space. II 

We can then trivially conclude that ETL is PSPACE-complete. 

THEOREM 8.3. Satisfiability for ETL is PSPACE-complete. 

9. COMPLETENESS OF THE AXIOMATIC SYSTEM FOR ETL 

THEOREM 9.1. For ETL, the axiomatic system consisting of(N1) ,  (N2); 
(G1), (G2) for each grammar operator ~ and the rules of inference (I 1 )-(I4) 
is complete (the numbers refer to the axioms given in Section 6). 

Proof The proof is based on the tableau decision procedure. We will 
prove that if the initial node of the graph built by the decision procedure for 
a formula ~ f  is eliminated, then f is provable. Given the completeness of 
the decision procedure, this implies the completeness of the deductive system. 

We will prove by induction that for each eliminated node n labeled by a 
set of formulas T n = {~fl  ,..., ~fs}, f l  V ... V f~ is provable. This technique 
is similar to the one introduced in Kozen and Parikh (1981) to prove 
completeness of the Segerberg axioms for propositional dynamic logic. It is 
also used in Ben-Ari, Manna, and Pnueli (1981) to prove the completeness of 
a branching time PTL. 

There are four cases to consider: 

Case 1. The node was eliminated by rule (El). By (I1), 

 pv pv... vfs. (9.1) 

Case 2. The node was eliminated by rule (E2) and is not a state. Thus 
the sons of that node were created using a tableau rule ~ f ~  {{~f,v}}, for 
some ~ f  C Tn. It can be proved in the axiomatic system (see (6.1)) that for 
each of these rules 

Thus 
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and as all the sons of the node have been eliminated, by the induction 
hypothesis 

~- V fu  (9.4) 
J 

for all i. From (9.3) and (9.4) we get 

F - f  (9.5) 

from which (II) and (I2) yield 

~-f~ V . . .  V f~. (9.6) 

Case 3. The node is eliminated by rule (E2) and is a state. By the 
induction hypothesis, we have 

~-f'~ V ... V f~,  (9.7) 

where f'~ ... f r  are the O-formulas in T, = {fl ,...,f,} with their outermost O 
removed. From (9.7) it follows by (I3) that 

I -O (f'~ V ... V f ' )  (9.8) 

and hence by (N1) and (N2) 

I--Of{ V ... V O f '  (9.9) 

which yields immediately 

~-f~ V ... Vf~. (9.10) 

Case 4. The node n was eliminated by rule (E3). Thus it is labeled by a set 
a I a r of formulas {~Oq~k,(pl,,..., P'I)'" . . . .  ~ k~(Plr, .... P,) ,  ~ f r  + l ..... --~fs} including 

the unfulfillable set of eventualities { ~ i , ' " '  ~ r  ~} and we have to prove 

al  ar  ~k,(Pl, . . . . .  p , , ) V  ... V~kr(p l r , . . . ,pJVf~+]  V ... Vf~. (9.11) 

For this we will use the induction axiom (G2). We thus have to prove that 
for each grammar G a c  {G a' ..... Gar}, there are formulas Uo ..... u / for which 
we can prove 

~- A [] (Uk D V (Pkj A OUkj)) • (9.12) 
O < ~ k ~ l  1 ~ j ~ m  k 

Each formula u i essentially needs to state that - ~  is not fulfillable. So, it 
seems natural to take for u z the formulas appearing in pre-states accessible 
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from the node n in which ~ 7  is not fulfillable. Unfortunately, this is not 
quite enough as there are pre-states where one of the eventualities appearing 
is not fulfillable but we do not know which one. We will thus use the 

a formulas appearing in pre-states containing ~ e  augmented with the explicit 
condition that - ~ ' 7  is not fulfillable. The inductive formulas u~ will then be 
the disjunction of all such augmented pre-state formulas. More formally, if 
i F =  {nl,... ,nt} is the set of pre-states accessible from n in which ~ a  
occurs, -~f,,1 . . . . . .  fmsm are the formulas appearing in pre-state rn C jU  and 
NF m is the formula stating that - ~ 7  is not fulfillable in m, then 

ui=- V ( NFm A A --~fmk)" (9.13) 
m E J F  l ~ k ~ s  m 

We now have to make explicit what the formulas NF m are. First let us define 
the formula FF m that states that - ~  is fulfillable in pre-state m. More 
precisely, FF m states that ~ is fulfillable on a proper path in the graph. A 
proper path satisfying an eventuality ~ is a path through the graph that 
does not contain twice the same pre-state with the same set of eventualities 
to be fulfilled in order to fulfill ~ .  From Section 7, it follows that a 
proper path has at most length 2 St. We thus consider all proper paths from m 
that fulfill - ~ .  For each of these paths we write a formula FF~ q stating 
which atomic propositions are true in each state along that path. This 
formula thus has the form 

A (-~) Pjo A © A (-~) pjl A ... A ok  A (-O pjk . (9.14) 
J ) J 

Now, to state that ~ a  is fulfillable, we will simply take the disjunction of 
these formulas. 

FFm = V FFF q. (9.15) 
q 

And we have that 
NF m ~ ~rr~ ' .  (9.16) 

Now that we have defined the formulas ui, let us prove (9.12). We will 
actually prove that (9.12) holds if we take as the left side of the implication 
any of the disjuncts in the definition of u~. In other words, we will prove that 

A v 4 
l ~ k  ~ S m  l <~j<~ m i 

If nl ..... n x are the pre-states directly accessible from m, then we can prove, 
by using the formulas corresponding to the tableau rules that 

(uerA A V o( A A ...A %.,). (9.18) 
k l < ~ n ~ s  m / l<~j<~x 
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Now, given that we have N F  m on the left side of the implication, we can 
restrict the disjunction on the right to the nodes where ~ f f a  or rather the 
eventualities immediately derivable from that formula (i.e., obtained by one 
application of the tableau rules) are not fulfillable. Moreover, N F  m also 
implies the condition stating that at least one of those eventualities is not 
fulfillable. Which means that, using (9.13), we can prove 

l ~ k  <~ s m l <~j <~ m i  

Finally, we can only have N F  m and the corresponding disjunct uiy if also Pu" 

Thus we have 

1 < k < ~ s  m I <~j<~m i 

and by (I4) 

A V (P"*Od 
l <~n<~s m l <~j<~m i 

As this holds for every i, using (9.13) we get our goal (9.12). 
As node n was eliminated, at least one of the eventualities ~ f f ~  ..... ~W~,~ 

appearing in that node is not fulfillable. Thus we can prove 

F- NF~I  V . . .  V NF~r (9.22) 

and from this it follows that 

~ - ( - ~ f f ~ I A ' " A ~ f f ~ ; A ~ f r + , A ' " A ~ f s )  D ( u ~ , V ' ' ' V u k ) "  (9.23) 

Thus using (9.23), (9.12) and the induction axiom (G2) we get 

)- (-~,<¢~ A . . .  A ~,<¢'~ A ~f~+1 A-.-  A ~f~) D ( ~ i  V . . .  V ~<;) (9.24) 

from which our final goal (9.1 i) follows trivially, l 

To illustrate the preceding proof, we will use our axiomatic system to 
prove 

~- ~ ( p , - ~ p )  V ~ ( p ,  ~p)  (9.25) 

which is the negation of the formula we used in Section 7 to illustrate the 
tableau satisfiability algorithm. That formula was found to be unsatisfiable, 
so (9.25) should be provable. We will try to make clear the connection 
between the formal proof and the tableau that is the basis of our 

643/56/1-2-7 
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completeness proof. In the tableau, the only eliminated nodes are 2 and 8. 
Node 8 is eliminated because it contains p and ~p. This corresponds simply 
to the fact that by (I1) we have 

~ p  V ~p. (9.26) 

Node 2 on the other hand is eliminated because it contains a set of even- 
tualities that is not fulfillable ( { ~ o ( p , ~ p ) , ~ ( p , ~ p ) } ) .  This 
corresponds to the fourth case of our completeness proof and we will be 
using the induction axiom (G2). Our first task is to choose the formulas u 0 
and ul. We will use the definition (9.13). Let us start with u 0. The only pre- 
state in which ~ ( p ,  ~p)  occurs is node 2. The disjunction appearing in 
(9.13) then only contains one term and 

u o -~ NF~ A ~ ( p ,  ~p)  A ~ ( p ,  ~p). (9.27) 

To determine NF~, let us consider the paths that fulfill ~ff~(p, =p). There 
is only one such path, namely 2 ~ 5. Thus the expression corresponding to 
(9.14) is simply ~p.  And, by (9.15) and (9.16) NF~ = p. Hence 

u o --= p A ~ff~(p, ~p)  A ~ff~(p, ~p). (9.28) 

Similarly, we obtain that 

Ul-= ~ p  A ~ ( p ,  ~p)  A ~ ( p ,  ~p). (9.29) 

Using the axioms for ~'~(p, ~p)  and ff~(p, ~p),  we get 

~- u o ~ ((~p V O~ff~(p,-~p)) A (~p V O ~ ( p ,  ~p))  

A (p V O~T~(p,  ~p))  A (p V O ~ ( p ,  ~p))). (9.30) 

From this, using (I1) and (I2) we can obtain 

~- Uo ~ ( O ~ ( p ,  ~p)  A O ~ ( p , - ~ p ) ) .  (9.31) 

Then by using (I1), (I2), (N1), and (N2) we obtain the statement 
corresponding to (9.18) 

~- u o ~ O (~ ,~ (p ,  ~p)  A ~ ( p ,  ~p)). (9.32) 

As from (I1) (using (9.28) and (9.29)) 

~- Uo V ul - ( ~ ( p ,  ~p)  A ~ ( p ,  ~p))  (9.33) 

we get using (I1), (I2), (N1), and (N2) 

~- Uo ~ (Ouo V Oul). (9.34) 
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And finally, by (9.28) and (9.34) 

~- u o ~ ((p A ©Uo) V (p A ©ul) (9.35) 

and hence by (14) 

p- UJ(u 0 D ((p A ©u0) V (p A ©ul)). (9.36) 

Similarly, we can obtain 

~-- fT(U 1 Z )  ((-~p A ©Uo) V (~p A ©Ul) ). (9.37) 

By (9.33), (9.36), (9.37) and (G2) (with the help of (I1) and (I2)), we get 

~- ( ~ g ( p ,  ~p )  A ~ ( p ,  ~p))  D (~g(p, ~p) V ~ ( p ,  ~p)). (9.38) 

Which lets us conclude by (I1) and (I2) 

F- ~ ( p ,  ~p )  V ~ ( p , - ~ p ) .  II (9.39) 

10. CONCLUSIONS 

We have shown that temporal logic could be extended to express 
properties definable by rigth-linear grammars. This extension does actually 
increase the expressive power of PTL but without changing the complexity 
class of the decision procedure which turned out to be useful in some 
applications (Wolper, 1982a). As compared to using right-linear grammars 
or regular expressions directly, ETL has the advantage that Boolean 
combination of properties are directly expressible without the increase in the 
size of the specifications that can occur with regular expressions. 

Since our work combines a modal logic (PTL) and regular languages, it is 
tempting to try and relate it to dynamic logic (Hard, 1979; Fisher and 
Ladner, 1979). In dynamic logic, the regular expressions are used to express 
the control structure of the program and the formulas of the logic only deal 
with the input/output behaviour of the program, not with general properties 
of its execution sequence, In our work on the other hand we use the regular 
language precisely to express properties of these execution sequences. Also, 
as in all temporal logics, our ETL deals with infinite behaviours. This makes 
it more similar to PDL A (i.e., PDL with an infinite looping operator) for 
which the best known decision procedure requires time proportional to three 
exponentials in the length of the formula (Streett, 1981). 

Finally, we should mention that the process logic described in Harel, 
Kozen, and Parikh (1980) also combines regular expressions and PTL. But, 
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it uses the regular  express ions  exclusively for descr ib ing the p rog ram  while 

us ing P T L  for ta lk ing abou t  the execut ion sequence.  Also,  as far as is 

cur rent ly  k n o w n  it is of  n o n e l e m e n t a r y  complexi ty .  
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