
INFORMATION AND CONTROL 56, 72--99 (1983)

Temporal Logic Can Be More Expressive

PIERRE WOLPER*

Computer Science Department,
Stanford University, Stanford, California 94305

It is first proved that there are properties of sequences that are not expressible in
temporal logic, even though they are easily expressible using, for instance, regular
expressions. Then, it is shown how temporal logic can be extended to express any
property definable by a right-linear grammar and hence a regular expression.
Finally, a complete axiomatization and a decision procedure for the extended
temporal logic are given and the complexity of the extended logic is examined.

1. INTRODUCTION

To state or prove properties of concurrent programs, it is often necessary
to deal not only with the input/output behavior of the program but also with
its entire execution sequence. This has led to the development of specification
languages for concurrent programs that are oriented toward the description
of sequences. Among these languages, one can distinguish those based on
regular expressions, like "path expressions" (Habermann, 1975) or "flow
expressions" (Shaw, 1979) and those based on a logic of sequences like
Temporal Logic (Manna and Pnueli, 1981; Gabbay, Pnueli, Shelah, and
Stavi, 1980).

Temporal logic has been shown to be adequate for expressing a wide
variety of properties of the execution sequences of concurrent programs such
as partial correctness, termination, mutual exclusion, accessibility, or
liveness (Manna and Pnueli, 1981). Based on the fact that the propositional
version of temporal logic (PTL) is as expressive as the first-order theory of
linear order, it has even been called expressively complete.

In this paper, we prove that there are, nevertheless, properties of sequences
that cannot be expressed in PTL but that are easily expressible in languages
based on regular expressions. An example of such a property is that a given

* Current address: Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J. 07974.
This research was supported in part by the National Science Foundation under Grant
MCS80-06930, by the Office of Naval Research under Contract N00014-76-C-0687, by the
United States Air Force Office of Scientific Research under Grant AFSOR-81-0014, by
DARPA under Contract N00039-82-C-0250, and by an IBM Predoctoral Fellowship.

72
0019-9958/83 $3.00
Copyright © I983 by Academic Press, Inc.
All rights of reproduction in any form reserved.

TEMPORAL LOGIC CAN BE MORE EXPRESSIVE 73

event has to happen exactly every n steps of the computation and can either
happen or not at other steps. This could, for instance, express that a program
has to check for the occurrence of a given condition every n execution steps.

We then introduce an extended temporal logic (ETL) that can express any
property of a sequence definable by a right-linear grammar. To do this, we
give a method for defining a temporal operator corresponding to any right-
linear grammar. We show how to extend the axiomatization of PTL to
include these operators and prove the extended axiomatization complete. We
also give a decision procedure for ETL and characterize its complexity
which turns out to be the same as that of PTL (PSPACE-complete).

2. PROPOSITIONAL TEMPORAL LOGIC: DEFINITION

Propositional temporal logic (PTL) is classical propositional logic
extended with four "temporal" operators: O, ~, r-q, and U. The first three are
unary, the last binary. Intuitively, for a sequence, [] f is true i f f is true in all
future states of that sequence; O f is true if f is true in the next state in the
sequence; ~ f is true if f is true in some future state (is eventually true) and
f l U f2 is true if f~ is true for all states until the first state where f2 is true.
More precisely, we have the following:

Syntax

PTLformulas are built from

(i) A set 9 of atomic propositions: Pl , P2, P3

(ii) Boolean connectives: A ,7 .

(iii) Temporal operators: © ("next"), [] ("always"), ¢> ("eventually"),
U ("until").

The formation rules are:

(i) An atomic proposition p ~ 3 is a formula.

(ii) If f l and f2 are formulas, so are

f l A 72, -771, Of , , [2]fl , ~f~, A U A .

We also use V and ~ as the usual abbreviations and parentheses to resolve
ambiguities.

Semantics

A structure for a PTL formula (with a set 9 of atomic propositions) is a
triple d = (S, N, n) where

74 PIERRE WOLPER

(i) S is a finite or enumerable set of states.

(ii) N: (S--, S) is a total successor function that for each state gives a
unique next state.

(iii) n: (S--* 2 3) assigns truth values to the atomic propositions of the
language in each state.

For a structure ~¢" and a state s G S we have

(d , s) ~ p iff p E n (s) ,

(d , s) ~ f l A f 2 iff (5~¢' ,s)~fl and (d , s) ~ f 2 ,

(sO', s) ~ ~ f iff not (sg, s) ~ f ,

(d , s) ~ O f iff (se',N(s))m fi

In the following definitions, we denote by Ni(s) the ith state in the sequence

s, U(s), U(U(s)), N(N(N(s)))

of successors of a state s:

(d , s) ~ t3 f iff

(d , s) ~ ~ f iff

(d , s) ~ f l U A iff

(Vi >i 0) ((d , Ni(s)) ~ f)

(3i >1. O)((J, Ni(s)) ~ f)

(Vi >~ O)((d, Ni(s)) ~ fl) or

(~i >1 O) ((d , Ni(s)) ~ f2

and Vj (0 <~j < i D (d , NJ(s)) ~ f~))

An interpretation ~2" = (~t , So) for PTL consists of a structure d and an
initial state s o ~ S. We will say that an interpretation • = (d,So) satisfies a
formula f iff (d , so) ~ f Since an interpretation 3" uniquely determines a
sequence

0 = So, N(so), N2(so), N3(so)

we will often say "the sequence o satisfies a formula" instead of "the inter-
pretation ~7 satisfies a formula."

There are several variants of the definitions we have given here. For
instance, in Gabbay, Pnueli, Shelah and Stavi (1980), an operator Ue that is
similar to U but requires that f2 is eventually true is defined. It is

(d , s) ~ f ~ U e f z iff (Si>~O)((d, N i (s))~ f z

and Vj(O ~< j < i ~ (d , NJ(s)) ~ fO) -

TEMPORAL LOGIC CAN BE MORE EXPRESSIVE

The relation between U and UE is

f , UEf2-- f l U f2 A ~f2.

75

3. PTL: AXIOMATIZATION, DECISION PROCEDURE, AND COMPLEXITY

Propositional temporal logic has a simple complete axiomatization. The
following is a variant of the system proved to be complete in Gabbay,
Pnueli, Shelah, and Stavi, (1980) and also described in Manna, (1981).

Axiom schemas:

Inference rules:

b D(p D q) ~ (• p ~ r-lq),

b O ~ p = ~ Op,

~- © (p ~ q) D (©p ~ O q),

~- [2p~ p A Op A OVlp,

~- [] (p ~ O p) ~ (p ~ r-lp),

b r q p ~ p U q ,

F- p Uq =- q V (p A O(p Uq)).

(A1)

(A2)

(A3)

(A4)

(A5)

(16)

(A7)

(A8)

If w is a propositional tautology, then b w,

If t--w~ ~ w 2 and Hwl, then ~-w2,

If b w, then ~- [] w,

(R1)

(R2)

(R3)

As will be seen later, our results on extended temporal logic imply that the
two axioms concerning "until" (U) can be replaced by

~- p Uq Dq V (p A O (p Uq)), (19)

~- [u A 13(u D q V (p A Ou)] ~ p Uq. (A10)

The last axiom is an explicit induction axiom for U which makes proofs of
statements involving U substantially easier.

PTL has what is often called the small model property. This means that if
a PTL formula of length l is satisfiable, then it is satisfiable in a structure
(sg, So) of size at most k I for a fixed k (i.e., it has a model of size at most

76 PIERRE WOLPER

U). This gives an obvious decision procedure for satisfiability of PTL
formulas (check all possible models with less than k t states).

This decision procedure can be quite wasteful as it always looks at all
possible models. It can be improved. The idea is to use a tableau-like
procedure that is more goal directed in the sense that it tries to construct a
model satisfying the formula state by state instead of searching through all
possible models. In the next section we will give such a decision procedure
for ETL. This decision procedure will also be applicable to PTL, since ETL
contains PTL.

As far as characterizing the complexity of satisfiability for PTL, it turns
out that one can apply to PTL the techniques developed in Halpern and Reif
(1981) to prove that strict deterministic propositional dynamic logic is
PSPACE-complete. We thus have the following result:

THEOREM 3.1. Satisfiability f o r PTL is PSPACE-complete.

This theorem is proved in Sistla and Clarke (1982).

4. EXPRESSIVENESS OF PTL

Following Pnueli (1977) and Manna and Pnueli (1981), temporal logic
can be used to express various properties of programs. Consider a system of
m concurrent processes in which each atomic instruction i of process j is
labeled l~. The "initial" label for process j is l~ and the "final" label l~. If the
input predicate for the program is ¢ and the output predicate is ~, and if we
denote the fact that process j is at location l~" by atl{ then, total correctness
can be expressed as

(afr o A ¢) ~ O (at-f e A ~),

where /0 = (1 ol 10)," [e=(l~ l~) and for a set of labels l, atl=-
A i atli, li E [.

Mutual exclusions between the instructions at locations lJi " and l~', can be
expressed as

(afr o A ¢) D [3~(atl~ A atl~:).

That l{ will always be reached from l~ can be expressed as

(afr o A ¢) ~ [] (atlJk D Oatl~).

In his doctoral thesis Kamp (1968) proved that a propositional temporal
logic including the "Until" operator is as expressive as the first order theory
of linear order. This theory is the first order theory of N (the natural

TEMPORAL LOGIC CAN BE MORE EXPRESSIVE 77

numbers) with equality, the binary relation < and a set of unary predicates.
Based on this result he called such temporal logics expressively complete. Let
us immediately point out that though PTL and the first order theory of linear
order are expressively equivalent, they have very different properties. For
instance PTL is PSPACE-complete whereas the first order theory is
nonelementary (Meyer, 1975).

In Gabbay, Pnueli, Shelah, and Stavi (1980) Kamp's result was restated
and the term "expressively complete" was applied to the logic we have
defined here. This characterization appears to be ill-chosen at least for the
use of PTL in computer science. Indeed, there are properties that are not
expressible in PTL and hence also not expressible in the first-order theory of
linear order. Many of these properties can be of interest when dealing with
execution sequences of programs. A simple example of such a property is
that a given proposition p has to be true in every even state of a sequence.
We will denote that property by even(p).

Note. A formula like

p A [] (p ~ O~p) A []] (-~p ~ Op)

does not express even(p). Indeed it is not satisfied by the sequence where p
is always true, which clearly satisfies even(p).

To prove that even(p) is not expressible in PTL we will prove a slightly
more general result. Let us denote by pi(~p)pO, the sequence where p is true
in the first i states, false in the state i + 1 and true in all states after that. We
can then prove

THEOREM 4. I. Given a proposition p, any PTL formula f (p) containing
n "next" (0) operators has the same truth value on all sequences of the form
pi(~p) p,O, i > n.

Proof We have to prove that the truth value of a formula f (p) on a
sequence p((~p)pO,, where i > n does not depend on i. For convenience, let
us denote the truth value o f f on pi(_,p)pO, by Ifli. The proof proceeds by
induction. We prove that the theorem holds for the formula f, assuming that
it holds for its subformulas.

Case 1. f (p) is an atomic proposition. Thus f (p)=-p and always
I f (P) l , - T.

Case 2. f (p) is f l A f2, f l V f2 or ~ f l . This case follows immediately
from the induction hypothesis.

Case 3, f (p) is [3f By the definition of 13,

It]fie = - I f I, A I f] , - , A ..- A I f l ,+ , A It:3ft,

78 PIERRE WOLPER

and by the induction hypothesis,

I t3 f l i - lfln+ l A l[]fB.

Case4. f (p) is Of. We have that tO f i t = Ifl~-, and by the induction
hypothesis]fli-, is independent of i as i - 1 > n - 1 and f contains n - 1
"next" (O) operators.

Case 5. f (p) is f l U f2. Given (A8),

I f 1 U f 2 t , - t L I , v (If, le A (tAle ,

v (I f l l , - , A ... A (I A I . + I v (I f , l .+ l A If, U A I ,)) . ")))

and by the induction hypothesis,

If , Uf21i = (IAI,+, V (If, l,+, A If, Uf~ln))

which is independent of i. |

COROLLARY 4.2. For any given m ~/ 2, the property "p is true in every
state s i, where i = km (integer k ~/0)" is not expressible in PTL.

Proof. Consider a formula f (p) that would express that property for a
given m. It has a fixed number l of O operators. Then by the theorem, its
truth value on pkm(_~p)p,O and p~m-,(__,p)pO,, where k is such that
k i n - 1 > l, is the same. But, the required property holds for the former
sequence but not for the latter. So, the formula f (p) cannot express that
property. |

5. EXTENDED TEMPORAL LOGIC: DEFINITION

As we saw in Section 4, a property like even(p) is not expressible in PTL.
On the other hand, that property does not seem very difficult to express. This
can be done in several ways.

First, in a language based on regular expressions, a formula like

(p; True) ~',

where ~o denotes infinite repetition expresses even(p). A survey of the use of
regular expressions to describe properties of sequences appears in Shaw
(1979).

If one wishes to stay within the framework of temporal logic, one could
use a quantified version of PTL. The property even(p) would then be
expressed by

3q(q A Kq(q ~ O ~ q) A rq(~q = Oq) A [3(q ~ p)).

TEMPORAL LOGIC CAN BE MORE EXPRESSIVE 79

Another alternative is to add to PTL an operator even denoting exactly
the required property. This is a reasonable alternative as long as the new
operator can be axiomatized and incorporated into the decision procedure
for PTL.

The problem, really, is not to express even(p) but rather to be able to
express it within a system that has useful properties like a complete
axiomatization and a reasonable decision procedure. For instance, using a
quantified version of tempotal logic seems to be a simple and elegant way of
extending PTL. Unfortunately, the resulting language has a nonelementary
decision problem (see Wolper, 1982b).

On the other hand, we found that we could add to PTL and operator
even(p) without increasing the complexity of the decision problem. The
natural question to ask of course, is whether other operators can be added in
the same way, and if so, what is a characterization of the class of operators
that can be added. It turns out that operators corresponding to any property
definable by a right-linear grammar can be added to PTL without modifying
the complexity of its decision problem.

Temporal logic with operators corresponding to right-linear grammars will
be our extended temporal logic. To interpret grammars as operators, we have
to establsih a correspondence between words generated by a grammar and
sequences.

Given a word w (finite or infinite) over a finite alphabet 22 and an
assignment of formulas to each of the letters of Z, we will say that a
sequence satisfies the word w for the given assignment if, for all i, the
formula associated with the letter appearing in the ith position of the word w
is true in the ith state of the sequence.

EXAMPLE. If S = {a,b} and we assign the formula p to a and the
formula True to b, the infinite word

ababababab

is satisfied by any sequence

S ~ S 0 , S I , $2,$3, . . .

in which p is true in every even state and nothing is required of odd states.

With each right-linear grammar G = (VNr, VT, P, Vo) we associate a
temporal operator ~ (called a grammar operator) in the following way. If
V r = (v l , v z v,), then the operator ~ has exactly n arguments and
~ (f l , f2 fn) is true of a sequence if there is some word (finite or infinite)
generated by G that is satisfied by that sequence when f l is assigned to v l , f2
to v 2 and fn to v, .

643/56/1-2-6

80 PIERRE WOLPER

EXAMPLE. The grammar

Vo-* vl Vl

Vl --* v2 Vo

generates only the infinite word v I VzV 1 v 2 Thus if ~ (f l , f z) is the operator
associated with that grammar, ~ (p , True) expresses the property even(p).

Before we formalize our definition of grammar operators, one point has to
be clarified. We mentioned that we consider both finite and infinite words
generated by right-linear grammars. The concept of a grammar generating a
finite word is a familiar one but the concept of a grammar generating an
infinite word needs some explanation. Given a right-linear grammar having
productions of the form V--, vV ' or V ~ v, a countably infinite word (co-
word) is obtained by applying the productions of the first type co times. If, as
in our preceding example, there are no productions of the second type, only
infinite words are generated by the grammar.

One can find a discussion of grammars for co-words in Cohen and Gold
(1977). In this paper it is mentioned that the definition of an co-regular
grammar should also contain a repetition set. A repetition set is a set of
nonterminals that have to appear an infinite number of times in any
generation of an co-word. Adding a repetition set to the definition of co-
regular grammars does indeed extend the sets of words definable by such
grammars. We will, however, consider here grammars without repetition sets,
as this does not restrict the expressiveness of our ETL. This is due to the fact
that it is possible to express by an ETL formula the condition corresponding
to the existence of a repetition set (Wolper, 1982b).

We will now give a precise definition of our grammar operators. Given a
grammar G a = (VNr, V r, P, Vo), where

vN~ = {v0, vl,..., vi},

v~={Vl,V2 v,},

P is a set of productions of the form Vi --* v o Vij or V~ --* rig.

We define l + 1 grammar operators ~}', one for each member of VNr. Each
~ is an n-ary operator ~ (f l , f 2 f ,) (n =]Vr[). Semantically, given a
structure ~ = (S, N, 70 and a state s E S,

(A, s) ~ ~7(L,. . . , f ,)

if and only if there is a word w -- VwoVwl ... (1 ~ w i ~ n) generated by G a
from V i such that for all j < 1 +] w],

(d , Ni(s)) ~ fwi.

TEMPORAL LOGIC CAN BE MORE EXPRESSIVE 81

As we always define a grammar operator for each nonterminal, we will
from now on omit the start symbol from the definition of grammars. A
grammar operator will be denoted by fiT(f1 ,..., fn)- The superscript refers to
the grammar defining that operator and the subscript to the nonterminal to
which it corresponds.

It is interesting to note that all the operators of PTL are expressible using
grammar operators. The "always" operator (Iq) is the operator ff0D(fl)
corresponding to the grammar having

V0 ---~ u1V 0

as its only production. The "eventually" operator (O) can then be defined as
the dual of E].

If ~o(f~ , f2) is the operator corresponding to the non-terminal V 0 of the
grammar having

V0--4/) 1 VI,

V1 --3,/-)2,

as productions, then ~°o(True, f) expresses O f
Finally fl U f2 is definable by the grammar

Vo--, v , Vo,

Vo--+ v 2 .

We will still use O, l-q, O, U in ETL, but they can simply be viewed as a
notation for the corresponding grammar operators. However, as we will see
in Section 6, O and [] will play a special role in the axiomatization of ETL.

6. ETL: AXIOMATIZATION

We will present here a complete axiomatic system for ETL. It contains
two axioms for the O operator, two axioms for each of the other grammar
operators and four rules of inference. The axioms for the grammar operators
will be given in a general form that involves the O operator. That is why we
need to axiomatize O separately. The axioms for O are the same as those
appearing in the axiomatization of PTL. They are

O ~ P -- -~Op, (N1)

~- O (p D q) D (Op ~ Oq). (N2)

The axioms for the other grammar operators are given in a generic form.
That is, an instance of these axioms corresponds to each specific grammar

82 P I E R R E W O L P E R

operator. They could be called "axiom schema schemas." Consider a
grammar operator ~ (f ~ fn) corresponding to the nonterminal V t of a
grammar G ~ = (Vur, V r, P). Suppose that the productions of the grammar
G a are

v,-+ ,jlv,A,

where vii ~ Vr, V~j ~ VNr need not be present (we indicate this by double
brackets), 0 ~< i ~ 1 (=] VNrl) and 1 < . j ~ m i. That is, for each nonterminal
V i there are m; productions. The axioms for the operator ~}' are then

f- ~ ' (p , , p ,) D V (Pv A I O ~ j (p l PnD), (Ol)
l <.j<.mi

O<~k<<.l l<j<~tn k

where Pi~ is the member of {Pl p~} associated with vif, and where
u0,..., ul (one for each nonterminal in the grammar) are propositions not
already appearing. Each ui is associated with the nonterminal 1,7,., ukj being
the proposition associated with the nonterminal V~. of the relevant
production. The terms within double brackets are omitted if the
corresponding nonterminals are missing in the production. One can interpret
the first axiom as stating that the grammar operators are fixed points of the
relations corresponding to the productions of the grammar and the second as
stating that they are greatest fixed points of these relations. The definition of
temporal operators as fixed points is discussed in Emerson and Clarke
(1980).

The rules of inference of our axiomatic system are

If w is a propositional tautology, then ~ w.

If f- w I ~ w 2 and f- w 1 , then ~- w 2 .

If ~ w, then ~- O w.

If ~ w, then ~- I--]w.

(I1)

(12)

(i3)

(I4)

EXAMPLE I. The operators of PTL are grammar operators. They can
thus be axiomatized by (GI) and (G2). For [] the axioms are

E]p ~ p A OE]p,

[u A [] (u ~ p A Ou)] ~ D p ;

and for U they are
~- p U q D qV (pA O(pVq)) ,

~- [uA rq(uDqV (p A Ou))]D pUq.

T E M P O R A L L O G I C C A N BE M O R E E X P R E S S I V E 8 3

EXAMPLE 2. To illustrate the use of the axioms (G1) and (G2), let us
prove

~- ~ a (p l Pn) = V (pu A O.~ j (p l , . . . , p,,)). (6.1)
1 ~ j < ~ m i

For readability, we omit the double brackets indicating the possible missing
terms. Given (G1), we only need to prove

~- V (pu A o . ~ (p l p, ,))D fiT(P1 P,,). (6.2)
1 < j < m i

This can be done by using (G2) and choosing u i to be

V (pij A Off~.(pi p ,)) (6.3)
1 < j < m i

and all the other u k to be ffT~(P, Pn). With this choice it is straightforward
to establish

~- V (PuA o ,~ (p l ,p,,))
l <~ j <~ rn i

0 < k < l 1 < j < m k

and from (6.4) and (G2), (6.2) follows.

In Section 9 we will prove the completeness of this axiomatic system. We
have postponed the proof as it is based on the decision procedure for ETL
given in Section 7.

7. ETL: DECISION PROCEDURE

As we mentioned earlier ETL is decidable. Like PTL, it has the small
model property and hence an obvious decision procedure. Here we will
describe the sometimes more efficient tableau decision procedure. It is
closely related to the tableau decision procedure for PTL (see Ben-Ari,
Manna, and Pnueli, 1981; Rescher and Urquart, 1971) which itself is an
extension of the tableau method for porpositional calculus (see Smullyan,
1968). The basic idea of the method is that an ETL formula can be decom-
posed into sets containing formulas that are either atomic (an atomic
propositions or its negation) or have O as their main connective. Following
Ben-Ari, Manna, and Pnueli (1981), we will call such formulas elementary.
This decomposition serves to separate the requirements expressed by the
formula into a requirement on the first state (the atomic formulas) and on

84 PIERRE WOLPER

the "rest" of the sequence (the O-formulas). One can thus try to construct a
model state by state and hence test for satisfiability. The tableau (or decom-
position) rules map each nonelementary formula f into a set Z of sets S; of
formulas fy, the interpretation being that f is satisfiable iff all the formulas
in at least one of the sets S~ are satisfiable. The rules include

~ f ~ {{f}},

~Of--+ {{O~f}},

L A fz ~ {{L,f2}},

~(f l VA)-+ {{-~fl, ~A}},

(f, V f2)--+ {{fl}{f2}},

~(f l A f2)-~ {{~f,}{-~f2}}.

For a grammar operator ~'7(fl,..., f ,) corresponding to the nonterminal V i
of a grammar G a = (VNr, Vr, P) whose productions are of the form

Vi--+ u i jV i j ,

where Vii need not be present, 0 ~< i ~< l (=[VNrl) and 1 <~ j <~ m i. The rules
are the following (we have enclosed in double brackets the terms that are
omitted when V o. is missing from a production):

~//(fl fn) -'~ (..) { {f/j, IO ~i j (f l , fn)~ } },
l <~j<~mi

u l l ~j~m¢

To test a formula f for satisfiability, we use these decomposition rules to
construct a graph that is a systematic search for a model of f Each node n
of the graph is labeled by a set of formulas T~. Initially, the graph contains
exactly one node labeled by {f}. The graph is then constructed node by node
using the decomposition rules. During the construction, to avoid decom-
posing the same formula twice, we will mark the formulas to which a decom-
position rule has been applied (we do not simply discard them as we will
need them when checking if eventualities are fulfilled). Once the graph is
constructed, we eliminate unsatisfiable nodes.

The graph construction proceeds as follows:

(1) Start with a node labeled by {f} where f is the formula to be
tested. We will call f the initial formula and the corresponding node the
initial node. Then repeatedly apply steps (2) and (3). In these steps, when we
say "create a son of node n labeled by a set of formulas T," we mean create

TEMPORAL LOGIC CAN BE MORE EXPRESSIVE 85

a node if the graph does not already contain a node labeled by T. If it does,
we just create an edge from n to the already existing node.

(2) If a node n labeled by T n contains an unmarked nonelementary
formula f and the tableau rule for f is f ~ {Si}, then, for each Si, create a
son of n labeled by (Tn - { f }) U {Si} U {f*}, where f * is f marked.

(3) If a node n contains only elementary or marked formulas, then
create a son of n labeled by the O-formulas E T, with their outermost ©
removed.

A node containing only elementary or marked formulas will be called a
state. And, a node that is either the initial nodes or the immediate son of a
state will be called a pre-state.

Given the form of the tableau rules, the formulas labeling the nodes of the
graph are either

(i) Subformulas or negations of subformulas of the initial formula or
such formulas preceded by O.

(ii) Formulas of the form I©~I-~(f~ , . . . , f , ,) (i.e., ~ possibly
preceded by O and ~) , where ~ is an operator corresponding to some
nonterminal V k of a grammar G defining one of the operators appearing in
the initial formula. The number of these formulas is equal to 41, where 1 is
the length of the initial formula computed with the convention that the length
of a grammar operator is equal to the number of nonterminals in the
grammar defining it. The number of nodes in the graph is then at most equal
to the number of sets of such formulas, that is 24t.

At this point, to decide satisfiability, we have to eliminate the unsatisfiable
nodes of the graph. We repeatedly apply the following three rules.

(El) If a node contains both a proposition p and its negation ~ p ,
eliminate that node.

(E2) If all the successors of a node have been eliminated, eliminate
that node.

(E3) If a node which is a pre-state contains a set of formulas of the
form ~ f f that is not fulfillable (see below), eliminate that node.

The last rule is needed for the following reason. A property of the form
~ is what we call an eventuality property. For such a property to be
satisfied by a sequence, there has to be a point in that sequence at which it
differs from any sequence satisfying ~ . We call the point where this happens
the point that fulfills the eventuality. But, the tableau rule for - ~ allows us
to indefinitely postpone that point. We thus have to check that such a point
can actually exist.

86 PIERRE WOLPER

EXAMPLE. Consider the grammar

V0-+ Vl Vl,

Vi -~ V2 Vo,

and the corresponding operators ~0(f l , f2) and ~ (f l , f2). The tableau rules
for ~ ~0 and -7 ~ are

= 0(fl, v f2)/t,

v o g(f ,A)ll.

As we have mentioned earlier, ~0(P, True) expresses the property even (p).
Thus, for =~0(P, True) to be true there has to be an even state where p is
false. The tableau rules, however, allow us to always postpone that state by
satisfying the O - , ~ part of the disjunction. We need to make sure this does
not happen°

Let us now examine how to determine if a set of eventuality properties is
fulfillable. The tableau rule for a formula - ~ is of the form

--1 ~(f l ""' fn)--+ I U { (~ f i j V O - - n ~ j (f l fn))} I "
l <~j~m i

That is, 7 3 " is mapped into a set of disjunctions that we call the tableau
formulas for - , ~ . In each of these disjunctions, we will distinguish between
the term of the form ~ f i j and the term O ~ j . We will call the former the
finite term and the latter the inductive term. We have the following inductive
definition:

(F1) A set of eventualities { ~ } is immediatelyfulfillable in a pre-
state n if there is a path from n such that the first state on that path contains
the finite term of each of the tableau formulas for each of the eventualities
~ .

(F2) A set of eventualities { ~ } is fulfillable in a pre-state if

(i) it is immediately fulfillable, or

(ii) there is a path from that node such that the first state on that
path satisfies the following condition: it contains a term from each of the
tableau formulas for each of the ~ and all of these terms that are inductive
terms are fulfillable in the next pre-state on that path.

Note that we consider here sets of eventualities rather than single even-
tualities as can be done for ordinary temporal logic. The reason for this is
that, in ETL, the tableau rule for an eventuality can map it into several even-
tualities. Now, if one considers these separately, one could erroneously

T E M P O R A L L O G I C C A N BE M O R E E X P R E S S I V E 87

conclude that the eventualities are fulfillable. Indeed, the presence of a path
that fulfills each one individually does not imply the presence of a path that
fulfills all of them simultaneously. This is due to the fact that when fulfilling
one eventuality, another one might get mapped into a set that contains the
eventuality that has just been fulfilled, hence eliminating all progress. The
example we give below for the decision precedure illustrates this.

To determine if a set of eventualities is fulfillable one proceeds as follows:

(i) Mark the sets that are immediately fulfillable, i.e., the sets that are
fulfillable on a path containing just one state. These are obtained by going
through the graph and marking all sets for which condition F1 is satisfied.

(ii) Repeat the following step until no new sets are marked as
fulfillable:

Mark as fulfillable all sets of eventualities that can be deter-
mined to be fulfillable, given the sets already marked. That is, in
each pre-state, mark all sets of eventualities such that, there is a
path from the pre-state satisfying the following: the first state on
that path contains a term from each of the tableau formulas for
each eventuality in the set and, the set of these terms that are
inductive is marked as fulfillable in the next pre-state on the path.

The algorithm thus proceeds by first finding all sets of eventualities
fulfillable on paths of length 1, then on paths of length 2 Each node
contains at most l (the length of the initial formula) eventualities. Thus, in
each pre-state there are at most 2 / sets of eventualities and the tableau
contains no more than 2/X 2 4/ sets of eventualities. The elimination
procedure thus iterates at most 2 / X 2 4/times (at least one set of eventualities
is marked at each iteration) and is thus polynomial in the size of the graph.
Also note that when a set of eventualities is determined to be fulfillable, one
can actally find a path through the graph that fulfills all eventualities in that
set. The path can easily be constructed as follows. Each time a set of even-
tualities is marked to be fulfillable in a pre-state, a pointer is kept to the pre-
state containing the set of fulfillable eventualities that enabled us to mark
that set as fulfillable (as in the iterative step of the elimination procedure).
To obtain the path, one then only needs to follow these pointers until
reaching an immediately fulfillable set of eventualities.

The decision precedure ends after all unsatisfiable nodes are eliminated. If
the initial node has been eliminated then the formula is unsatisfiable, if not it
is satisfiable. It is easy to see that the decision procedure requires time and
space exponential in the length l of the initial formula (computed according
to our convention on the size of grammar operators).

8 8 P I E R R E W O L P E R

EXAMPLE. Consider the operators
corresponding to a grammar G ~ for which

~g (f l , f2) and ~ (L , f2)

v,,~= {Vo, v,}, v~= {v~,v~}, P :

Applying our satisfiability algorithm to the formula

- ~ (p , ~ p) A ~ (p , ~ p)

we obtain the graph given in Fig. 1.

V o ~ v I Vo

V° ~ v l V1 I"
V 1 --~ v 2 V 0

VI --~ 1")2 VI

For conciseness, we have denoted ~ (p , ~ p) by ~ and ~ (p , ~ p)
by ~ . We have combined the expansion of the last four formulas of node
4 and we have omitted the marked formulas in nodes 5, 6, 7, and 8. Node 8
actually corresponds to 4 different nodes. However all these nodes contain p
and ~ p and are thus unsatisfiable. As they will anyway be eliminated we are
not interested in them. Also, the arrows leading to node 2 should really lead
to a node labeled by { ~ , ~ } . However, this would simply lead to
duplicating part of the tableau.

/Y ' I-0 ~ o-~@I \

/ / r~g ^ ~. ~ X
/ / I-~ ",-g~" I ~
/ / , /-pv o - ~ [\

V e / / o c-~,o I \

/ I
t"p, o-9~, o-9~ / [p, O-~o, o-9~ J

lo ,o- rl <:
8{p.~v,...}

FIGURE 1

T E M P O R A L L O G I C C A N BE M O R E E X P R E S S I V E 89

The elimination procedure will discard all nodes corresponding to node 8
as they contain p and ~ p . The pre-states are 1 and 2. Pre-state 2 is the only
one containing formulas of the form ~ f f . In that pre-state, the sets {~ff~}
and { ~ } are immediately fulfillable. But, no other set of eventualities can
be fulfilled. Thus { ~ , ~ } is not fulfilled and node 2 is eliminated and
hence node 1.

The conclusion is that the formula ~ g A ~ is unsatisfiable.

Before concluding this section we will prove that our decision precedure is
sound and complete. We have

THEOREr~ 1.1. An ETL formula f is satisfiable iff the initial node of the
graph ge;terated by the tableau decision procedure for that formula is not
eliminated.

Proof (a) If the initial node is eliminated, then f is unsatisfiable. We
prove by induction that if a node in the tableau labeled by Ifl,...,fs} is
eliminated, then {fl fs} is unsatisfiable.

Case 1. The node was eliminated by rule (El). It thus contains a
proposition and its negation and is unsatisfiable.

Case 2. The node is eliminated by rule (E2) and is not a state. The sons
of that node were created using a tableau rule f ~ {Si}. It is easy to check
that for each of these tableau rules, f is satisfiable iff at least one of the S i is
satisfiable. As all the successor nodes have been eliminated, they all contain
unsatisfiable sets of formulas and the node contains the unsatisfiable
f o r m u l a f

Case 3. The node is eliminated by rule (E2) and is a state. Thus, the set
of all the O-formulas in the node is unsatisfiable and so is the set of all
formulas in the node.

Case 4. The node was eliminated by using rule (E3). Hence, there is a
set of eventualities in the node that it not fulfillable on any path in the
tableau. As any model corresponds to some path in the tableau, the set of
eventualities is unsatisfiable and so is the set of all formulas in the node.

(b) If the initial node is not eliminated, then f is satisfiable. To prove this,
we have to show that if the initial node is not eliminated, there is a model of
the initial formula. First notice that except for fulfilling eventualities, a path
through the tableau starting with the initial node defines a model of the
initial formula. We thus only have to show that we can construct a path
through the tableau on which all eventualities are fulfilled. It can be done as
follows:

For each pre-state in the graph, unwind a path from that pre-state such
that all the properties of the form ~ it contains are fulfilled on that path.

90 P I E R R E W O L P E R

This is always possible as we pointed out after giving the elimination rule for
unfulfillable sets of eventualities. The length of each of these paths is at most
21 × 2 4/.

Once all these paths are constructed, we link them together. The model
obtained has the form

S O ~ S 1 ~ S 2 -,,4 • • • S ~ S m .

It may have as many as 24l× 25t states. This bound is obtained by
multiplying the number of pre-states (24l) by the length of the path satisfying
the eventualities in each pre-state (25t). II

8. ETL: COMPLEXITY

The main result is that, like PTL, ETL is PSPACE-complete. The fact that
it is PSPACE-hard follows immediately from the fact that PTL is PSPACE-
hard. We will give here an alternative proof that uses the greater expressivity
of ETL.

LEMMA 8.1. Satisfiability f o r ETL is PSPACE-hard .

Proof. The proof is by reduction from f ini te automaton inequivalence
which is PSPACE-complete (see Garey and Johnson, 1979). The finite
automaton inequivalence problem is to determine if two finite automata A
and B over the same alphabet 2; recognize different languages.

Given A , B , and 2 ;= {vl,..., vn}, we will built an ETL formula as follows.
1 1 2 2 Consider the alphabet S ' = { u 1 , . . . , Un, V 1 ,..., Unt that has two symbols v] and

v~ for every symbol v i of 2;. Also consider the grammars G A and G B over 2;
corresponding to the finite automata A and B, respectively. We will
transform these grammars into grammars G A' and G ~' over Z ' as follows.
Each production of the form

is replaced by

and each production of the form

is replaced by

4 vj

V i --4 V U

Vi---~ u 2
i j"

T E M P O R A L L O G I C C A N BE M O R E E X P R E S S I V E 91

In other words the symbols of 27' with superscript 1 will correspond to letters
appearing inside a word and those with superscript 2 to letters appearing at
the end of word.

Consider now a set of propositions Pl Pk, where k = [log2(127[)]. This
set of propositions can be used to encode the letters of S in the standard
way. The letter v I is encoded by f o = - ~ p l A . . . A ~ p k , v 2 by fl---
Pl A ~ P 2 A . . . A ~ P k and v2k by f E k - - I = Pl /~ " ' " /~ Pk" If 2 k > n, we do not
use the formulas f , f zk_ 1.

To the grammars G A' and G 8' correspond two grammar operators: ,TA'
and ,~0 • They both have 2 1271 = 2n arguments. If q is a new proposition and

f0 fn_ ~ are the encodings of the letters of 2;, then the following formula is
satisfiable iff the finite automata A and B recognize different languages.

~ q A ~ (~oA'(fo A ~q,..., f , - i A -~q, fo A q f , _ ~ A q)

-- ~ ' (f o A - - , q f , - 1 A - ~ q , f , A q f , _ , A q)).

The formula ~ q ensures that we only consider the finite words accepted by
the automata. I

This proof partially answers the question of what operators can be added
to PTL without increasing its complexity. Indeed it shows that satisfiability
for ETL is at least as hard as the inequivalence problem for the languages
corresponding to the operators. For instance, if we allowed grammar
operators corresponding to context-free languages, then ETL would be
undecidable. This is investigated further in the context of propositional
dynamic logic in Harel, Pnueli, and Stavi (1981).

To prove that ETL is in PSPACE, the techniques developed in Halpern
and Reif (1981) are applicable.

LEMMA 8.2. Satis f iabil i ty f o r ETL is in PSPACE.

Proof. We will show that satisfiability in ETL is in NSPACE and hence
by a theorem due to Savitch (1970) in PSPACE. To show that that ETL is
in NSPACE, we will give a nondeterministic version of the tableau method
that only requires polynomial space. We saw in Section 7 that a satisfiable
ETL formula has a model of the form

S0---3, S 1 ~ S 2 --~ . . . Sj----~ . . . S m ~

where m is less than 2 9l. What we will do here is construct this model
directly in a nondeterministic way. While doing this, the only formulas we
need to remember are those in the current state we are building and in s s. So
the construction proceeds as in the tableau method except that we guess at
each stage which successor node to consider and whether a state is sj or not.

92 PIERRE WOLPER

Once we are past sj, we keep track of which of its eventualities are satisfied.
Once all of these are satisfied, and we reach a state s m that can have sj as
successor, the algorithm terminates and the formula is declared satisfiable.
At each point we only need to remember the set of formulas in the current
state and in sj and the maximal length of the path. This can clearly be done
in polynomial space. II

We can then trivially conclude that ETL is PSPACE-complete.

THEOREM 8.3. Satisfiability for ETL is PSPACE-complete.

9. COMPLETENESS OF THE AXIOMATIC SYSTEM FOR ETL

THEOREM 9.1. For ETL, the axiomatic system consisting of(N1) , (N2);
(G1), (G2) for each grammar operator ~ and the rules of inference (I 1)-(I4)
is complete (the numbers refer to the axioms given in Section 6).

Proof The proof is based on the tableau decision procedure. We will
prove that if the initial node of the graph built by the decision procedure for
a formula ~ f is eliminated, then f is provable. Given the completeness of
the decision procedure, this implies the completeness of the deductive system.

We will prove by induction that for each eliminated node n labeled by a
set of formulas T n = {~fl ,..., ~fs}, f l V ... V f~ is provable. This technique
is similar to the one introduced in Kozen and Parikh (1981) to prove
completeness of the Segerberg axioms for propositional dynamic logic. It is
also used in Ben-Ari, Manna, and Pnueli (1981) to prove the completeness of
a branching time PTL.

There are four cases to consider:

Case 1. The node was eliminated by rule (El). By (I1),

 pv pv... vfs. (9.1)

Case 2. The node was eliminated by rule (E2) and is not a state. Thus
the sons of that node were created using a tableau rule ~ f ~ {{~f,v}}, for
some ~ f C Tn. It can be proved in the axiomatic system (see (6.1)) that for
each of these rules

Thus

T E M P O R A L L O G I C C A N BE M O R E E X P R E S S I V E 9 3

and as all the sons of the node have been eliminated, by the induction
hypothesis

~- V fu (9.4)
J

for all i. From (9.3) and (9.4) we get

F - f (9.5)

from which (II) and (I2) yield

~-f~ V . . . V f~. (9.6)

Case 3. The node is eliminated by rule (E2) and is a state. By the
induction hypothesis, we have

~-f'~ V ... V f~, (9.7)

where f'~ ... f r are the O-formulas in T, = {fl ,...,f,} with their outermost O
removed. From (9.7) it follows by (I3) that

I -O (f'~ V ... V f ') (9.8)

and hence by (N1) and (N2)

I--Of{ V ... V O f ' (9.9)

which yields immediately

~-f~ V ... Vf~. (9.10)

Case 4. The node n was eliminated by rule (E3). Thus it is labeled by a set
a I a r of formulas {~Oq~k,(pl,,..., P'I)'" ~ k~(Plr, P,) , ~ f r + l --~fs} including

the unfulfillable set of eventualities { ~ i , ' " ' ~ r ~} and we have to prove

al ar ~k,(Pl, p , ,) V ... V~kr(p l r , . . . ,pJVf~+] V ... Vf~. (9.11)

For this we will use the induction axiom (G2). We thus have to prove that
for each grammar G a c {G a' Gar}, there are formulas Uo u / for which
we can prove

~- A [] (Uk D V (Pkj A OUkj)) • (9.12)
O < ~ k ~ l 1 ~ j ~ m k

Each formula u i essentially needs to state that - ~ is not fulfillable. So, it
seems natural to take for u z the formulas appearing in pre-states accessible

94 PIERRE WOLPER

from the node n in which ~ 7 is not fulfillable. Unfortunately, this is not
quite enough as there are pre-states where one of the eventualities appearing
is not fulfillable but we do not know which one. We will thus use the

a formulas appearing in pre-states containing ~ e augmented with the explicit
condition that - ~ ' 7 is not fulfillable. The inductive formulas u~ will then be
the disjunction of all such augmented pre-state formulas. More formally, if
i F = {nl,... ,nt} is the set of pre-states accessible from n in which ~ a
occurs, -~f,,1 fmsm are the formulas appearing in pre-state rn C jU and
NF m is the formula stating that - ~ 7 is not fulfillable in m, then

ui=- V (NFm A A --~fmk)" (9.13)
m E J F l ~ k ~ s m

We now have to make explicit what the formulas NF m are. First let us define
the formula FF m that states that - ~ is fulfillable in pre-state m. More
precisely, FF m states that ~ is fulfillable on a proper path in the graph. A
proper path satisfying an eventuality ~ is a path through the graph that
does not contain twice the same pre-state with the same set of eventualities
to be fulfilled in order to fulfill ~ . From Section 7, it follows that a
proper path has at most length 2 St. We thus consider all proper paths from m
that fulfill - ~ . For each of these paths we write a formula FF~ q stating
which atomic propositions are true in each state along that path. This
formula thus has the form

A (-~) Pjo A © A (-~) pjl A ... A ok A (-O pjk . (9.14)
J) J

Now, to state that ~ a is fulfillable, we will simply take the disjunction of
these formulas.

FFm = V FFF q. (9.15)
q

And we have that
NF m ~ ~rr~ ' . (9.16)

Now that we have defined the formulas ui, let us prove (9.12). We will
actually prove that (9.12) holds if we take as the left side of the implication
any of the disjuncts in the definition of u~. In other words, we will prove that

A v 4
l ~ k ~ S m l <~j<~ m i

If nl n x are the pre-states directly accessible from m, then we can prove,
by using the formulas corresponding to the tableau rules that

(uerA A V o(A A ...A %.,). (9.18)
k l < ~ n ~ s m / l<~j<~x

T E M P O R A L LOGIC CAN BE MORE EXPRESSIVE 95

Now, given that we have N F m on the left side of the implication, we can
restrict the disjunction on the right to the nodes where ~ f f a or rather the
eventualities immediately derivable from that formula (i.e., obtained by one
application of the tableau rules) are not fulfillable. Moreover, N F m also
implies the condition stating that at least one of those eventualities is not
fulfillable. Which means that, using (9.13), we can prove

l ~ k <~ s m l <~j <~ m i

Finally, we can only have N F m and the corresponding disjunct uiy if also Pu"

Thus we have

1 < k < ~ s m I <~j<~m i

and by (I4)

A V (P"*Od
l <~n<~s m l <~j<~m i

As this holds for every i, using (9.13) we get our goal (9.12).
As node n was eliminated, at least one of the eventualities ~ f f ~ ~W~,~

appearing in that node is not fulfillable. Thus we can prove

F- NF~I V . . . V NF~r (9.22)

and from this it follows that

~ - (- ~ f f ~ I A ' " A ~ f f ~ ; A ~ f r + , A ' " A ~ f s) D (u ~ , V ' ' ' V u k) " (9.23)

Thus using (9.23), (9.12) and the induction axiom (G2) we get

)- (-~,<¢~ A . . . A ~,<¢'~ A ~f~+1 A-.- A ~f~) D (~ i V . . . V ~<;) (9.24)

from which our final goal (9.1 i) follows trivially, l

To illustrate the preceding proof, we will use our axiomatic system to
prove

~- ~ (p , - ~ p) V ~ (p , ~p) (9.25)

which is the negation of the formula we used in Section 7 to illustrate the
tableau satisfiability algorithm. That formula was found to be unsatisfiable,
so (9.25) should be provable. We will try to make clear the connection
between the formal proof and the tableau that is the basis of our

643/56/1-2-7

96 P I E R R E W O L P E R

completeness proof. In the tableau, the only eliminated nodes are 2 and 8.
Node 8 is eliminated because it contains p and ~p. This corresponds simply
to the fact that by (I1) we have

~ p V ~p. (9.26)

Node 2 on the other hand is eliminated because it contains a set of even-
tualities that is not fulfillable ({ ~ o (p , ~ p) , ~ (p , ~ p) }) . This
corresponds to the fourth case of our completeness proof and we will be
using the induction axiom (G2). Our first task is to choose the formulas u 0
and ul. We will use the definition (9.13). Let us start with u 0. The only pre-
state in which ~ (p , ~p) occurs is node 2. The disjunction appearing in
(9.13) then only contains one term and

u o -~ NF~ A ~ (p , ~p) A ~ (p , ~p). (9.27)

To determine NF~, let us consider the paths that fulfill ~ff~(p, =p). There
is only one such path, namely 2 ~ 5. Thus the expression corresponding to
(9.14) is simply ~p. And, by (9.15) and (9.16) NF~ = p. Hence

u o --= p A ~ff~(p, ~p) A ~ff~(p, ~p). (9.28)

Similarly, we obtain that

Ul-= ~ p A ~ (p , ~p) A ~ (p , ~p). (9.29)

Using the axioms for ~'~(p, ~p) and ff~(p, ~p), we get

~- u o ~ ((~p V O~ff~(p,-~p)) A (~p V O ~ (p , ~p))

A (p V O~T~(p, ~p)) A (p V O ~ (p , ~p))). (9.30)

From this, using (I1) and (I2) we can obtain

~- Uo ~ (O ~ (p , ~p) A O ~ (p , - ~ p)) . (9.31)

Then by using (I1), (I2), (N1), and (N2) we obtain the statement
corresponding to (9.18)

~- u o ~ O (~ ,~ (p , ~p) A ~ (p , ~p)). (9.32)

As from (I1) (using (9.28) and (9.29))

~- Uo V ul - (~ (p , ~p) A ~ (p , ~p)) (9.33)

we get using (I1), (I2), (N1), and (N2)

~- Uo ~ (Ouo V Oul). (9.34)

TEMPORAL LOGIC CAN BE MORE EXPRESSIVE 97

And finally, by (9.28) and (9.34)

~- u o ~ ((p A ©Uo) V (p A ©ul) (9.35)

and hence by (14)

p- UJ(u 0 D ((p A ©u0) V (p A ©ul)). (9.36)

Similarly, we can obtain

~-- fT(U 1 Z) ((-~p A ©Uo) V (~p A ©Ul)). (9.37)

By (9.33), (9.36), (9.37) and (G2) (with the help of (I1) and (I2)), we get

~- (~ g (p , ~p) A ~ (p , ~p)) D (~g(p, ~p) V ~ (p , ~p)). (9.38)

Which lets us conclude by (I1) and (I2)

F- ~ (p , ~p) V ~ (p , - ~ p) . II (9.39)

10. CONCLUSIONS

We have shown that temporal logic could be extended to express
properties definable by rigth-linear grammars. This extension does actually
increase the expressive power of PTL but without changing the complexity
class of the decision procedure which turned out to be useful in some
applications (Wolper, 1982a). As compared to using right-linear grammars
or regular expressions directly, ETL has the advantage that Boolean
combination of properties are directly expressible without the increase in the
size of the specifications that can occur with regular expressions.

Since our work combines a modal logic (PTL) and regular languages, it is
tempting to try and relate it to dynamic logic (Hard, 1979; Fisher and
Ladner, 1979). In dynamic logic, the regular expressions are used to express
the control structure of the program and the formulas of the logic only deal
with the input/output behaviour of the program, not with general properties
of its execution sequence, In our work on the other hand we use the regular
language precisely to express properties of these execution sequences. Also,
as in all temporal logics, our ETL deals with infinite behaviours. This makes
it more similar to PDL A (i.e., PDL with an infinite looping operator) for
which the best known decision procedure requires time proportional to three
exponentials in the length of the formula (Streett, 1981).

Finally, we should mention that the process logic described in Harel,
Kozen, and Parikh (1980) also combines regular expressions and PTL. But,

98 PIERRE WOLPER

it uses the regular express ions exclusively for descr ib ing the p rog ram while

us ing P T L for ta lk ing abou t the execut ion sequence. Also, as far as is

cur rent ly k n o w n it is of n o n e l e m e n t a r y complexi ty .

ACKNOWLEDGMENTS

I wish to thank Chris Goad, Ben Moszkowski, Yoni Malachi, Zohar Manna, Peter Pepper,
and Frank Yellin for helpful discussions, insightful comments and/or reading a draft of the
paper. An anonymous referee also provided some valuable comments.

RECEIVED: February 22, 1983; ACCEPTED: August 5, 1983

REFERENCES

BEN-ARI, M., MANNA, Z., AND PNUELI, A. (1981), The temporal logic of branching time, in
"Eighth ACM Symposium on Principles of Programming Languages," Williamburg, Va.,
pp. 164-176.

COHEN, R., AND GOLD, A. (1977), Theory of co languages 1. Characterization of co-context-
free languages, J. Comput. System Sci. 15, 169-184.

EMERSON, E. A., AND CLARKE, E. M. (1980), Characterizing correctness properties of parallel
programs as fixpoints, in "Proceeding, 7th Int. Colloquium on Automata, Languages and
Programming," Lecture notes in Computer Science, Vol. 85, pp. 169-181, Springer-Verlag,
Berlin.

FISHER, M., AND LADNER, R. (1979), Propositional dynamic logic of regular programs, J.
Comput. System Sci. 18, 194-211.

GABBAY, D., PNUELI, A., SHELAH, S., AND STAVI, J. (1980), The temporal analysis of fairness,
'in "Seventh ACM Symposium on Principles of Programming Languages," pp. 163-173,
Las Vegas, Nev.

HABERMANN, A. N. (1975), "Path Expressions," Computer Science Report, Carnegie-Mellon
University, Pittsburgh, Pa.

HAREL, D. (1979), "First Order Dynamic Logic," Lecture Notes in Computer Science, No.
68, Springer-Verlag, Berlin.

HAREL, D., KOZEN, D., AND PARIKH, R. (1980), Process logic: Expressiveness, decidability,
completeness, "Proceedings of the 21st Symposium on Foundations of Computer Science,"
Syracuse, N. Y., pp. 129-142.

HAREL D., PNUELI, A., AND STAVI, J. (1981), Propositional dynamic logic of context-free
programs, in "Proceedings of the Twenty-Second Symposium on Foundations of Computer
Science," Nashville, Tenn., pp. 310-321.

HALPERN, J. Y., AND REIF, J. H. (1981), The propositional dynamic logic of determinisitc,
well-structured programs, in "Proceedings of the Twenty-Second Symposium on Foun-
dations of Computer Science," Nashville, Tenn., pp. 322-334.

KAMP, J. A. W. (1968), "Tense Logic and the Theory of Linear Order," PhD thesis,
University of California, Los Angeles.

KOZEN, D., AND PARIKH, R. (1981), An elementary proof of the completeness of PDL,
Theoret. Comput. Sci. 14, 113-118.

MANNA, Z. (1981), Verification of sequential programs: Temporal axiomatization, in
"Theoretical Foundations of Programming Methodology" (F. L. Bauer, E.W. Dijkstra,
and C. A. R. Hoare, Eds.), NATO Scientific Series, Reidel, Holland.

TEMPORAL LOGIC CAN BE MORE EXPRESSIVE 99

MEYER, A. R. (1975), Weak monadic second order theory of successor is not elementary
recursive, in "Proceedings Logic Colloquium, Lecture Notes in Mathematics," Vol. 453,
pp. 132-154, Springer-Verlag, Berlin.

MANNA Z., AND PNUELI, A. (1981), Verification of concurrent programs: The temporal
framework, in "The Correctness Problem in Computer Science" (R. S. Boyer and J. S.
Moore, Eds.), pp. 215-273, International Lecture Series in Computer Science, Academic
Press, London.

PNUELI, A. (1977), The temporal logic of programs, in "Proceedings of the Eighteenth
Symposium on Foundations of Computer Science," Providence, RI, pp. 46-57.

PRATT, V. R. (1981), Using graphs to understand PDL, in "Proceedings of the Workshop on
Logics of Programs," Yorktown-Heights, N. Y., Lecture Notes in Computer Science, Vo.
131, pp. 387-396, Springer-Verlag, Berlin.

RESCHER, N., AND URQUART, A. (1971), "Temporal Logic," Springer-Verlag, Berlin.
SAVITCH, W. J. (1970), Relationship between nondeterministic and deterministic tape

complexities, J. Comput. System Sci. 4, 177-192.
SISTLA, A. P., AND CLARKE, E. M. (1982), The complexity of propositional linear temporal

logic, "Proceedings of the 14th ACM Symposium on Theory of Computing," San Fran-
cisco, Calif.

SHAW, A. C. (1979), "Software Specification Languages Based on Regular Expressions,"
Technical Report, ETH Zurich.

SMULLYAN, R. M. (1968), "First Order Logic," Springer-Verlag, Berlin.
STREETT, R. (1981), Propositional dynamic logic of looping and converse, in "Proceedings of

the 13th Symposium on Theory of Computing," Milwaukee, Wisc., pp. 375-383.
WOLPER, P. (1982a), Specification and synthesis of communicating processes using and

extended temporal logic, in "Ninth Symposium on Principles of Programming Languages,"
Albuquerque, N. Mex. pp. 20-33.

WOLPER, P. (1982b), "Synthesis of Communicating Processes from Temporal Logic
Specifications," PhD thesis, Stanford University, Calif.

