
Linear Temporal Logic

Mahesh Viswanathan

Fall 2018

Linear Temporal Logic (LTL) is a modal logic that was proposed by Amir Pnueli to specify properties
of programs, and reason about them. Amir Pnueli got that Turing award for this work. The logic has
connectives that allow one to express concepts such as possibility, necessity, and existence. It can express
temporal relationship between events in an execution. The logic can be seen as describing a formal language
of words of infinite length. We shall see that LTL expresses the same class of languages as the infinite
word languages definable in first order logic. If LTL and first order logic on words are equi-expressive, then
why do we a new language to express properties? LTL is a very different logic than first order logic. In
particular, LTL does not have any variables or (explicit) quantification. This has made the logic popular
among practitioners, as people find it easier to write properties in a logic without quantification. The second
important property is that LTL admits efficient decision procedures. Recall that Meyer’s lower bound proves
that though MSO on words is decidable, it has a large complexity. We will show that LTL on the other hand
admits decision procedures in PSPACE.

1 Syntax and Semantics

LTL is a modal logic that is built over a set of propositions. Let us fix a finite set of propositions P =
{p1, p2, . . . pn}. The formulas will be a sequence of symbols, where each symbol is one of the following:

• The symbol ⊥ called false;

• An element pi ∈ P;

• The symbol → called implication;

• The symbol X called next ;

• The symbol U called until ;

• The symbols (and) called parenthesis.

The well formed formulas in the logic are defined inductively, as always. The formal definition is next.

Definition 1. A (well formed) formula (wff) over propositions P = {p1, p2, . . . pn} is inductively defined as
follows

1. ⊥ is a wff.

2. pi is a wff, where pi ∈ P.

3. If ϕ and ψ are wffs then (ϕ→ ψ) is a wff.

4. If ϕ is wff then (Xϕ) is a wff.

5. If ϕ and ψ are wffs then (ϕUψ) is a wff.

1

As always, the following abbreviations will be used: ¬ϕ for the formula ϕ → ⊥, ϕ ∨ ψ for (¬ϕ) → ψ,
ϕ ∧ ψ for ¬(¬ϕ ∨ ¬ψ), and > for ¬⊥.

The semantics of formulas (using propositions in P) in LTL will be defined over words of infinite length
over the alphabet 2P . That is, a model for a formula ϕ will be a α : N→ 2P . We recall some notation that
we have introduced in the past. For a word α, we have the following notation: α[i] denotes the symbol at
position i; α[i, j] denotes the subword starting at position i and ends at position j (both included); α[∗, i] is
the subword α[0, i] or the prefix ending at position i; and finally, α[i, ∗] is the suffix starting at position at i.

Definition 2. Let us consider a formula ϕ over propositions P = {p1, . . . pn} and a word α : N → 2P . We
define the relation α |= ϕ (“the word w satisfies the formula ϕ”) inductively as follows.

• α 6|= ⊥ for all α

• α |= pi iff pi ∈ α[0]

• α |= ϕ→ ψ iff either α 6|= ϕ or α |= ψ

• α |= Xϕ iff α[1, ∗] |= ϕ

• α |= ϕUψ iff for some j, α[j, ∗] |= ψ and for all 0 ≤ i < j, α[i, ∗] |= ϕ.

Let us look at some examples to help understand what formulas in LTL can describe.

Example 3. We will consider a few example formulas over the propositions {p, q}. Models of such formulas
are infinite words over the alphabet Σ = 2{p,q}. We will denote each symbol in σ by

(
bp
bq

)
, where bp = 1 iff

p ∈ A and bq = 1 iff q ∈ A. We will also use # to denote any subset, i.e., as a “don’t care”. Let us look at
the basic formulas in LTL.

1. Formula Xp has models that are of the form #
(

1
0/1

)
#ω

2. Formula pUq has models of the form (
(
1
0

)
)∗
(
0/1
1

)
#ω

3. Formula Fp = >Up has models of the form (
(

0
0/1

)
)∗
(

1
0/1

)
#ω

4. Formula Gp = ¬F¬p has models of the form (
(

1
0/1

)
)ω

Formulas 3 and 4 of Example 3 occur so commonly that they have a special notation. Fϕ read as
“eventually/finally ϕ” will denote the formula >Uϕ. Unrolling the semantics given in Definition 2, we get

w |= Fϕ iff there exists i, w[i, ∗] |= ϕ.

The second commonly used formula is Gϕ which is read as “always/globally ϕ”. This formula will denote
ϕ”, will denote the formula ¬F¬ϕ. Using the semantics in Definition 2, we get

w |= Gϕ iff for every i, w[i, ∗] |= ϕ.

Let us look at more examples, using these derived modalities.

Example 4. Once again, we consider formulas over {p, q}, and we represent elements of 2{p,q} like we did
in Example 3.

1. G(p→ X(pUq)) says “whenever p holds, then from the next moment onwards p holds until eventually
q holds”. The formula is satisfied in the model

α =
(
0
0

)(
1
0

)(
1
0

)(
1
0

)(
1
1

)(
0
1

)
#ω

but it does not hold in
(
1
0

)
α

2

2. If p expresses “process 1 is in critical section” and q expresses “process 2 is in critical section” mutual
exclusion is expressed by the property G(¬p ∨ ¬q).

Example 5. Consider the word
α =

(
1
0

)(
0
0

)(
1
1

)(
0
1

)(
1
0

)(
0
1

)(
0
1

)ω
where the first row is assignment to p and second row is assignment to q.

• α |= G(p→ Fq)

• α 6|= G(q → Fp)

• α |= X(¬qUp)

• α |= ¬qUp

• α 6|= pU(p ∧ q)

2 Expressive Power of LTL

Let fix the set of propositions to be P. Recall that models of LTL over P are infinite words over Σ = 2P .
For a LTL formula ϕ, let [[ϕ]] denote the set of models of ϕ, i.e.,

[[ϕ]] = {α ∈ Σω | α |= ϕ}.

We will show that for any LTL formula ϕ, [[ϕ]] is a ω-regular language. We will give a translation from an LTL
formula ϕ to a Büchi automaton that recognizes [[ϕ]] in Section 3. In this section we will prove the regularity
of [[ϕ]] by proving a stronger result, namely, that [[ϕ]] is definable in first order logic over words. Recall that
first order logic for words over Σ are formulas over the signature (<,S, {Qa}a∈Σ) and for a sentence ψ, let
[[ψ]] be the set of word (structures that satisfy ψ. Our main result about LTL expressivenes is the following.

Theorem 6. For any LTL formula ϕ, there is a first order sentence (over words) ψ such that [[ϕ]] = [[ψ]].

Proof. We will establish the theorem by proving a stringer result — for every LTL formula ϕ, we will
construct a first order formula T(ϕ)(x) with one free variable x, such that

α |= T(ϕ)(x) iff w[i, ∗] |= ϕ.

The theorem then follows by taking ψ to be the sentence

ψ = ∀x(first(x)→ T (ϕ)(x))

where first(x) = ¬(∃ySyx).
The formula T(ϕ) will be constructed inductively on the structure of ϕ. For the base case, we have

T(⊥)(x) = ⊥, and T(p)(x) = Qpx. The boolean case is also simple — T(ϕ1 → ϕ2)(x) = T(ϕ1)(x) →
T(ϕ2)(x).

Let us now consider the different modal operators.

Next T(Xϕ1)(x) = ∃y(Sxy ∧ T(ϕ1)(y))

Until T(ϕ1Uϕ2)(x) = ∃y((x ≤ y) ∧ T(ϕ2)(y) ∧ ∀z(((x ≤ z) ∧ (z < y)) → T(ϕ1)(z)))[x 7→ i], where x < y is
the formula < xy and x ≤ y is < xy ∨ x = y.

From Büchi’s theorem that says ω-regular languages are MSO definable languages, and from Theorem 6,
we have the following immediate corollary.

3

Corollary 7. For any LTL formula ϕ, [[ϕ]] is a ω-regular language.

The proof of corollary as a consequence of of Büchi’s theorem and Theorem 6 results in an automaton
of very large size — a tower of exponentials whose height depends on the number of quantifier alternations.
We will give a different direct translation from LTL to Büchi automata that will result in an automaton that
is only exponentially sized. This efficient translation is one of the reasons for the popularity of LTL over
first order logic, as it means that decision procedures for classical problems like satisfiability and validity are
more efficient than those for first order logic. We postpone the direct construction of the Büchi automaton
to Section 3.

The converse of Theorem 6 also holds. Thus, LTL has exactly the same expressive power as first order
logic over words. Proving this converse direction is, however, a difficult result, and we skip its proof.

Theorem 8 (Kamp). For every first order sentence ϕ over words, there is an LTL formula ψ such that
[[ϕ]] = [[ψ]].

2.1 MSO and LTL

Theorems 6 and 8 imply that first order logic over words and LTL have the same expressive power. On the
other hand, Büchi’s theorem says that ω-regularity and MSO have the same expressive power. Syntactically,
first order logic is a sublogic of MSO. But is it semantically weaker than MSO over words? In other words,
are there ω-regular/MSO-definable languages that cannot be expressed in first order logic/LTL? The answer
turns out to be true. We will establish this by observing a combinatorial characterization of first order/LTL
definable languages.

Definition 9. A ⊆ Σω is said to non-counting if there is a number n0 such that for every n ≥ n0 and for
every u, v ∈ Σ∗ and α ∈ Σω,

uvnα ∈ A if and only if uvn+1α ∈ A.

A ⊆ Σω is said to be counting if it is not non-counting. In other words,

∀n0∃n ≥ n0∃u, v ∈ Σ∗∃α ∈ Σω. (uvnα ∈ A ∧ uvn+1α 6∈ A)∨
(uvnα 6∈ A ∧ uvn+1α ∈ A)

Let us look at examples of counting and non-counting languages.

Example 10. Let us look at examples of non-counting languages. The simplest example is A1 = {a, b}ω.
To prove that A1 is non-counting, we can take n0 to be 0. Notice that for any u, v, α and n ≥ 0, we have
uvnα ∈ A1 and uvn+1α ∈ A1, establishing that A1 is non-counting.

Consider now the language A2 = a∗b{a, b}ω. Notice, first that we cannot take n0 = 0. This is because,
if u = ε, v = b and α = aω then uv0α 6∈ A1 but uvα ∈ A2. Let us take n0 = 1. Consider any u, v, α and n
such that uvnα ∈ A2. Then either u 6∈ a∗ or v 6∈ a∗ or α 6= aω; in each of these cases, we have uvn+1α is also
in A2. On the other hand, suppose uvn+1α ∈ A2. We need to show that uvnα ∈ A2; this is the direction
that failed for n0 = 0. Since uvn+1α ∈ A2, we have (again) either u 6∈ a∗ or v 6∈ a∗ or α 6= aω. In each case,
because n ≥ 1, we have uvnα ∈ A2.

Let A3 = b(aa∗bb)ω. The choices of n0 = 0 and n0 = 1 do not work — take u = ε, v = b, and α = (abb)ω;
we have uv0α 6∈ A3, uvα ∈ A3, and uv2α 6∈ A3. Observe that n0 = 2 also does not work because we can
take u = ba, v = b, and α = (abb)ω. In this case we have uv2α ∈ A3 but uv3α 6∈ A3. However, taking n0 = 3
does prove that A3 is non-counting.

Example 11. Let us look at examples of counting languages. Consider B1 = (aa)∗bω. Given any n0, take
n = n0. Take u = ε, v = a and α = bω. If n0 is even then we have uvnα ∈ B1 and uvn+1α 6∈ B1. On the
other hand, if n0 is odd, we have uvnα 6∈ B1 but uvn+1α ∈ B1.

Let B2 = b(aa∗(bb)∗)ω; notice the similarity and difference with A3 of Example 10. Given any n0, take
n = n0, with u = ba, v = b, and α = (abb)ω. If n0 is even then uvnα ∈ B2 but uvn+1α 6∈ B2. On the other
hand, if n0 is odd, uvnα 6∈ B2 but uvn+1α ∈ B2.

4

LTL can only define non-counting languages. Thus, LTL is expressively limited.

Theorem 12. For any LTL formula ϕ, [[ϕ]] is non-counting.

Proof. We will define the number n(ϕ), which “witnesses” the non-counting property of [[ϕ]], inductively on
the structure of ϕ. Let us start with the base cases. For ϕ = ⊥, we can take n(ϕ) = 0; this works trivially
because [[⊥]] = ∅. On the other hand, for a proposition p, take n(p) = 1. We leave the proof that n(p) = 1
witnesses the non-counting of ϕ = p to the reader.

Consider ϕ = ψ1 → ψ2. Induction hypothesis guarantees constants n(ψ1) and n(ψ2) that satisfy the
property that for any n ≥ n(ψi) (i ∈ {1, 2}) and every u, v, α

uvnα |= ψi iff uvn+1α |= ψi.

Therefore, for any n ≥ max(n(ψ1), n(ψ2)) and u, v, α we have

uvnα |= ψi iff uvn+1α |= ψi.

This means that for any n ≥ max(n(ψ1), n(ψ2)) and u, v, α we have

uvnα |= ϕ iff uvn+1α |= ϕ.

Thus, we take n(ϕ) = max(n(ψ1), n(ψ2)).
Next, let us consider ϕ = Xψ. Again, we have inductively defined n(ψ) such that for any n ≥ n(ψ) and

u, v, α
uvnα |= ψ iff uvn+1α |= ψ

Let us take n(ϕ) = n(ψ) + 1. We need to show that n(ϕ) witnesses the non-counting of [[ϕ]]. Consider
arbitrary u, v, α and n ≥ n(ϕ). There are two cases to consider.

• u 6= ε. In this case, let u = au′, where a ∈ Σ and u′ ∈ Σ∗. We have the following argument.

au′vnα |= ϕ iff u′vnα |= ψ
iff u′vn+1α |= ψ
iff au′vn+1α |= ϕ

• Suppose u = ε. If v = ε then we trivially have uvnα |= ϕ iff uvn+1α |= ϕ because uvnα = uvn+1α. So
without loss of generality, let us assume that v = av′ with a ∈ Σ and v′ ∈ Σ∗. In this case we have,

(av′)nα |= ϕ iff (av′)(av′)n−1α |= ϕ
iff v′(av′)n−1α |= ψ
iff v′(av′)nα |= ψ
iff (av′)(av′)nα |= ϕ
iff (av′)n+1α |= ϕ

Finally, consider ϕ = ψ1Uψ2. By induction hypothesis we have, for i ∈ {1, 2}, for any n ≥ n(ψ1) and
u, v, α

uvnα |= ψi iff uvn+1α |= ψi.

We will show that n(ϕ) = max(n(ψ1), n(ψ2)) + 1 demonstrates the non-counting of [[ϕ]]. Consider any
n ≥ n(ϕ), and consider u, v, α such that uvnα |= ϕ. We need to show that uvn+1α |= ϕ. Since uvnα |= ϕ,
there is j such that uvnα[j, ∗] |= ψ2 and for all i < j, uvnα[i, ∗] |= ψ1. We will consider different cases based
on the value of j.

• Suppose j < |u|. For any i < |u|, we have uvnα[i, ∗] = u[i, ∗]vnα and uvn+1α[i, ∗] = u[i, ∗]vn+1α. Since
n > max(n(ψ1), n(ψ2), we can conclude that uvn+1α |= ϕ.

5

• Suppose j ≥ |u|. Take j′ = j+ |v|. Will show uvn+1α[j′, ∗] |= ψ2 and for all i′ < j′, uvn+1α[i′, ∗] |= ψ1.
First observe that uvnα[j, ∗] = uvn+1α[j′, ∗]. Therefore, uvn+1α[j′, ∗] |= ψ2. To prove that for all
i′ < j′, uvn+1α[i′, ∗] |= ψ1, we consider 3 cases based on the value of i′.

– Suppose i′ < |u|. In this case, uvn+1α[i′, ∗] = (u[i′, ∗])vn+1α |= ψ1 because uvnα[i′, ∗] =
(u[i′, ∗])vnα |= ψ1 and n > n(ψ1).

– Suppose |u| ≤ i′ < |u| + |v|. Observe that uvn+1α[i′, ∗] = (v[i′ − |u|, ∗])vnα |= ψ1 because
uvnα[i′, ∗] = (v[i′ − |u|, ∗])vn−1α |= ψ1 and n− 1 ≥ n(ψ1).

– Finally, consider i′ ≥ |u|+|v|. Observe that i = i′−|v| < j′−|v| = j and uvn+1α[i′, ∗] = uvnα[i, ∗].
Thus, uvn+1α[i′, ∗] |= ψ1.

Let us now prove that if uvn+1α |= ϕ then uvnα |= ϕ. There is a j such that uvn+1α[j, ∗] |= ψ2 and
for all i < j, uvn+1α[i, ∗] |= ψ1. We consider different cases based on the value of j.

– Consider the case when j < |u|+ |v|. For k ∈ {1, 2} and i < |u|+ |v|, we have uvn+1α[i, ∗] |= ψk

iff uv[i, ∗]vnα |= ψk iff uv[i, ∗]vn−1α |= ψk because n− 1 ≥ n(ψk) iff uvnα[i, ∗] |= ψk. Therefore,
we have uvnα |= ϕ in this case.

– Consider the case when j ≥ |u| + |v|. Observe that uvn+1α[j, ∗] = uvnα[j − |v|, ∗]. Taking
j′ = j − |v|, we have uvn+1α[j, ∗] |= ψ2 iff uvnα[j′, ∗] |= ψ2. For any i′ such that |u|+ |v| ≤ i′ <
j′ = j − |v|, we have i′ + |v| < j and uvn+1α[i′ + |v|, ∗] = uvnα[i′, ∗], and so uvnα[i′, ∗] |= ψ1 in
this case. For i′ < |u|+ |v|, we have uvn+1α[i′, ∗] |= ψ1 iff uv[i′, ∗]vnα |= ψ1 iff uv[i′, ∗]vn−1α |= ψ1

because n− 1 ≥ n(ψ1) iff uvnα[i′, ∗] |= ψ1.

Theorem 12 demonstrates the expressive weakness of LTL (and first order logic). Observe that the
examples in Example 11 are all ω-regular languages. By Theorem 12, none of them are expressible in LTL.
Hence, we can conclude that there are ω-regular languages that cannot be expressed in LTL.

3 Translating LTL to Büchi Automata

One of the most important discoveries, that led to both the popluarity of LTL and Büchi automata, was the
efficient translation of LTL formulas to Büchi automata by Sistla, Vardi, and Wolper. While Theorems 6
and 8 establish the regularity of [[ϕ]] and thereby prove the decidability of the satisfiability and validity
problems for LTL, the resulting algorithm is inefficient. In this section, we will show that for a LTL formula
of size n, we can construct a Büchi automaton Mϕ of size O(2n), thereby giving us PSPACE decision
procedures for LTL. We will translate LTL into generalized Büchi automata, not (classical Büchi automata.
Generalized Büchi automata recognize the intersection of finite many Büchi automata, all of whom share
the same transition structure. Formally, it is given as follows.

Definition 13. A generalized Büchi automaton is M = (Q,Σ, δ, q0,F), where Q,Σ, δ and q0 are as for Büchi
automata, and F ⊆ 2Q. Let F = {F1, F2, . . . Fm}. A run ρ of M is accepting if for each i, some state of Fi

appears infinitely often in ρ. The language recognized by M is the collection of all input strings on which
M has some accepting run.

Another way to define the language recognized by M is as follows. Let Mi be the Büchi automaton
(Q,Σ, δ, q0, Fi). Then the language of M is defined as follows.

L∃B(M) =

m⋂
i=1

L∃B(Mi)

6

q0 q1

a b

b

a

Figure 1: Generalized Büchi automaton recognizing strings with infinitely many as and bs

Example 14. Consider the generalized Büchi automaton M = ({q0, q1}, {a, b}, δ, q0, {{q0}, {q1}}), where
δ(q, a) = q0 and δ(q, b) = q1, where q ∈ {q0, q1}. The automaton is shown in Figure 1; the states q0 and
q1 belonging to different sets within F are shown in different shapes. The language recognized by M is the
collection of strings over {a, b} that have infinite many as and infinitely many bs.

Our construction of a generalized Büchi automaton for an LTL formula ϕ relies on identifying a collection
formulas whose truth is necessary to track in order to discover whether ϕ holds on an infinite string. This
collection of formulas is called the Fischer-Ladner closure of a formula.

Definition 15. The Fischer-Ladner closure, cl(ϕ), of a formula ϕ is the smallest set such that

• ϕ ∈ cl(ϕ),

• cl(ϕ) is closed under subformulas,

• If ψ ∈ cl(ϕ) then ¬ψ ∈ cl(ϕ), where we identify ¬¬ψ with ψ,

• If ¬Xψ ∈ cl(ϕ) then X¬ψ ∈ cl(ϕ), and

• If ψ1Uψ2 ∈ cl(ϕ) then X(ψ1Uψ2) ∈ cl(ϕ).

It is easy to see that |cl(ϕ)| ≤ 2n.

Example 16. Consider ψ = (¬h)Uc and ϕ = ¬ψ. Then

cl(ϕ) = {ϕ,ψ,Xψ,¬Xψ,X¬ψ,¬h, h, c,¬c}

Our automata states will track the truth of formulas in cl(ϕ), i.e., each state will correspond to the set of
formulas in cl(ϕ) that need to hold from then on. This collection of formulas will clearly be consistent (i.e.,
without contradictions) and complete. Such consistent and complete subsets of cl(ϕ) will be called atoms,
and they will form the states of our automaton.

Definition 17. An atom is a maximally consistent subset of cl(ϕ), i.e., A ⊆ cl(ϕ) is an atom iff

• ψ ∈ A iff ¬ψ 6∈ A

• ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A

• ψ1Uψ2 ∈ A iff ψ2 ∈ A or (ψ1 ∈ A and X(ψ1Uψ2) ∈ A).

The collection of all atoms for ϕ will be denoted by atom(ϕ).

Example 18. Recall for ψ = (¬h)Uc and ϕ = ¬ψ,

cl(ϕ) = {ϕ,ψ,Xψ,¬Xψ,X¬ψ,¬h, h, c,¬c}

The atoms are
A1 = {c, h, ψ,¬Xψ,X¬ψ} A2 = {c, h, ψ,Xψ,¬X¬ψ}
A3 = {¬c, h, ϕ,¬Xψ,X¬ψ} A4 = {¬c, h, ϕ,Xψ,¬X¬ψ}
A5 = {c,¬h, ψ,¬Xψ,X¬ψ} A6 = {c,¬h, ψ,Xψ,¬X¬ψ}
A7 = {¬c,¬h, ϕ,¬Xψ,X¬ψ} A8 = {¬c,¬h, ψ,Xψ,¬X¬ψ}

7

3

7

1

4

5

2

6

8

Figure 2: Generalized Büchi automaton for formula ϕ from Example 20. State i corresponds to atom Ai.
Label of edge leaving a state q is the set of propositions that are true in q.

We are now ready to define the generalized Büchi automaton for a given LTL formula.

Definition 19. Consider a LTL formula ϕ over propositions P, and let Σ = 2P . The (generalized) Büchi
automata corresponding to ϕ is Mϕ = (Q,Σ, δ, Q0,F) where

• Q = atom(ϕ),

• Q0 = {A ∈ atom(ϕ) | ϕ ∈ A}

• δ(A,P) = ∅ if P 6= (A ∩ P) and δ(A,P) = {B ∈ Q | ∀Xψ ∈ cl(ϕ). Xψ ∈ A iff ψ ∈ B} otherwise,

• Let {α1Uβ1, . . . αkUβk} be all the until formulas in cl(ϕ). Then F = {F1, . . . Fk} such that Fi = {A ∈
atom(ϕ) | αiUβi 6∈ A or βi ∈ A}

Before proving the correctness of this construction, let us look at an example.

Example 20. Recall for ψ = (¬h)Uc and ϕ = ¬ψ, cl(ϕ) = {ϕ,ψ,Xψ,¬Xψ,X¬ψ,¬h, h, c,¬c}. The atoms
are

A1 = {c, h, ψ,¬Xψ,X¬ψ} A2 = {c, h, ψ,Xψ,¬X¬ψ}
A3 = {¬c, h, ϕ,¬Xψ,X¬ψ} A4 = {¬c, h, ϕ,Xψ,¬X¬ψ}
A5 = {c,¬h, ψ,¬Xψ,X¬ψ} A6 = {c,¬h, ψ,Xψ,¬X¬ψ}
A7 = {¬c,¬h, ϕ,¬Xψ,X¬ψ} A8 = {¬c,¬h, ψ,Xψ,¬X¬ψ}

ψ is the only until formula in cl(ϕ).
The automaton resulting from the construction described in Definition 19 is shown in Figure 2. State i

corresponds to atom Ai. Labels on transitions are not shown; they are assumed to be the set of propositions
that are true in the source state of the transition.

Theorem 21. For formula ϕ over propositions P, let Mϕ be the generalized Büchi automaton constructed
in Definition 19. For any α ∈ Σω (where Σ = 2P), α ∈ L∃B(Mϕ) if and only if α |= ϕ.

Proof. We begin by first proving the easy direction of the theorem, namely, showing that if α |= ϕ then Mϕ

has an accepting run. Let Ai = {ψ ∈ cl(ϕ) | α[i, ∗] |= ψ}. Observe that Ai is an atom and A0A1 · · · is an
accepting run of Mϕ.

8

We now prove the other direction. Let ρ = A0A1 · · · be an accepting run of Mϕ on α = P0P1 · · · . We
will prove the following stronger statement

α[i, ∗] |= ψ iff ψ ∈ Ai

for any ψ ∈ cl(ϕ) by induction on the structure of ψ. Let us consider each of the simpler cases, except until.

• Case ψ = p: α[i, ∗] |= p iff p ∈ Pi iff Pi = Ai ∩ P iff p ∈ Ai.

• Case ψ = ¬ψ′: α[i, ∗] |= ψ iff α[i, ∗] 6|= ψ′ iff ψ′ 6∈ Ai (by induction hypothesis) iff ψ = ¬ψ′ ∈ Ai (by
definition of atom).

• Case ψ = ψ1 ∨ ψ2: α[i, ∗] |= ψ iff α[i, ∗] |= ψ1 or α[i, ∗] |= ψ2 iff ψ1 ∈ Ai or ψ2 ∈ Ai (by induction
hypothesis) iff ψ = ψ1 ∨ ψ2 ∈ Ai (by definition of atom).

• Case ψ = Xψ′: α[i, ∗] |= ψ iff α[i+ 1, ∗] |= ψ′ iff ψ′ ∈ Ai+1 (by induction hypothesis) iff ψ = Xψ′ ∈ Ai

(because Ai
Pi−→ Ai+1).

We now consider the difficult case of until. Let ψ = ψ1Uψ2. Suppose α[i, ∗] |= ψ. Then, there is k ≥ i
such that α[k, ∗] |= ψ2 and for all j, i ≤ j < k, α[j, ∗] |= ψ1. We will show ψ ∈ Ai by induction on k − i.

• Case k − i = 0: Since α[i, ∗] |= ψ2, ψ2 ∈ Ai. Hence, (by definition of atom) ψ = ψ1Uψ2 ∈ Ai.

• Case k − i = ` + 1: This means, α[i, ∗] |= ψ1 and α[i + 1, ∗] |= ψ1Uψ2. By induction hypothesis,
ψ1 ∈ Ai and ψ1Uψ2 ∈ Ai+1. Hence, X(ψ1Uψ2 ∈ Ai (by definition of transition), and so ψ1Uψ2 ∈ Ai

(by definition of atoms).

We now show that if ψ ∈ Ai then α[i, ∗] |= ψ. Let ψ be the mth until formula in cl(ϕ). Since A0A1 · · · is an
accepting run of A, there is k ≥ i such that Ak ∈ Fm. We will prove by induction on k − i that α[i, ∗] |= ψ.

• Case k − i = 0: Since ψ ∈ Ai and Ai ∈ Fm, it must be the case that ψ2 ∈ Ai. Then by induction
hypothesis, α[i, ∗] |= ψ2 and so α[i, ∗] |= ψ1Uψ2.

• Case k − i = ` + 1: Since Ai 6∈ Fm, (from definition of atoms) ψ1 ∈ Ai and X(ψ1Uψ2) ∈ Ai. By
induction hypothesis α[i, ∗] |= ψ1. By the definition of the transition relation, ψ1Uψ2 ∈ Ai+1. By
induction hypothesis, α[i+ 1, ∗]) |= ψ. Thus, α[i, ∗] |= ψ.

9

