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Abstract

Neural networks and satisfiability (SAT) solvers are two of the crowning achievements

of computer science, and have each brought vital improvements to diverse real-world

problems. In the past few years, researchers have begun to apply increasingly so-

phisticated neural network architectures to increasingly challenging problems, with

many encouraging results. In the SAT field, on the other hand, after two decades of

consistent, staggering improvements in the performance of SAT solvers, the rate of

improvement has declined significantly. Together these observations raise two critical

scientific questions. First, what are the fundamental capabilities of neural networks?

Second, can neural networks be leveraged to improve high-performance SAT solvers?

We consider these two questions and make the following two contributions. First,

we demonstrate a surprising capability of neural networks. We show that a simple

neural network architecture trained in a certain way can learn to solve SAT problems

on its own without the help of hard-coded search procedures, even after only end-to-

end training with minimal supervision. Thus we establish that neural networks are

capable of learning to perform discrete search. Second, we show that neural networks

can indeed be leveraged to improve high-performance SAT solvers. We use the same

neural network architecture to provide heuristic guidance to several state-of-the-art

SAT solvers, and find that each enhanced solver solves substantially more problems

than the original on a benchmark of challenging and diverse real-world SAT problems.

iv



Acknowledgments

I found the PhD program to be an incredibly rewarding experience, enriched beyond

measure by the many people I got to learn from and collaborate with.

I am grateful to my two advisors, Percy Liang and David L. Dill, who encouraged

me to do my research as if I had nothing to lose. Their guidance, support and general

wisdom have been invaluable resources throughout my journey. They were also both

crucial to designing the experiments that led to understanding the phenomena of §4,

which had remained puzzling anomalies for several months.

I am also grateful to my two additional mentors and long-time collaborators from

Microsoft Research: Leonardo de Moura and Nikolaj Bjørner. Leonardo taught me

the craft of theorem proving. The craft cannot yet be fully grasped by reading

books, papers, or even code—much of it is still passed down in person, from master

to apprentice. The two years I spent working closely with Leonardo on the Lean

Theorem Prover were formative, and he and Lean both remain sources of inspiration.

My collaboration with Nikolaj (which led to the results of §5) was among the most

exciting stretches. Even though Nikolaj warned me that SAT was a “grad-student

graveyard” and that “nothing ever works”, he still spent months in the trenches with

me, trying wild ideas and looking for an angle. Our impassioned high-five after first

seeing the results of Figure 5.5 stands out as a highlight of my PhD experience.

I had two other influential mentors early on in my research career: Vikash Mans-
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Chapter 1

Introduction

This dissertation presents two principal findings: first, that neural networks can learn

to solve satisfiability (SAT) problems on their own without the help of hard-coded

search procedures after only end-to-end training with minimal supervision, and sec-

ond, that neural networks can be leveraged to improve high-performance SAT solvers

on challenging and diverse real-world problems.

Neural networks and SAT solvers are two of the crowning achievements of com-

puter science. Both approaches have emerged as widely applicable tools and have

brought vital improvements to many real-world problems. Neural networks are rou-

tinely used to recognize objects in images [51, 35], convert spoken word to written

text [39, 23, 33], translate between natural languages [15, 6, 82, 90], control robotic

limbs [54, 58, 3, 55], and solve countless other problems in computer vision, natural

language processing, and robotics. SAT solvers are routinely used to verify many

different types of correctness properties of both hardware and software [16, 26, 52],

manage network security protocols [42], solve hard planning [73] and scheduling prob-

lems [17, 31] arising from a variety of domains, and even prove long-standing conjec-

tures in pure mathematics [28].

In the past few years, researchers have experimented with applying neural net-

works to increasingly challenging and diverse problems, including open-domain ques-

tion answering [13], dialogue generation [57], visual question answering [44, 91], social

network analysis [71], predicting properties of molecules [27], learning heuristics for
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CHAPTER 1. INTRODUCTION 2

board games [83, 78, 79] and computer games [61, 93], learning high-performance

indexing data structures [50], and countless others, with many promising results. Re-

searchers have even experimented with applying neural networks to discrete search

problems, such as program synthesis [67, 1], the traveling salesman problem [8, 21],

first-order theorem proving [45, 59] and higher-order theorem proving [89, 87, 46],

though in these domains the results have not yet been as convincing.

As a consequence of this exploration, the notion of neural network has continually

expanded to include increasingly sophisticated architectures that bear little resem-

blance to the classic neural networks of previous decades. One recent trend has been

to devise differentiable analogues of traditional data structures, such as differentiable

stacks [30], queues [30], arrays [29], and key-value stores [85]. Many researchers in the

field have taken to referring to neural networks as differentiable programs, to stress

that neural networks are not one particular off-the-shelf tool but rather embody an

open-ended modeling idiom that can be customized and extended in countless ways.

The increasing scope and ambition of the neural network community has raised

critical scientific questions. What are the fundamental capabilities of neural networks?

What kinds of problems are reasonable to try to solve with them? Can they solve

problems that require search or reasoning?

In the SAT community, the past few years have been very different. Starting

around 1992 and continuing until around 2015 was a veritable golden age for the SAT

community. During this time there were major conceptual advances in algorithms,

data structures, and heuristics, and the modern SAT algorithm (called CDCL, ex-

plained in §3) emerged and solidified. There were consistent, staggering improvements

in the solvers themselves, and over these two decades SAT solvers went from an aca-

demic curiosity to an indispensable tool in industry. Yet since around 2015, the rate

of performance improvements of SAT solvers has declined significantly [65]. This de-

cline, along with the substantial successes and ever broadening scope of the neural

network community has raised the critical question: can neural networks somehow

be leveraged to improve high-performance SAT solvers?

In this work, we consider these questions in depth and make the following two

contributions. First, in §4, we demonstrate a surprising capability of neural networks.
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We show that a simple neural network architecture can learn to perform discrete

search on its own without the help of hard-coded search procedures, even after only

end-to-end training with minimal supervision. More specifically, we introduce a neural

network architecture NeuroSAT, and show that when it is trained to predict the

satisfiability of a particular kind of synthetic SAT problem—with only a single bit

of supervision per problem—it learns to find satisfying assignments on its own. The

same trained network can even solve SAT problems that are substantially larger and

from entirely different domains than the problems it was trained on. The satisfiability

problem is widely considered to be the canonical discrete search problem, and as it is

NP-complete, searching for any kind of efficiently-checkable certificate in any context

can be efficiently reduced to solving a SAT problem. Thus solving SAT problems is

a proxy for solving all discrete search problems, and we conclude that in appropriate

contexts, neural networks can learn to perform discrete search.

Second, in §5 we show how to leverage the same NeuroSAT architecture to im-

prove high-performance SAT solvers. The neural network trained in §4 is remarkable

from a scientific perspective, but on its own, it is nowhere near competitive with

state-of-the-art solvers. We adopt a hybrid approach and use NeuroSAT to guide a

high-performance SAT solver. First, we mine subproblems from existing benchmarks

of SAT problems in order to generate hundreds of thousands of distinct problems.

Second, we solve these problems using existing SAT solvers and in the process emit

detailed logs of the search histories. Third, we analyze these logs to determine which

variables would have been good to branch on in hindsight, and train a simplified Neu-

roSAT architecture to map SAT problems to the variables deemed good to branch

on. Finally, we modify several state-of-the-art SAT solvers to prioritize branching

on variables that NeuroSAT suggests. We find that each modified solver solves sub-

stantially more problems than the original on a benchmark of challenging and diverse

real-world SAT problems.



Chapter 2

Neural Networks

We use the term neural network to refer to a computer program that is differentiable

with respect to a set of real-valued, unknown parameters. There may be thousands,

millions, or even billions of such parameters, and it would be impossible to specify

them by hand. Instead, the practitioner specifies a second differentiable program

called the loss function, which takes a collection of input/output pairs (i.e. train-

ing data), runs the neural network on the inputs, and computes a scalar score that

measures how much the neural network’s outputs disagree with the true outputs.

Numerical optimization—usually stochastic gradient descent (SGD)—is then used to

find values of the unknown parameters that make the loss function as small as pos-

sible. SGD can be applied automatically to such differentiable programs using any

number of off-the-shelf software tools [18, 9, 2, 14, 75]. We use TensorFlow [2] to

perform the optimization on all neural networks trained as part of this dissertation.

Note that the adjective “neural” in the phrase “neural network” is purely historical,

and does not indicate any concrete connection to the neurons of biological organisms.

Notation. Throughout this work, we signify the application of a neural network

using function-call notation, where the different arguments to the network are im-

plicitly concatenated. For example, if N : Rd1+d2 → Rdout is a neural network and

x1 ∈ Rd1 , x2 ∈ Rd2 are vectors, we write N(x1, x2) ∈ Rdout to denote the result of

4



CHAPTER 2. NEURAL NETWORKS 5

applying N to the concatenation of x1 and x2. For performance reasons, one al-

most never applies a neural network to an individual vector, and instead applies it

to a batch of vectors of the same dimension, concatenated into a matrix. Thus if

X1 ∈ Rk×d1 , X2 ∈ Rk×d2 , we write N(X1, X2) ∈ Rk×dout to denote the result of first

concatenating X1 and X2 into a Rk×(d1+d2) matrix, applying N to the each of the k

rows separately and then concatenating the k results back into a matrix.

2.1 Multilayer Perceptrons (MLPs)

The quintessential non-trivial (i.e. non-convex) neural network is the multilayer per-

ceptron (MLP), also called a feed-forward network or a fully-connected network. An

MLP takes as input a vector x ∈ Rdin for a fixed din, and outputs a vector y ∈ Rdout

for a fixed dout. It computes y from x by applying a sequence of (parameterized) affine

transformations, each but the last followed by a component-wise nonlinear function

called an activation function. The most common activation function is the rectified

linear unit (ReLU), which is the identity function on positive numbers and sets all

negative numbers to zero.

Even MLPs with only a single hidden layer have been shown to be universal

function approximators [20, 43]. However, MLPs have a major limitation: a given

MLP can only be applied to input vectors of a prespecified length. We are ultimately

interested in applying neural networks to problems in Boolean satisfiability, which

have different sizes and shapes, and so MLPs on their own are insufficient.

2.2 Recurrent neural networks (RNNs)

Recurrent neural networks (RNNs) are neural networks that operate on arbitrarily

long sequences of inputs that all have the same size. An RNN takes a finite sequence

of input vectors {xi ∈ Rdin} (for a fixed din) and outputs a vector y ∈ Rdout (for a

fixed dout) that is intended to capture information about the entire input sequence.

We refer to the output y as the embedding of the input sequence.

An RNN is parameterized by a neural network N ∈ Rdout+din → Rdout . It computes
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y from the input sequence {xi} as follows. First, it initializes a hidden-state vector

h ∈ Rdout , usually to all zeros. Then it traverses the inputs xi in sequence, each time

updating h:

h← N(h, xi)

After traversing the input sequence, it returns the final value of its hidden-state h.

In the simplest case, N is simply an MLP. However, such “vanilla” RNNs are rarely

used in practice due to the vanishing gradient problem [41]. Instead, N is usually

a slightly more sophisticated neural network, designed to allow effectively ignoring

certain inputs xi and “remembering” previous values of h. The most notable RNN

variant is called Long Short-Term Memory (LSTM) [40]. We make use of the LSTM

in §4, but we omit the technical details of how they work since they are not relevant

to our work.

Any digital information of any kind could in principle be embedded into a vector

by an RNN, e.g. by representing the information as a sequence of its individual bits,

with 0 represented as the vector [1.0, 0.0] and 1 as the vector [0.0, 1.0]. However, this

näıve approach may not yield useful embeddings for two reasons. First, the unfolded

neural network will have depth at least as large as the length of the input, which

would be enormous for many inputs of interest and would pose major challenges for

SGD. Second, there may be many equivalent ways of encoding a particular type of

structured information as a sequence of bits, and RNNs may make radically different

predictions on different encodings of the same information.

2.3 Graph neural networks (GNNs)

Graphs are a good example of a class of inputs that are poorly represented by RNNs.

Large graphs induce long sequences that pose major challenges for SGD. Moreover,

the nodes and edges of a graph are semantically invariant to permutation, and yet

the näıve sequence representation fails to encode this property.

With the differentiable programming mindset, it is easy to design a neural network

that embeds arbitrarily large graphs, such that the depth of the unrolled network
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need not scale with the size of the graphs, and such that by construction the network

is invariant to permuting the nodes and edges of the graph. The standard neural

network architecture for doing this is called the graph neural network (GNN), which

we now describe. In contrast to the MLP, which takes fixed-sized vectors as input,

and the RNN, which takes arbitrarily long sequences of fixed-size vectors as input,

a GNN takes arbitrarily large graphs as inputs. The GNN represents each node

in a graph—no matter how big the graph is—by a fixed -sized vector (called the

embedding of the node). The GNN is parameterized by a simple neural network

(e.g. an MLP) that specifies how a node updates its embedding given some (fixed-

dimensional) aggregation of the embeddings of its neighbors in the graph.

More specifically, a GNN is parameterized by a neural network N ∈ R2d → Rd

(usually an MLP) where d is a fixed hyperparameter. It takes a graph G = (V,E)

as input, and computes an embedding vector in Rd for each node in the graph as

follows. First, it allocates initial d-dimensional vectors xi for each node in the graph,

and either initializes them based on precomputed features of the respective nodes,

or else arbitrarily (e.g. to all ones). Then, it iteratively refines these embeddings by

a series of message passing updates. Each message passing update works as follows.

For each node in the graph, an incoming message is computed by summing together

the embeddings of the node’s neighbors in the graph; then, the GNN’s internal neural

network N is applied to the node’s current embedding and the incoming message in

order to compute the node’s new embedding:

xi ← N

xi, ∑
j:(i,j)∈E

xj


After T such iterations (where T is another hyperparameter), the GNN returns the

final embeddings. In practice, the final embeddings are used in different ways de-

pending on the goal. For example, if the goal is to make a prediction about each

node individually, then a downstream classifier can be applied to each node individ-

ually. On the other hand, if the goal is to make a prediction about the entire graph,

the final embeddings can be aggregated into a single vector by reducing them with
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any differentiable, associative and commutative operator (e.g. mean), and only then

passed to a downstream classifier.

For best performance, the algorithm does not explicitly loop over the nodes during

a given iteration. Instead, one concatenates all the embeddings xi ∈ Rd together into

a matrix X ∈ R|V |×d, and performs all the updates in one high-level operation using

the adjacency matrix A of the graph:

X ← N (X,AX)

Customizing architectures. We have provided descriptions of prototypical MLPs,

RNNs, and GNNs, but we remark that the details can be easily customized in any

number of ways. For example, in the GNN, the internal network N could be an

MLP, or it could itself be a recurrent neural network (RNN) that maintains some

state distinct from the embedding vectors it receives as input at each iteration. The

embeddings could be averaged instead of summed when computing the messages, or

their max or min could be taken. The number of iterations T could be a function of

the graph, and could be scaled in proportion to the graph’s diameter so that mes-

sage passing can always propagate information between every pair of nodes. There

could also be an embedding maintained for the entire graph, that sends a message

to every node and that receives as a message the sum of the embeddings of all other

nodes. Or, inspired by the data structures used in backtracking search, there could

be a differentiable stack for the entire graph, that each node can pop from jointly, or

perhaps pop from individually. Although none of these variations may be significant

enough to merit names, they may have substantial impact on the performance of a

neural network in some contexts. Thanks to the software packages that automate the

computation of gradients, there is very little friction to experimenting with different

variants, or even with entirely different kinds of architectures.



Chapter 3

The Satisfiability Problem

The propositional satisfiability problem (SAT) is one of the most fundamental prob-

lems of computer science. In [19], Stephen Cook showed that the problem is NP-

complete, which means that searching for any kind of efficiently-checkable certificate

in any context can be reduced to finding a satisfying assignment of a propositional

formula. Although there are many problem formalisms that are NP-complete, SAT

stands out for its extreme simplicity, and is widely considered to be the canonical

NP-complete problem. In practice, search problems arising from a wide range of do-

mains such as hardware and software verification, test pattern generation, planning,

scheduling, and combinatorics are all routinely solved by constructing an appropriate

SAT problem and then calling a SAT solver [28]. Modern SAT solvers based on back-

tracking search are extremely well-engineered and have been able to solve problems

of practical interest with millions of variables [11].

3.1 Problem formulation

A formula of propositional logic is a Boolean expression built using the constants true

(1) and false (0), variables, negations, conjunctions, and disjunctions. A model for

a formula is an assignment of Boolean values to its variables such that the formula

evaluates to 1. For example, for the formula (x1 ∨ x2 ∨ x3) ∧ ¬(x1 ∧ x2 ∧ x3), any

assignment that does not map x1, x2 and x3 to the same value is a model. A model

9
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is also called a satisfying assignment. We say a formula is satisfiable provided it has

a satisfying assignment.

For every formula, there exists an equisatisfiable formula in conjunctive normal

form (CNF), expressed as a conjunction of disjunctions of (possibly negated) vari-

ables. This transformation can be done in linear time such that the size of the

resulting formula has only grown linearly with respect to the original formula [84].

Each conjunct of a formula in CNF is called a clause, and each (possibly negated)

variable within a clause is called a literal. The formula above is equivalent to the

CNF formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3), where x is shorthard for ¬x. SAT

solvers only operate on formulae in CNF, which significantly simplifies their internal

data structures. A formula in CNF has a satisfying assignment if and only if it has

an assignment such that every clause has at least one literal mapped to 1. Note:

throughout this dissertation, we use n to denote the number of variables in a CNF

formula and m to denote the number of clauses.

A formula that is not satisfiable is called unsatisfiable. When a formula is satisfi-

able, we are usually interested in finding one or more satisfying assignments, each of

which takes at most n bits of space and can be verified in linear time with respect to

the size of the original problem. On the other hand, when a formula is unsatisfiable,

we often want to find a proof that the formula is indeed unsatisfiable. There are

many sound and complete proof systems for propositional logic. The resolution proof

system is the standard choice for formulae in CNF, and has only a single inference

rule:
C1 ∨ x x ∨ C2

C1 ∨ C2

where C1 and C2 are disjunctions of literals and x is a variable. If a set of clauses is

unsatisfiable, then the empty clause can be derived from them by resolution; however,

such a proof may be exponentially large compared to the size of the original problem.

As of this writing it is widely believed that NP 6= co−NP, in which case there could

not exist any proof system for propositional logic that avoids a worst-case exponen-

tial blowup. There are several standardized proof formats for various extensions of

resolution, and in §4 we make use of the Deletion Resolution Asymmetric Tautology
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(DRAT) format [88], though the details are not relevant for our purposes.

If a formula in CNF is unsatisfiable, a proof of unsatisfiability may only refer to

a small subset of the original clauses. For example, the formula

(x1,371 ∨ · · · ∨ x23,345) ∧ · · · ∧ x1 ∧ x1

can be proven unsatisfiable in one resolution step by resolving the final two clauses,

without even looking at any of the other clauses. A subset of clauses of a formula

that are unsatisfiable is called an unsatisfiable core.

A SAT problem is a formula in CNF, where the goal is to determine if the formula

is satisfiable, and if so, to produce a satisfying assignment, and if not, to produce a

proof of unsatisfiability. We say that a method solves a particular (satisfiable) SAT

problem if it finds a satisfying assignment for it, even if the method has no way of

producing proofs and is not even complete.

3.2 Conflict-Driven Clause Learning (CDCL)

There have been many different approaches to solving SAT problems. Some solvers

search for models by global search, whereas other solvers search for models by local

search. Still others do not search for models at all and instead search for proofs.

There have also been many more exotic approaches to solving throughout the years.

Some perform variants of belief propagation [69, 70] on probabilistic interpretations

of the SAT problem [12], while others perform optimization on numerical relaxations

of the SAT problem [72].

Despite the diversity of approaches, modern high-performance SAT solvers are

almost all based on the same approach: the conflict-driven clause learning (CDCL)

algorithm. The basic idea is to search for models and proofs simultaneously. The

search for models heuristically guides the search for (resolution) proof steps, while

the inferred clauses help prune the search for models, all in a virtuous cycle.

Specifically, a CDCL solver maintains a database of clauses that includes the orig-

inal clauses as well as clauses derived from them by resolution, and it also maintains
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a trail of literals tentatively assigned to 1 that do not falsify any of the clauses. If the

database ever includes the empty clause, then the solver has discovered a proof that

the original problem is unsatisfiable. On the other hand, if the trail ever includes all

of the variables in the problem, then the trail is a model and the problem is satisfiable.

Whenever a literal is added to the trail, the solver checks if any clause has all

but one of its literals set to 0 under the trail. If it finds such a clause, it adds the

remaining literal to the trail and repeats. This process is called unit propagation

and is performed efficiently using clever data structures [63]. If unit propagation

completes without finding a clause with all literals set to 0, a new decision literal is

chosen (using some heuristic) and added to the trail, and the process continues.

If unit propagation does find a clause with all literals set to 0, then the trail must

be inconsistent. Whereas a traditional backtracking algorithm might simply pop

every literal up to and including the most recent decision literal and then continue

the search, a CDCL solver does something more sophisticated: it analyzes the directed

acyclic graph of propagations since the most recent decision literal, and performs a

sequence of resolution steps to derive either the empty clause or a learned clause for

which all but one literal was set to false at a previous decision level. If it derives the

empty clause, then the problem is unsatisfiable. Otherwise, it adds the learned clause

to the database, pops literals off the trail until the first decision level at which the

learned clause would have propagated, and then propagates the learned clause. Only

then does it resume the search for models. The name “conflict-driven clause learning”

refers to this process of analyzing conflicts to infer new clauses by resolution.

Modern solvers have many additional features in addition to the main loop that

we have just described. They periodically perform various forms of simplification, for

example removing subsumed clauses and eliminating variables. They also periodically

prune the learned clauses in the database, since this set grows very quickly and most

of the clauses are unlikely to be useful. They also periodically restart, i.e. clear the

trail entirely. Restarting for CDCL is not as drastic an action as it would be for

a vanilla backtracking solver since the learned clauses are preserved, as are many

statistics from the search history that influence various heuristics.

There are many crucial heuristic decisions that a CDCL solver must make, such



CHAPTER 3. THE SATISFIABILITY PROBLEM 13

as which variable to branch on next, what polarity to set it to, which learned clauses

to prune and when, when to simplify and in what way, and also when to restart. In

§5, we focus on the first one: which variable to branch on next. The decision of which

variable to branch on next has been the subject of intense study for decades and many

approaches have been proposed. See [10] for a comprehensive overview. The most

widely-used heuristic is a variant of the Variable State-Independent Decaying Sum

(VSIDS) heuristic (first introduced in [63]) called Exponential VSIDS (EVSIDS). The

EVSIDS score of a variable x after the tth conflict is defined by:

InConflict(x, i) =

1 x was involved in the ith conflict

0 otherwise

EVSIDS(x, t) =
∑
i

InConflict(x, i)ρt−i

Intuitively, it measures how many conflicts the variable has been involved in, with

more recent conflicts weighted much more than past conflicts. Most other heuristics

that have been proposed in the literature are based on the same intuition that it is

good to branch on variables that have been involved in recent conflicts.

3.3 Other Algorithms for SAT

As mentioned above, many different approaches to solving SAT problems have been

proposed throughout the years. We briefly describe three non-CDCL approaches that

provide valuable context for our work.

3.3.1 Look-ahead solvers

One of the biggest meta-questions in all of discrete search is how much effort to

put into each branching decision. CDCL solvers make variable branching decisions

using cheap heuristics (e.g. EVSIDS) and so put very little effort into each individual

branching decision. They make up for potentially poor variable branching decisions
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by learning conflict clauses that prevent similar mistakes in the future, and of course

by being able to try more decisions in the same amount of time than they could if

they took longer for each decision.

There is a different family of SAT solvers called look-ahead solvers [36] that take

the opposite approach, and put substantial effort into each variable branching deci-

sion. Look-ahead solvers do what their name suggests: for each variable branching

decision, they consider a set of candidate variables, and for each one they “look ahead”

to see how much progress setting that variable seems to make. Specifically, they set

the variable to each of the Boolean values, and for each value they perform unit

propagation and compute various metrics of the reduced problem. These metrics are

transformed into scalar scores for each variable by (often very complicated) heuristics,

and the look-ahead solver chooses the variable with the best score to branch on. The

most widely-used look-ahead heuristic is called March [60]. We make use of March

in §5, and refer to it in various places in this work, but the technical details of how

it works are not relevant for our purposes.

Look-ahead solvers are not competitive with CDCL on industrial problems, but

they are considered state-of-the-art on many classes of hard synthetic problems, and

are an important building-block in cube and conquer solvers, which we now discuss.

3.3.2 Cube and conquer

As we discussed in §3.3.1, there are many classes of hard synthetic problems for

which look-ahead solvers reliably beat CDCL solvers, and yet on most industrial

problems of interest, look-ahead solvers are far inferior to CDCL solvers. Cube and

conquer [37] is an increasingly popular paradigm for integrating the two approaches

in the hopes of realizing the best of both worlds. The intuition behind cube and

conquer is that the early branching decisions are disproportionately important and

merit the extra work of expensive, global analysis, whereas the cheap, local heuristics

of CDCL are preferable once enough literals have been set that the problem has

become sufficiently easy. Specifically, cube and conquer solvers perform expensive

branching decisions using look-ahead heuristics at the beginning of search—producing
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so-called cubes—before trying to “conquer” the subproblems using CDCL. Cube and

conquer is especially useful in a multicore or distributed setting, since the generated

subproblems can be solved in parallel, but it has also been shown to improve serial

solving time in many cases as well. Note that in the serial case, the CDCL solver may

choose to keep conflict clauses across invocations, so the hybrid solver can effectively

backjump (i.e. backtrack multiple steps at once) past the look-ahead/CDCL interface.

3.3.3 Survey propagation (SP)

There is an alternative family of approaches to solving SAT problems that involves

performing variants of belief propagation [69, 70] on probabilistic interpretations of

the SAT problem. Although these approaches are not used to solve real-world prob-

lems, one variant called survey propagation [12] has proved extremely effective at

finding satisfying assignments for a particular distribution of random SAT problems.

We briefly describe this family of approaches here, since it was an inspiration for the

neural network architecture for SAT problems we present in §4.

The main idea is to maintain scalars for every literal, and to iteratively refine these

scalars by passing scalar messages back and forth between the literals and the clauses

they appear in. After the message passing, the literal scalars can be interpreted as

defining marginal distributions over the variables, which can be used in different ways

to guide a search procedure. The reader may see similarities to the GNN of §2.3. We

stress that in contrast to neural networks, the survey propagation algorithm involves

no learned parameters, and is instead derived from mathematical assumptions.

3.4 The International SAT Competition

The standard way of evaluating SAT solvers is the annual International SAT Compe-

tition (SATCOMP) [74]. Every year, hundreds of new benchmark SAT problems are

submitted from a wide range of different domains. For example, the 2017 benchmarks

include problems from bounded model checking (both hardware and software), railway

system safety verification, prime factorization, SHA-1 preimage attacks, Rubik’s cube
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puzzles, and crafted combinatorial and graph coloring problems, among many oth-

ers [7]. The 2018 benchmarks include problems arising from proving theorems about

bit-vectors, reversing Cellular Automata, verifying floating-point computations, find-

ing efficient polynomial multiplication circuits, mining Bitcoins, allocating time slots

to students with preferences, and finding Hamiltonian cycles as part of a puzzle game,

among many others [38].

Every year many solvers are submitted to the competition. In the main track of

the competition, each solver runs on each (previously unseen) problem for up to 5,000

seconds on a single CPU core. The solvers are officially evaluated by a scalar metric

called PAR-2, which is the sum of all its runtimes for solved instances plus twice the

timeout for all unsolved instances. However, the PAR-2 metric is hard for humans

to interpret, and so it is common to compare solvers based on the number of solved

instances and to consider more fine-grained metrics as appropriate to the context.

Note that since the problems are new and from highly varying domains each year,

the relative scores of different fixed solvers may vary from year to year as well.



Chapter 4

Learning a SAT Solver From

Single-Bit Supervision

In §1, we discussed how the increasing scope and ambition of the neural network com-

munity has raised a critical scientific question: what are the fundamental capabilities

of neural networks? This question is broad and open-ended, and so in this work we

consider one potential capability in particular: the ability to search. Since SAT is

the canonical search problem (and furthermore, is NP-complete), we consider the

concrete proxy question: can a neural network learn to solve SAT problems without

being explicitly supervised to do so?

In this chapter, we answer the question in the affirmative, and show that a simple

neural network architecture can indeed learn to perform discrete search on its own

without the help of hard-coded search procedures after only end-to-end training with

minimal supervision.

The work in this chapter is the result of a collaboration with Matthew Lamm,

Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill, and benefited

from discussions with Steve Mussmann, Alexander Ratner, Nathaniel Thomas, Vatsal

Sharan, Cristina White, William Hamilton, Geoffrey Irving and Arun Chaganty. A

paper describing it was published in the Seventh International Conference on Learning

Representations (ICLR-2019) [77].

17
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4.1 Overview

We develop a novel GNN, NeuroSAT, and train it as a classifier to predict satisfiability

on a dataset of random SAT problems. We provide NeuroSAT with only a single

bit of supervision for each SAT problem that indicates whether or not the problem

is satisfiable. When making a prediction about a new SAT problem, we find that

NeuroSAT guesses unsatisfiable with low confidence until it finds a solution, at which

point it converges and guesses satisfiable with very high confidence. The solution

itself can almost always be automatically decoded from the network’s activations,

making NeuroSAT an end-to-end SAT solver. See Figure 4.1 for an illustration of the

train and test regimes.

{
Input: SAT problem P
Output: 1 {P is satisfiable}

}

(a) Train

P NeuroSAT unsatisfiable

P NeuroSAT satisfiable

solution

(b) Test

Figure 4.1: We train NeuroSAT to predict whether SAT problems are satisfiable,
providing only a single bit of supervision for each problem. At test time, when
NeuroSAT predicts satisfiable, we can almost always extract a satisfying assignment
from the network’s activations. The problems at test time can also be substantially
larger, more difficult, and even from entirely different domains than the problems
seen during training.

Although it is not competitive with state-of-the-art SAT solvers, NeuroSAT can
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solve SAT problems that are substantially larger and more difficult than it ever saw

during training by performing more iterations of message passing. Despite only run-

ning for a few dozen iterations during training, at test time NeuroSAT continues to

find solutions to harder problems after hundreds and even thousands of iterations.

The learning process has yielded not a traditional classifier but rather a procedure

that can be run indefinitely to search for solutions to problems of varying difficulty.

Moreover, NeuroSAT generalizes to entirely new domains. Since NeuroSAT op-

erates on SAT problems and since SAT is NP-complete, NeuroSAT can be queried

on SAT problems encoding any kind of search problem for which certificates can be

checked efficiently. Although we train it using only problems from a single random

problem generator, at test time it can solve SAT problems encoding graph color-

ing, clique detection, dominating set, and vertex cover problems, all on a range of

distributions over small random graphs.

The same neural network architecture can also be used to help construct proofs for

unsatisfiable problems. When we train it on a different dataset in which every unsat-

isfiable problem contains a small unsat core (call this trained model NeuroUNSAT ),

it learns to detect these unsat cores instead of searching for satisfying assignments.

Just as we can extract solutions from NeuroSAT’s activations, we can extract the vari-

ables involved in the unsat core from NeuroUNSAT’s activations. When the number

of variables involved in the unsat core is small relative to the total number of vari-

ables, knowing which variables are involved in the unsat core can enable constructing

a resolution proof more efficiently.

4.2 The Prediction Task

For a SAT problem P , we define φ(P ) to be true if and only if P is satisfiable. Our

first goal is to learn a classifier that approximates φ. Given a distribution Ψ over

SAT problems, we can construct datasets Dtrain and Dtest with examples of the form

(P, φ(P )) by sampling problems P ∼ Ψ and computing φ(P ) using an existing SAT

solver. At test time, we get only the problem P and the goal is to predict φ(P ), i.e.

to determine if P is satisfiable. We ultimately care about the solving task, which also
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includes finding solutions to satisfiable problems.

4.3 A Neural Network Architecture for SAT

A SAT problem has a simple syntactic structure and therefore could be encoded into

a vector space using standard methods such as an RNN. However, the semantics

of propositional logic induce rich invariances that such a syntactic method would

ignore, such as permutation invariance and negation invariance. Specifically, the

satisfiability of a formula is not affected by permuting the variables (e.g. swapping

x1 and x2 throughout the formula), by permuting the clauses (e.g. swapping the first

clause with the second clause), or by permuting the literals within a clause (e.g.

replacing the clause (x1∨x2) with (x2∨x1). The satisfiability of a formula is also not

affected by negating every literal corresponding to a given variable (e.g. negating all

occurrences of x1 in the SAT problem (x1 ∨ x2) ∧ (x1 ∨ x3) to yield the new problem

(x1 ∨ x2) ∧ (x1 ∨ x3).
We now describe our neural network architecture, NeuroSAT, that enforces both

permutation invariance and negation invariance. We represent a Boolean formula in

CNF by an undirected graph with nodes for every literal and clause, with two different

types of edges: occurrence edges between literals and the clauses they appear in, and

flip edges between literals and their negations. For example, we represent the formula

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
c1

∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
c2

by the following graph:

x1 x1 x2 x2 x3 x3

c1 c2

where the solid lines denote occurrence edges and the dashed lines denote flip edges.

Let n and m be the number of variables and clauses in the formula respectively. To
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pass as input to our neural network, we encode the graph of a Boolean formula as

an m× 2n sparse adjacency matrix G, where (for reasons we will discuss shortly) the

first n columns represent the positive literals and the last n columns represent the

negative literals. For example, we represent the graph above as the following 2 × 6

(sparse) matrix:

G :

x1 x2 x3 x1 x2 x3

c1 1 1 1 0 0 0

c2 1 0 0 0 1 1

Note that the flip edges are only implicit in this representation.

To a first approximation, our model is simply a GNN (see §2.3) on this graph

representation of the SAT problem. It iteratively refines a vector space embedding

for each node in the graph by passing “messages” back and forth along the edges. At

the beginning of every iteration, we have an embedding for every literal and every

clause. An iteration consists of two stages. First, each clause receives messages from

its neighboring literals and updates its embedding accordingly. Next, each literal

receives messages from its neighboring clauses as well as from its complement and

then updates its embedding accordingly.

More formally, our model is parameterized by two vectors (Cinit, Linit), three

multilayer perceptrons (Lmsg, Cmsg, Lvote) and two layer-norm LSTMs [5, 40] (Cupdate,

Lupdate). The network computes forward as follows. First, it initializes two matrices

C(0) ∈ Rm×d and L(0) ∈ R2n×d by tiling Cinit and Linit respectively. Each row of C

corresponds to a clause, while each row of L corresponds to a literal:

C =


— c1 —

...

— cm —

 , L =



— x1 —
...

— xn —

— x1 —
...

— xn —


We refer to the row corresponding to a clause c or a literal ` as the embedding of
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that clause or literal. Define the operation Flip to swap the first half of the rows of

a matrix with the second half, so that in Flip(L), each literal’s row is swapped with

its negation’s:

Flip(L) =



— x1 —
...

— xn —

— x1 —
...

— xn —


Next, after initializing C and L, the network performs T iterations of message

passing, where a single iteration consists of the following two steps. First, each clause

updates its embedding based on the current embeddings of the literals it contains:

∀c, c ← Cupdate

(
c,
∑

`∈c Lmsg(`)
)
. Next, each literal updates its embedding based on

the current embeddings of the clauses it occurs in, as well as the current embedding

of its negation: ∀`, `← Lupdate

(
`,
∑

c|`∈c Cmsg(c), `
)

. Note that we can compute both

updates efficiently using our adjacency matrix G as follows:

C(t+1) ← Cupdate

(
C(t),GLmsg(L

(t))
)

L(t+1) ← Lupdate

(
L(t),G>Cmsg(C

(t+1)),Flip(L(t))
)

After T iterations, we compute L
(T )
∗ ← Lvote(L

(T )) ∈ R2n, which consists of a

single scalar for each literal (the literal’s vote), and then we compute the average

of the literal votes y(T ) ← mean(L
(T )
∗ ) ∈ R. We train the network to minimize the

sigmoid cross-entropy loss between the true label φ(P ) and the logit y(T ).

Our architecture enforces permutation invariance by always embedding each node’s

neighborhood into a fixed dimensional space with an associative and commutative op-

erator (i.e. sum), and never operating on nodes or edges in an order-dependent way.

Likewise, it enforces negation invariance by treating all literals the same no matter

whether they originated as a positive or negative occurrence of a variable. However,
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there are some invariances afforded by the semantics of satisfiability that our archi-

tecture not only fails to enforce but makes impossible to learn. For example, since

our model does not allow any communication between disconnected components, and

since we reduce the votes with mean at the end instead of min (which we do only be-

cause min is harder to train), our model has no way to learn that a single disconnected

component that is unsat must necessarily override all other votes for sat. However,

disconnected components can be easily preprocessed away in linear time. It is also

impossible for our architecture to learn in full generality that duplicating literals, du-

plicating clauses, and adding clauses with complementary literals (e.g. (x1∨x5∨x1))
all have no effect. Duplicate literals and clauses would be ignored if we reduced both

the votes and the messages with min or max. We see no easy way to ensure that

clauses with complementary literals are ignored, though removing such clauses is a

common (linear-time) preprocessing step in many SAT solvers.

We stress that none of the learned parameters depend on the size of the SAT

problem and that a single model can be trained and tested on problems of arbitrary

and varying sizes. At both train and test time, the input to the model is the adjacency

matrix G that represents an arbitrary SAT problem over any number of literals and

clauses. The learned parameters only determine how each individual literal and clause

behaves in terms of its neighbors in the graph. Variation in problem size is handled

by the aggregation operators: we sum the outgoing messages of each of a node’s

neighbors to form the incoming message, and we take the mean of the literal votes at

the end of message passing to form the logit y(T ).

4.4 Training data

One can easily construct distributions over SAT problems for which it would be pos-

sible to predict satisfiability with perfect accuracy based only on crude statistics;

however, a neural network trained on such a distribution would be unlikely to gen-

eralize to problems from other domains. To force our network to learn something

substantive, we create a distribution SR(n) over pairs of random SAT problems on n

variables with the following property: one element of the pair is satisfiable, the other
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is unsatisfiable, and the two differ by negating only a single literal occurrence in a

single clause. To sample a pair of problems from SR(n), we start by adding random

clauses one by one to an initially empty SAT problem. We sample each clause by

first sampling a small integer k (with mean a little over 4)1, then sampling k variables

out of {x1, . . . , xn} uniformly at random without replacement, and finally negating

each one with independent probability 50%. We continue to sample clauses ci in

this fashion, adding each one to the SAT problem and re-querying a traditional SAT

solver each time (we used MiniSat [24]), until adding the clause cm finally makes the

problem unsatisfiable. Since (c1 ∧ · · · ∧ cm−1) had a satisfying assignment, negating

a single literal in cm to yield cm′ creates a satisfiable problem (c1 ∧ · · · ∧ cm−1 ∧ cm′).

The pair (c1 ∧ · · · ∧ cm−1 ∧ cm) and (c1 ∧ · · · ∧ cm−1 ∧ cm′) is a sample from SR(n).

4.5 Predicting satisfiability

Although our ultimate goal is to solve SAT problems arising from a variety of do-

mains, we begin by training NeuroSAT as a classifier to predict satisfiability on

SR(40). Problems in SR(40) are small enough to be solved efficiently by modern

SAT solvers—a fact we rely on to generate the problems—but the classification prob-

lem is highly non-trivial from a machine learning perspective. Each problem has 40

variables and over 200 clauses on average, and the positive and negative examples

differ by negating only a single literal occurrence out of a thousand. We were unable

to train an LSTM on a many-hot encoding of clauses (specialized to problems with

40 variables) to predict with >50% accuracy on its training set. Even the popular

SAT solver MiniSat [24] needs to backjump almost ten times on average, and needs to

perform over a hundred primitive logical inferences (i.e. unit propagations) to solve

each problem.

We instantiated the NeuroSAT architecture described in §4.3 with d=128 dimen-

sions for the literal embeddings, the clause embeddings, and all the hidden units; 3

1We use 1 +Bernoulli(0.7) +Geo(0.4) so that we generate clauses of varying size but with only
a small number of clauses of length 2, since too many random clauses of length 2 make the problems
too easy on average.
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hidden layers and a linear output layer for each of the MLPs Lmsg, Cmsg, and Lvote;

and rectified linear units for all non-linearities. We regularized by the `2 norm of the

parameters scaled by 10−10, and performed T=26 iterations of message passing on

every problem. We trained our model using the Adam optimizer [47] with a learning

rate of 2× 10−5, clipping the gradients by global norm with clipping ratio 0.65 [68].

We batched multiple problems together, with each batch containing up to 12,000

nodes (i.e. literals plus clauses). To accelerate the learning, we sampled the number

of variables n uniformly from between 10 and 40 during training (i.e. we trained on

SR(U(10, 40))). We trained on millions of problems.

After training, NeuroSAT is able to classify the SR(40) test set correctly with

85% accuracy. In the next section, we examine how NeuroSAT manages to do so and

show how we can decode solutions to satisfiable problems from its activations. Note:

for the rest of this chapter, NeuroSAT refers to the specific trained model that has

only been trained on SR(U(10, 40)).

4.6 Decoding satisfying assignments

Let us try to understand what NeuroSAT (trained on SR(U(10, 40))) is computing as

it runs on new problems at test time. For a given run, we can compute and visualize

the vector of literal votes L
(t)
∗ ∈ R2n ← Lvote(L

(t)) at every iteration t. Figure 4.2

illustrates the sequence of literal votes L
(1)
∗ to L

(24)
∗ as NeuroSAT runs on a satisfiable

problem from SR(20). For clarity, we reshape each L
(t)
∗ to be an Rn×2 matrix so

that each literal is paired with its complement; specifically, the ith row contains the

scalar votes for xi and xi. Here white represents zero, blue negative and red positive.

For several iterations, almost every literal is voting unsat with low confidence (light

blue). Then a few scattered literals start voting sat for the next few iterations, but

not enough to affect the mean vote. Suddenly, there is a phase transition and all

the literals (and hence the network as a whole) start to vote sat with very high

confidence (dark red). After the phase transition, the literal votes converge and the

network stops evolving.
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Iteration −→

Figure 4.2: The sequence of literal votes L
(1)
∗ to L

(24)
∗ as NeuroSAT runs on a satisfiable

problem from SR(20). For clarity, we reshape each L
(t)
∗ to be an Rn×2 matrix so that

each literal is paired with its complement; specifically, the ith row contains the scalar
votes for xi and xi. Here white represents zero, blue negative and red positive.
For several iterations, almost every literal is voting unsat with low confidence (light
blue). Then a few scattered literals start voting sat for the next few iterations, but
not enough to affect the mean vote. Suddenly there is a phase transition and all
the literals (and hence the network as a whole) start to vote sat with very high
confidence (dark red). After the phase transition, the literal votes converge and the
network stops evolving.
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NeuroSAT seems to exhibit qualitatively similar behavior on every satisfiable prob-

lem that it predicts correctly. NeuroSAT’s behavior on the other problems is similar

except without the phase change: NeuroSAT continues to guess unsat with low confi-

dence for as many iterations as it runs for. NeuroSAT never becomes highly confident

that a problem is unsat, and it almost never guesses sat on an unsat problem. These

results suggest that NeuroSAT searches for a certificate of satisfiability, and that it

only guesses sat once it has found one.

Let us look more carefully at the literal votes L
(24)
∗ from Figure 4.2 after conver-

gence. Note that most of the variables have one literal vote distinctly darker than

the other. Moreover, most of the darker votes are approximately equal to each other,

and most of the lighter votes are approximately equal to each other as well. Thus the

votes seem to encode one bit for each variable. It turns out that these bits encode a

satisfying assignment in this case, but they do not do so reliably in general.

There is another way to visualize NeuroSAT’s internal representations that sheds

more light on this phenomenon. Recall from §4.3 that NeuroSAT projects the higher

dimensional literal embeddings L(T ) ∈ R2n×d to the literal votes L
(T )
∗ using the MLP

Lvote. Figure 4.3 illustrates the two-dimensional PCA embeddings for L(12) to L(26)

(skipping every other time step) as NeuroSAT runs on a satisfiable problem from

SR(40). Blue and red dots indicate literals that are set to 0 and 1 in the satisfying

assignment that it eventually finds, respectively. The blue and red dots cannot be

linearly separated until the phase transition at the end, at which point they form

two distinct clusters according to the satisfying assignment. We observe a similar

clustering almost every time the network guesses sat. The literal votes L
(T )
∗ only ever

encode the satisfying assignment by chance when the projection Lvote happens to

preserve this clustering.

Our analysis suggests a more reliable way to decode solutions from NeuroSAT’s

internal activations: 2-cluster L(T ) to get cluster centers ∆1 and ∆2, partition the

variables according to the predicate ‖xi−∆1‖2+‖xi−∆2‖2 < ‖xi−∆2‖2+‖xi−∆1‖2,
and then try both candidate assignments that result from mapping the partitions to

truth values. This decoding procedure (using k-means to find the two cluster centers)

successfully decodes a satisfying assignment for over 70% of the satisfiable problems in



CHAPTER 4. LEARNING A SAT SOLVER 28

Trained on: SR(U(10, 40))
Trained with: 26 iterations

Tested on: SR(40)
Tested with: 26 iterations

Overall test accuracy: 85%
Accuracy on unsat problems: 96%

Accuracy on sat problems: 73%
Percent of sat problems solved: 70%

Table 4.1: NeuroSAT’s performance at test time on SR(40) after training on
SR(U(10, 40)). It almost never guesses sat on unsatisfiable problems. On satisfiable
problems, it correctly guesses sat 73% of the time, and we can decode a satisfying
assignment for 70% of the satisfiable problems by clustering the literal embeddings
L(T ) as described in §4.6.

the SR(40) test set. Table 4.1 summarizes the results when training on SR(U(10, 40))

and testing on SR(40).

Iteration −→
Figure 4.3: PCA projections for the high-dimensional literal embeddings L(12) to
L(26) (skipping every other time step) as NeuroSAT runs on a satisfiable problem
from SR(40). Blue and red dots indicate literals that are set to 0 and 1 in the
satisfying assignment that it eventually finds, respectively. The blue and red dots
cannot be linearly separated until the phase transition at the end, at which point
they form two distinct clusters according to the satisfying assignment.

Recall that at training time, NeuroSAT is only given a single bit of supervision

for each SAT problem. Moreover, the positive and negative examples in the dataset

differ only by the placement of a single edge. NeuroSAT has learned to search for

satisfying assignments as a way of explaining that single bit of supervision.



CHAPTER 4. LEARNING A SAT SOLVER 29

Figure 4.4: NeuroSAT running on a satisfiable problem from SR(40) that it fails to
solve.

Figure 4.5: NeuroSAT running on the same satisfiable problem as in Figure 4.4,
beginning with iteration 137. NeuroSAT eventually solves the problem after roughly
150 iterations.

4.7 Extrapolating

4.7.1 More iterations

What about the 30% of satisfiable problems in SR(40) that NeuroSAT fails to solve?

Figure 4.4 shows NeuroSAT running on a satisfiable problem from SR(40) that it

fails to solve after 26 iterations. It turns out that for this problem and many others,

if we simply continue running NeuroSAT for more iterations, NeuroSAT eventually

solves the problem. Figure 4.5 shows NeuroSAT running on the same problem as

in Figure 4.4, starting at iteration 137, and undergoing the familiar phase transition

around iteration 150. Figure 4.6 shows the percentage of problems solved in SR(40)

as a function of the number of iterations that NeuroSAT runs for. We see that when

it runs for 1,000 iterations, NeuroSAT can solve almost all (satisfiable) problems in

SR(40).



CHAPTER 4. LEARNING A SAT SOLVER 30

Figure 4.6: NeuroSAT’s success rate on SR(40) as a function of the number of itera-
tions T . Even though we only train NeuroSAT with T=26 iterations, it continues to
search for solutions productively for at least 50 times as many iterations at test time,
and is able to solve almost all satisfiable problems in SR(40).

4.7.2 Bigger problems

Even though we only train NeuroSAT on SR(U(10, 40)), it is able to solve SAT

problems sampled from SR(n) for n much larger than 40 by simply running for more

iterations of message passing. Figure 4.7 shows NeuroSAT’s success rate on SR(n)

for a range of n as a function of the number of iterations T . For n = 200, there are

2160 times more possible assignments to the variables than any problem it saw during

training, and yet it can solve 25% of the satisfiable problems in SR(200) by running

for four times more iterations than it performed during training. On the other hand,

when restricted to the number of iterations it was trained with, it solves under 10% of

them. Thus we see that its ability to solve bigger and harder problems depends on the

fact that the dynamical system it has learned encodes generic procedural knowledge

that can operate effectively over a wide range of time frames.

Although we found it surprising that it could solve any problems at all for large n

(i.e. n=200), it is still natural to wonder why the curves seem to plateau well below

100%. We explored this question as follows. We ran NeuroSAT on a collection of

problems from SR(40), and after every time step that NeuroSAT did not predict
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Figure 4.7: NeuroSAT’s success rate on SR(n) for a range of n as a function of the
number of iterations T . Even though we only train NeuroSAT on SR(40) and below,
it is able to solve SAT problems sampled from SR(n) for n much larger than 40 by
simply running for more iterations.

Figure 4.8: Example graph from the Forest-Fire distribution. The graph has a color-
ing for k ≥ 5, a clique for k ≤ 3, a dominating set for k ≥ 3, and a vertex cover for
k ≥ 6. However, these properties are not perceptually obvious and require deliberate
computation to determine.
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sat we nonetheless attempted to decode a candidate assignment using the process

described in §4.6. We then looked at the number of variables flipped and the percent-

age of clauses satisfied at each round by the candidate assignment. We found that

the number of variables flipped almost always decreased monotonically, while the

percentage of satisfied clauses almost always increased monotonically. These findings

suggest that NeuroSAT has learned an analogue of simulated annealing, and that it

effectively becomes more cautious as the number of iterations increases and as the

candidate assignment satisfies a greater percentage of clauses. Thus it seems that

NeuroSAT (at least when trained on SR(U(10, 40))) is susceptible to getting stuck in

local optima. It also suggests a potential way to improve the architecture: give it ac-

cess to a source of randomness, so that it can learn to inject noise into its embeddings

as a way of breaking out of local optima and re-increasing its effective temperature.

4.7.3 Different problems

Every problem in NP can be reduced to SAT in polynomial time, and SAT problems

arising from different domains may have radically different structural and statistical

properties. Even though NeuroSAT has learned to search for satisfying assignments

on problems from SR(n), we may still find that the dynamical system it has learned

only works properly on problems similar to those it was trained on.

To assess NeuroSAT’s ability to extrapolate to different classes of problems, we

generated problems in several other domains and then encoded them all into SAT

problems (using standard encodings). In particular, we started by generating one hun-

dred graphs from each of six different random graph distributions (Barabasi, Erdös-

Renyi, Forest-Fire, Random-k-Regular, Random-Static-Power-Law, and Random-

Geometric).2 We found parameters for the random graph generators such that each

graph has ten nodes and seventeen edges on average. For each graph in each collec-

tion, we generated graph coloring problems (3 ≤ k ≤ 5), dominating-set problems

(2 ≤ k ≤ 4)), clique-detection problems (3 ≤ k ≤ 5), and vertex cover problems

(4 ≤ k ≤ 6).3 We chose the range of k for each problem to include the threshold

2See [64] for an overview of random graph distributions.
3See [56] for an overview of these problems as well as the standard encodings.
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for most of the graphs while avoiding trivial problems such as 2-clique. As before,

we used MiniSat [24] to determine satisfiability. Figure 4.8 shows an example graph

from the distribution. Note that the trained network does not know anything a priori

about these tasks; the generated SAT problems need to encode not only the graphs

themselves but also formal descriptions of the tasks to be solved. Figure 4.9 shows

visualizations of the various graph distributions that highlight their diversity.

(a) SR(40) (b) SR(200) (c) Graph coloring

(d) Dominating set (e) Clique detection (f) Vertex cover

Figure 4.9: Visualizations of the various distributions of SAT problems discussed in
this chapter. Note the distinct difference between the tangled, structureless SR(n)
problems and the highly structured problems arising from the other domains.

Out of the 7,200 generated problems, we kept only the 4,888 satisfiable problems.

On average these problems contained over two and a half times as many clauses as
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the problems in SR(40). We ran NeuroSAT for 512 iterations on each of them and

found that we could successfully decode solutions for 85% of them. In contrast, survey

propagation (see §3.3.3), the standard (learning-free) message passing algorithm for

satisfiability, does not on its own converge to a satisfying assignment for a single

problem in the set.4 This suggests that NeuroSAT has not simply found a way to

approximate SP, but rather has synthesized a qualitatively different algorithm.

Extrapolation is possible. One of the most notorious weaknesses of neural net-

works has always been their failure to extrapolate in reasonable ways on test data that

is insufficiently similar to the training data. The extrapolation abilities of NeuroSAT

presented in this section show that poor generalization is not an inherent limitation

of neural networks but rather is a property of specific neural network architectures

and specific training regimes. The ability to extrapolate can be cultivated in a neural

network by building better inductive biases into the architecture itself, and by exert-

ing careful control over the training data to ensure that large classes of undesirable

hypotheses are not able to achieve relatively small training loss.

4.8 Finding unsat cores

NeuroSAT (trained on SR(U(10, 40))) can find satisfying assignments but is not help-

ful in constructing proofs of unsatisfiability. When it runs on an unsatisfiable prob-

lem, it keeps searching for a satisfying assignment indefinitely and non-systematically.

However, when we train the same architecture on a dataset in which each unsatis-

fiable problem has a small unsat core, it learns to detect these unsat cores instead

of searching for satisfying assignments. The literals involved in the unsat core can

almost always be decoded from its internal activations. When the number of literals

involved in the unsat core is small relative to the total number of literals, knowing

the literals involved in the unsat core can enable constructing a resolution proof more

efficiently.

4We implemented the version with reinforcement messages described in [49], along with the
numerical trick explained in Exercise 359.
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We created a new distribution SRC(n, u) that is similar to SR(n) except that

every unsatisfiable problem contains a small unsat core. Here n is the number of

variables as before, and u is an unsat core over x1, . . . , xk (k < n) that can be made

into a satisfiable set of clauses u′ by negating a single literal. We sample a pair from

SRC(n, u) as follows. We first sample a literal to flip in u to yield u′, initialize a

problem with u′, and then sample clauses (over x1 to xn) just as we did for SR(n)

until the problem becomes unsatisfiable. We then negate a literal in the final clause

to get a satisfiable problem, and finally we can swap u′ for u to yield an unsatisfiable

problem that differs from the satisfiable one by negating a single literal in a single

clause, and that by construction contains the unsat core u. We created train and

test datasets from SRC(40, u) with u sampled at random for each problem from a

collection of three unsat cores ranging from three clauses to nine clauses: the unsat

core R from [49], and the two unsat cores resulting from encoding the pigeonhole

principles PP(2, 1) and PP(3, 2).5 We trained our architecture on this dataset, and

we refer to the trained model as NeuroUNSAT.

NeuroUNSAT is able to predict satisfiability on the test set with 100% accuracy.

Upon inspection, it seems to do so by learning to recognize the unsat cores. Fig-

ure 4.10 shows NeuroUNSAT running on a pair of problems from SRC(30,PP(3, 2)).

In both cases, the literals in the first six rows are involved in the unsat core. In

Figure 4.10a, NeuroUNSAT inspects the modified core u′ of the satisfiable problem

but concludes that it does not match the pattern exactly. In Figure 4.10b, NeuroUN-

SAT finds the unsat core u and votes unsat with high confidence (dark blue). As

in §4.6, the literals involved in the unsat core can sometimes be decoded from the

literal votes L
(T )
∗ , but it is more reliable to 2-cluster the higher-dimensional literal

embeddings L(T ). Figure 4.11 shows the two-dimensional PCA embeddings for L(T )

as NeuroUNSAT runs on a much larger problem from SRC(100,PP(3, 2)). Although

only 6% of the literals are involved in the unsat core, they can easily be separated

from the other 94%. On the test set, the small number of literals involved in the

unsat core end up in their own cluster 98% of the time.

Note that we do not expect NeuroUNSAT to generalize to arbitrary unsat cores:

5The pigeonhole principle and the standard SAT encoding are described in [49].
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(a) NeuroUNSAT running on a satisfiable problem from
SRC(30,PP(3, 2)).

(b) NeuroUNSAT running on an unsatisfiable problem from
SRC(30,PP(3, 2)).

Figure 4.10: The sequence of literal votes L
(t)
∗ as NeuroUNSAT runs on a pair of

problems from SRC(30,PP(3, 2)). In both cases, the literals in the first six rows
are involved in the unsat core. In 4.10a, NeuroUNSAT inspects the modified core
u′ of the satisfiable problem but concludes that it does not match the pattern. In
4.10b, NeuroUNSAT finds the unsat core u and votes unsat with high confidence
(dark blue).

as far as we know it is simply memorizing a collection of specific subgraphs, and there

is no evidence it has learned a generic procedure to prove unsat.

4.9 Related work

The contemporaneous [66] showed that a GNN can be trained to predict the unique

solutions of Sudoku puzzles. Although their model was trained with node-level super-

vision and was specific to Sudoku, we believe their network’s success is an instance

of the phenomenon we study in this chapter, namely that GNNs can synthesize local
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Figure 4.11: PCA projections of the high-dimensional literal embeddings L(T )

as NeuroUNSAT detects an unsat core on an unsatisfiable problem from
SRC(100,PP(3, 2)). Blue dots indicate literals that are involved in the unsat core
and all remaining literals are red. Although only 6% of the literals are involved in
the unsat core, they can easily be separated from the other 94%.

search algorithms for constraint satisfaction problems. The contemporaneous [25]

present a neural network architecture that can learn to predict whether one proposi-

tional formula entails another by randomly sampling and evaluating candidate assign-

ments. Unlike NeuroSAT, their network does not perform heuristic search and can

only work on simple problems for which random guessing is tractable. There have

also been several recent papers showing that various neural network architectures

can learn heuristics for NP-hard combinatorial optimization problems [86, 8, 21];

however, finding low-cost solutions to optimization problems requires less precise rea-

soning than finding satisfying assignments, and none of these papers present evidence

that the networks have learned to search as opposed to simply detecting useful pat-

terns.

Survey propagation (SP) (see §3.3.3) is similar to NeuroSAT in that continuous-

valued messages are iteratively passed between literals and the clauses they occur

in [12]. The most pertinent difference between SP and NeuroSAT is that in SP, the

update function is fixed, whereas in NeuroSAT, it is learned. There are many minor

differences as well: the SP messages have a different structure (e.g. a clause sends

different messages to each of its literals), the SP algorithm involves division and often

fails due to division-by-zero, and SP is designed to approximate marginals rather than

to predict satisfiability. As we discussed above, SP on its own does not converge to a
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satisfying assignment for any of the problems considered in §4.7.3, whereas NeuroSAT

solves most of them. Thus NeuroSAT has not just learned to imitate SP but rather

has learned something qualitatively different.

4.10 Discussion

Throughout this chapter, our motivation has been scientific: to better understand

the extent to which neural networks are capable of precise reasoning. Our work has

definitively established that neural networks can learn to perform discrete search on

their own without the help of hard-coded search procedures, even after only end-to-

end training with minimal supervision. We found this result surprising and think it

constitutes an important contribution to the community’s evolving understanding of

the capabilities of neural networks.

Yet as we stressed above, as an end-to-end SAT solver the trained NeuroSAT

system discussed in this chapter is vastly less reliable than the state-of-the-art. We

concede that we see no path to beating existing CDCL solvers with such a radically de

novo approach. In §5 we show how we can leverage the same NeuroSAT architecture

to improve the state-of-the-art by deeply integrating it with existing high-performance

CDCL solvers.



Chapter 5

Guiding CDCL with Unsat Core

Predictions

In §1, we discussed how the declining rate of progress in the SAT community and

the substantial, diverse successes of the neural network community have raised the

question: can neural networks somehow be leveraged to improve high-performance

SAT solvers? In this chapter, we answer this question in the affirmative.

The work in this chapter is the result of a collaboration with Nikolaj Bjørner,

and benefited from discussions with Percy Liang, David L. Dill, and Marijn J. H.

Heule. A paper describing it will be published in the 22nd International Conference

on Theory and Applications of Satisfiability Testing (SAT-2019), and a preprint has

been published to arXiv [76].

5.1 Overview

In this work, we make use of the NeuroSAT architecture presented in §4, but whereas

there we used it as an end-to-end solver on toy problems, here we use it to help inform

variable branching decisions within high-performance SAT solvers on real problems.

Given this goal, the main design decision becomes how to produce data to train the

network. There are many possible choices. For example, one could create a dataset

of satisfiable problems and their solutions, and train the network to predict the latter

39
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from the former. Or, one could use reinforcement learning, with [80] as a prominent

example, and try to learn a policy that minimizes the running time of a hybrid

solver on a collection of problems. Our approach is inspired by the fail first strategy

articulated in [34] that advocates branching on variables most likely to cause conflicts.

We approximate this strategy by training NeuroSAT to predict which variables will

be involved in unsatisfiable cores. Note that perfect predictions would not always

yield a useful variable branching heuristic; for some problems, the smallest core may

include every variable, and of course for satisfiable problems, there are no cores at

all. Thus, our approach is pragmatic; we rely on NeuroSAT predicting imperfectly,

and hope that the probability NeuroSAT assigns to a given variable being in a core

correlates well with that variable being good to branch on.

The next biggest design decision is how to make use of the predictions inside a SAT

solver. Even if we wanted to query NeuroSAT for every variable branching decision,

doing so would have severe performance implications, particularly for large problems.

A SAT solver makes tens of thousands of assignments every second, whereas even

with an on-device GPU, querying NeuroSAT on an industrial-sized problem may take

hundreds or even thousands of milliseconds. We settle for complementing—rather

than trying to replace—the efficient variable branching heuristics used by existing

solvers. All three solvers we extend—MiniSat [24], Glucose [4], and Z3 [22]—use the

Exponential Variable State-Independent Decaying Sum (EVSIDS) heuristic (see §3.2),

which involves maintaining activity scores for every variable and branching on the free

variable with the highest score. The only change we make is that we periodically query

NeuroSAT on the entire problem (i.e. not conditioning on the current trail), and set

all variable activity scores at once in proportion to how likely NeuroSAT thinks the

variable is to be involved in an unsat core. We refer to our integration strategy as

periodic refocusing. We remark that the base heuristics are already strong, and they

may only need an occasional, globally-informed reprioritization to yield substantial

improvements.

We summarize our pipeline:

1. Generate many unsatisfiable problems by decimating existing problems.
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2. For each such problem, generate a DRAT proof (see §3.1), and extract the

variables that appear in the unsat core.

3. Train NeuroSAT (henceforth NeuroCore) to map unsatisfiable problems to the

variables in the core.

4. Instrument state-of-the-art solvers (MiniSat, Glucose, Z3) to query NeuroCore

periodically (using the original and the learnt clauses), and to reset their variable

activity scores according to NeuroCore’s predictions.

As a result of these modifications, the MiniSat solver solves 10% more problems

on SATCOMP-2018 within the standard 5,000 second timeout. The modified Glucose

4.1 solves 11% more problems than the original, while the modified Z3 solves 6% more.

The gains are even greater when the training is specialized for a specific distribution

of problems; our training set included (easy) subproblems of a collection of hard

scheduling problems, and on that collection of hard problems the modified Glucose

solves 20% more problems than the original does within a one hour timeout. Our

results demonstrate that NeuroSAT (and in particular, NeuroCore) can be leveraged

to improve high-performance SAT solvers on real problems.

5.2 Data generation

As discussed in §5.1, we want to train our neural network architecture to predict

which variables will be involved in unsat cores. Unfortunately, there are only a few

thousand unsatisfiable problems across all SATCOMP competitions, and a network

trained on such few examples would be unlikely to generalize well to unseen problems.

We overcome this limitation and generate a dataset containing over 150,000 differ-

ent problems with labeled cores by considering unsatisfiable subproblems of existing

problems.

Specifically, we generate training data as follows. We use the distributed execution

framework ray [62] to coordinate one driver and hundreds of workers distributed over

several machines. The driver maintains a queue of (sub)problems, and begins by
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enqueuing all problems from SATCOMP (through 2017 only) as well as a few hundred

hard scheduling problems. It might help to initialize with even more problems, but

we did not find it necessary to do so. Whenever a worker becomes free, the driver

dequeues a problem and passes it to the worker. The worker tries to solve it using

Z3 with a fixed timeout (we used 60 seconds). If Z3 returns sat, it does nothing,

but if Z3 returns unsat, it passes the generated DRAT proof to DRAT-trim [88] to

determine which of the original clauses were used in the proof. It then computes

the variables in the core by traversing the clauses in the core, and finally generates

a single datapoint in a format suitable for NeuroSAT. If Z3 returns unknown, the

worker uses a relatively expensive, hand-engineered variable branching heuristic—

specifically, Z3’s implementation of the March heuristic (see §3.3.1)—and returns the

two subproblems to the driver to be added to the queue.

This process generates one datapoint roughly every 60 seconds per worker. Some

of the original problems are very difficult, and so the process may not terminate

in a reasonable amount of time; thus we stopped it once we had generated 150,000

datapoints.

As a minor extension, each worker generates even more data for each subproblem

found to be unsat by randomly removing a small percentage of the clauses and re-

solving; if it is still unsat, it computes the core, generates a datapoint, and repeats,

up to a maximum of 10 times.

Note that our data generation process is not guaranteed to generate diverse cores.

To the extent that March is successful in selecting variables to branch on that are in

the core, the cores of the two subproblems will be different; if it fails to do this, then

the cores of the two subproblems may be the same (though the non-core clauses will

still be different). We remark that there are many other ways one might augment the

dataset, for example by including additional problems from synthetic distributions,

or by directly perturbing the signs of the literals in the existing problems. However,

our simple approach proved sufficient.

We stress that predicting the (binary) presence of variables in the core is simplis-

tic. As mentioned in §5.1, for some problems, the smallest core may include every

variable, in which case the datapoint for that problem would contain no information.
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Even if only a small fraction of variables are in the core, it may still be that only a

small fraction of those core variable would make good branching decisions. A more

sophisticated approach would analyze the full DRAT proof and calculate a more nu-

anced score for each variable that reflects its importance in the proof. However, as we

will see in §5.5, our simplistic approach of predicting the variables in the core proved

sufficient to achieve compelling results.

5.3 Neural Network Architecture

The neural network architecture we use here is a simplified version of the one presented

in §4.3. For the convenience of the reader, we now describe our simplified version

in detail. Readers already comfortable with NeuroSAT may choose to skip to the

summary of key differences at the end of this section.

Our neural network represents a SAT problem as its clause-literal adjacency matrix

G, as in §4.3. The neural network itself is made up of three standard multilayer

perceptrons:

Cupdate : R2d → Rd

Lupdate : R3d → Rd

Vproj : R2d → R

The network computes forward as follows. First, it initializes two matrices C ∈
Rm×d and L ∈ R2n×d to all ones. Each row of C corresponds to a clause, while each

row of L corresponds to a literal:

C =


— c1 —

...

— cm —

 , L =



— x1 —
...

— xn —

— x1 —
...

— xn —


We refer to the row corresponding to a clause c or a literal ` as the embedding of
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that clause or literal. Define the operation Flip to swap the first half of the rows of

a matrix with the second half, so that in Flip(L), each literal’s row is swapped with

its negation’s:

Flip(L) =



— x1 —
...

— xn —

— x1 —
...

— xn —


Next, the network applies the following updates T times (we used T = 4):

C ← Cupdate (C,GL) (5.1)

L← Lupdate

(
L,G>C,Flip(L)

)
(5.2)

Note that passing Flip(L) as input to the update for L manifests the implicit flip

edge in the problem graph. After each such update, the network also normalizes each

column of C and L to have mean zero and variance one.

Define the operation Flop to concatenate the first half of the rows of a matrix

with the second half along the second axis, so that in Flop(L), the two vectors corre-

sponding to the same variable are concatenated:

Flop(L) =


— x1 — — x1 —

...

— xn — — xn —

 ∈ Rn×2d

After T iterations, the network flops L to produce the matrix V ∈ Rn×2d. Note

that flopping breaks negation invariance. Although we could easily maintain negation

invariance in any number of ways, we do not do so here because in real-world problems

(as opposed to random problems), the sign of a literal may actually contain useful
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Initialize:
C ← 1 ∈ Rm×d

L← 1 ∈ R2n×d

T times:
C ← Cupdate (C,GL)
L← Lupdate

(
L,G>C,Flip(L)

)
Finally:

V ← Flop(L) ∈ Rn×2d

v̂ ← Vproj(V ) ∈ Rn

C L

Cupdate Lupdate

GL

G>C

Flip(L)

Flop(L)Vprojv̂

Figure 5.1: An overview of the NeuroCore architecture

(heuristic) information.

Finally, the network projects V into an n-dimensional vector v̂ using the third

MLP, Vproj:

v̂ ← Vproj(V ) ∈ Rn

The vector v̂ is the output of NeuroCore, and consists of a numerical score for

each variable, which can be passed to the softmax function to define a probability

distribution p̂ over the variables. During training, we turn each labeled bitmask over

variables into a probability distribution p∗ by assigning uniform probability to each

variable in the core and zero probability to the others. We optimize the three MLPs

all at once to minimize the Kullback-Leibler divergence [53]:

DKL(p∗ ‖ p̂) =
n∑

i=1

p∗i log (p∗i /p̂i)

Figure 5.1 summarizes the architecture.

Comparison to the original NeuroSAT. While the original NeuroSAT archi-

tecture was designed to solve small problems end-to-end, the version in this chapter

is designed to provide cheap, heuristic guidance on (potentially) large problems. Ac-

cordingly, our network differs from the original in a few key ways. First, ours only

runs for 4 iterations at both train and test time, whereas the original was trained with
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26 iterations and ran for upwards of a thousand iterations at test time. Second, ours

simply initializes all elements of all embeddings to one, whereas the original learned

two initialization vectors, one for the literal embeddings and one for the clause em-

beddings. Third, our update networks are simple feed-forward networks, whereas the

original used layer-norm LSTMS [5, 40], as well as separate “message” networks to

transform the neighbor embeddings before aggregating them. Finally, as discussed

above, ours is trained with supervision at every variable and outputs a vector v̂ ∈ Rn,

whereas the original is trained with only a single bit of supervision and accordingly

only outputs a single scalar.

Training NeuroCore. As we discussed in §5.1, our goal is not to learn a perfect

core predictor, but rather only to learn a coarse heuristic that broadly assigns higher

score to more important variables. Thus, fine-tuning the network is relatively unim-

portant, and we only ever trained with a single set of hyperparameters. We used the

Adam optimizer [47] with a constant learning rate of 10−4, and trained asynchronously

with 20 GPUs for under an hour, using distributed TensorFlow [2].

5.4 Hybrid Solving: CDCL and NeuroCore

As discussed in §5.1, it is too expensive to query NeuroCore for every variable branch-

ing decision, and so we settle for querying periodically on the entire problem (i.e. not

conditioning on the trail) and replacing the variable activity scores with NeuroCore’s

prediction. We now describe this process in detail.

When we query NeuroCore, we build the sparse clause-literal adjacency matrix

G (see §4.3) as follows. First, we collect all variables in the problem that have not

been eliminated during simplification and that do not appear in any unit clauses (i.e.

clauses of length one). These are the only variables that we tell NeuroCore about.

Second, we collect all the clauses that we plan to tell NeuroCore about. We would like

to tell NeuroCore about all the (non-unit) clauses, both original and learnt, but the

size of the problem can get extremely large as the solver accumulates learnt clauses.

At some point the problem would no longer fit in GPU memory, and it might be
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undesirably expensive even before that point. After collecting the original clauses,

we traverse the learned clauses in ascending size order, collecting clauses until the

number of literals plus the number of clauses plus the number of cells (i.e. literal

occurrences in clauses) exceeds a fixed cutoff (we used 10 million). If a problem is so

big that the original clauses already exceed this cutoff, then for simplicity we do not

query NeuroCore at all, although we could have still queried it on random subsets of

the clauses. Finally, we traverse the chosen clauses to construct G. Note that because

of the learned clauses (unit and otherwise) and the eliminated variables, NeuroCore is

shown a substantially different graph on each query even though we do not condition

on the trail.

NeuroCore then returns a vector v̂ ∈ Rn, where a higher score for a variable

indicates that NeuroCore thinks the corresponding variable is more likely to be in the

core. We turn v̂ into a probability distribution by dividing it by a scalar temperature

parameter τ (we used 0.25) and taking the softmax, and then we scale the resulting

vector by the number of variables in the problem, and additionally by a fixed constant

κ (we used 104). Finally, we replace all the EVSIDS scores at once:1

∀i,EVSIDS(xi, t)← Softmax(v̂/τ)inκ

Note that the decay factor ρ is often rather small (MiniSat uses ρ = 0.95), and to a

first approximation solvers average ten thousand conflicts per second, so these scores

decay to 0 in only a fraction of a second. However, such an intervention can still

have a powerful effect by refocusing EVSIDS on a more important part of the search

space. We refer to our integration strategy as periodic refocusing to stress that we

are only refocusing EVSIDS rather than trying to replace it. Our hybrid solver based

on MiniSat only queries NeuroCore once every 100 seconds.

1In MiniSat, this involves setting the activity vector to these values, resetting the variable incre-
ment to 1.0, and rebuilding the order-heap.
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5.5 Solver Experiments

We evaluate the hybrid solver neuro-minisat (which operates as described in §5.4)

and the original MiniSat solver minisat on the 400 problems from the main track of

SATCOMP-2018, with the same 5,000 second timeout used in the competition. For

each solver, we solved the 400 problems in 400 different processes in parallel, spread

out over 8 identical 64-core machines, with no other compute-intensive processes

running on any of the machines. In addition, the hybrid solver also had network

access to 5 machines each with 4 GPUs, with the 20 GPUs split evenly and randomly

across the 400 processes. We calculate the running time of a solver by adding together

its process time with the sum of the wall-clock times of each of the TensorFlow queries

it requests on the GPU servers. We ignore the network transmission times since in

practice one would often use an on-device hardware accelerator.

Note that although we did not train NeuroCore on any (sub)problems from the

SATCOMP-2018 benchmarks, we did use a small number of runs of neuro-minisat

on problems from SATCOMP-2018 while performing extremely coarse tuning of the

parameter κ, which a priori could have reasonably been set to any double-precision

floating point value.2

Results. The main result, alluded to in §5.1, is that neuro-minisat solves 205 prob-

lems within the 5,000 second timeout whereas minisat only solves 187. This corre-

sponds to an increase of 10%. Most of the improvement comes from solving more

satisfiable problems: neuro-minisat solve 125 satisfiable problems compared to min-

isat ’s 109, which is a 15% increase. On the other hand, neuro-minisat only solved

3% more unsatisfiable problems (80 vs 78). Figure 5.2 shows a cactus plot of the

two solvers, which shows that neuro-minisat gains a substantial lead within the first

few minutes and maintains the lead until the end. Figure 5.3 shows a scatter plot of

the same data, which shows there are quite a few problems that neuro-minisat solves

within a few minutes that minisat times out on. It also shows that there are very few

problems on which neuro-minisat is substantially worse than minisat.

2In hindsight we regret not using alternate problems for this, but we strongly suspect that we
would have found a similar ballpark by only tuning on problems from other sources.
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Figure 5.2: Cactus plot comparing NeuroCore-assisted MiniSat (neuro-minisat) with
the original (minisat) on SATCOMP-2018. It shows that neuro-minisat gains a
substantial lead within the first few minutes and maintains the lead until the end.

Figure 5.3: Scatter plot comparing NeuroCore-assisted MiniSat (neuro-minisat) with
the original (minisat) on SATCOMP-2018. It shows that there are quite a few prob-
lems that neuro-minisat solves within a few minutes that minisat times out on, and
that there are very few problems on which neuro-minisat is substantially worse than
minisat.
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Ablations. The results show that our hybrid approach is effective, but do not tell

us much about why it is effective. We do not have a satisfying answer to this question

yet. As a consolation, we report a few ablations that shed some light on why it may

work. For these ablations, we periodically refocus every 10 seconds instead of every

100 seconds to make the effect of the quality of the scores more pronounced. When

we query NeuroCore every 10 seconds instead of every 100 seconds, neuro-minisat

still solves 205 problems within the timeout.

First, we investigated whether using EVSIDS between queries was necessary, or

whether NeuroCore’s predictions were sufficient on their own. Simply increasing κ

from 104 to 1040 (which only prevents EVSIDS from taking over for approximately

200ms following each query) already had an substantial negative effect: it solved

less than a third of the problems that minisat solved. Thus NeuroCore is not a

replacement to EVSIDS but only a complement to it. Second, we investigated whether

NeuroCore’s predictions even mattered at all, or if the solver would benefit equally

from just periodically setting the EVSIDS scores to random values. When we would

otherwise call NeuroCore, we substituted v̂ with scores sampled uniformly between

(−1, 1), and transformed them to EVSIDS scores using the original τ and κ values.

This change had a even more harmful effect: the resulting solver only solved a tiny

handful of problems out of 400. Third, we considered that perhaps NeuroCore’s

predictions are mostly irrelevant, and that the important part is that they are roughly

the same at every query. We tried the same experiment with random scores but with

the scores sampled uniformly once at the beginning of search and reused at every

query. This did a little better than when the scores changed each time, but not

by much. These experiments do not rule out the possibility that there is a simple,

hardcodeable heuristic that could do just as well as NeuroCore, but they do suggest

that there is substantial signal in NeuroCore’s predictions.

Glucose. As a follow-up experiment and sanity check, we made the same modifica-

tions to Glucose 4.1 and evaluated in the same way on SATCOMP-2018. To provide

further assurance that our findings are robust, we altered the NeuroCore schedule,

changing from fixed pauses (100 seconds) to exponential backoff (5 seconds at first



CHAPTER 5. GUIDING CDCL WITH UNSAT CORE PREDICTIONS 51

Figure 5.4: Scatter plot comparing NeuroCore-assisted Glucose (neuro-glucose) with
the original (glucose) on SATCOMP-2018. It shows that there are quite a few prob-
lems that neuro-glucose solves within a few seconds that glucose times out on, and
that there are very few problems on which neuro-glucose is substantially worse than
glucose.

with multiplier γ=1.2). The results of the experiment are very similar to the re-

sults from the MiniSat experiment described above. The number of problems solved

within the timeout jumps 11% from 186 to 206. Figure 5.4 show the scatter plot

comparing neuro-glucose to glucose. This comparison is even more favorable to the

NeuroCore-assisted solver than Figure 5.3, as it shows that there are many problems

neuro-glucose solves within seconds that glucose times out on. We believe this is due

to the exponential backoff query schedule, which makes more frequent NeuroCore

queries in the beginning of search. The cactus plot for the Glucose experiment is

almost identical to the one in Figure 5.2 and so is not shown.

Z3. Lastly, we made the same modifications to Z3, except we once again altered

the NeuroCore schedule, this time from exponential backoff in terms of user time

to geometric backoff in terms of the number of conflicts. Specifically, we first query

NeuroCore after 50,000 conflicts, and then each time wait 50,000 more conflicts than
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the previous time before querying NeuroCore again. The modified Z3 solves 170

problems within the timeout, up from 161 problems, which is a 6% increase.

Note that for the Z3 experiment, to save on computational costs, we evaluated

both solvers simultaneously instead of sequentially. To ensure fairness, we ordered

the task queue by problem rather than by solver. The lower absolute scores compared

to MiniSat and Glucose are partly the result of the increased contention.

A more favorable regime. It is worth remarking that SATCOMP-2018 is an

extremely unfavorable regime for machine learning methods. As discussed in §3.4, all

problems are arbitrarily out of distribution. The 2018 benchmarks include problems

arising from a dizzyingly diverse set of domains: proving theorems about bit-vectors,

reversing Cellular Automata, verifying floating-point computations, finding efficient

polynomial multiplication circuits, mining Bitcoins, allocating time slots to students

with preferences, and finding Hamiltonian cycles as part of a puzzle game, among

many others [38].

In practice, one often wants to solve many problems arising from a common source

over an extended period of time, in which case it could be worth training a neural

network specifically for the problem distribution in question. We approximate this

regime by evaluating the same trained network discussed above on the set of 303 (non-

public) hard scheduling problems that were included in the data generation process

along with SATCOMP-2013 to SATCOMP-2017. Note that although NeuroCore may

have seen unsat cores of subproblems of these problems during training, most of the

problems are so hard that many variables need to be set before Z3 can solve them

in under a minute. Also, at deployment time we are passing the learned clauses to

NeuroCore as well, which may vastly outnumber the original clauses. Thus, although

it clearly cannot hurt to train on subproblems of the test problems, NeuroCore is still

being queried on problems that are substantially different than those it saw during

training.

For this experiment, we compared glucose to neuro-glucose on the 303 scheduling

problems, using a one hour timeout and the same setting of κ as for the SATCOMP-

2018 experiment above. As one might expect, the results are even better than in the
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Figure 5.5: Cactus plot comparing NeuroCore-assisted Glucose (neuro-glucose) with
the original (glucose) on a benchmark of 303 (non-public) challenging scheduling
problems, for which some subproblems were included in the training set. In contrast
to Figure 5.2, which showed that on SATCOMP-2018 neuro-minisat got off to an
early lead and maintained it throughout, here we see that the solvers are roughly tied
for the first thirty minutes, at which point neuro-glucose begins to pull away, and
continues to add to its lead until the one hour timeout.

SATCOMP regime. The hybrid neuro-glucose solver solves 20% more problems than

glucose within the timeout. Figure 5.5 shows a cactus plot comparing the two solvers.

In contrast to Figure 5.2, which showed that on SATCOMP-2018 neuro-minisat got

off to an early lead and maintained it throughout, here we see that the solvers are

roughly tied for the first thirty minutes, at which point neuro-glucose begins to pull

away, and continues to add to its lead until the one hour timeout.

5.6 Related Work

The use of machine learning techniques for variable branching decisions in SAT is to

our knowledge relatively unexplored. However, there have been many attempts over

the years to apply statistical learning to other aspects of the SAT problem, including
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to restart strategies [32], parameter tuning [81], and solver selection [92]. In contrast

to our work, none of these approaches use neural networks, and instead make use

of both generic graph features and features extracted from the runs of SAT solvers.

In most cases, the statistical models have a few dozen trainable parameters at most,

are called once per problem, and output only a few bits either to set a small num-

ber of parameters or to indicate a choice among curated high-level strategies. Such

lightweight approaches can be very effective, though we believe that our approach of

parameter-rich neural networks, semantically meaningful training objectives (e.g. pre-

dicting cores), and deep integration with CDCL solvers ultimately has much greater

potential impact on the field.

As far we know, our approach of deeply integrating global analysis with the cheap,

adaptive heuristics of CDCL solvers—which we have called periodic refocusing—is

novel, and can be viewed as an alternative paradigm to cube and conquer (see §3.3.2)

for trading off between cheap and expensive branching decisions. In our case the

global analysis is performed by a neural network, but the paradigm is compatible

with any kind of global analysis. Indeed, we speculate that some of the benefits

of our approach could be realized without neural networks, by e.g. using the scores

computed by March to periodically refocus the CDCL solver. However, March is a

clever and complicated heuristic that is difficult to implement while potentially being

very far from optimal; indeed, simplifying and automating this kind of heuristic was

one of the original motivations for our work with NeuroSAT.

5.7 The Vast Design Space

There is a vast design space for how to train NeuroSAT and how to use it to guide

SAT solvers. This work has focused on only one tiny point in that design space. We

now briefly discuss other approaches we considered.

For our first experiment predicting unsatisfiable cores, we trained NeuroSAT on

a synthetic graph coloring distribution that happened to have tiny cores. NeuroSAT

was able to predict these cores so accurately that we could get almost arbitrarily big

speedups by only giving Z3 the tiny fraction of clauses that NeuroSAT thought most
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likely to be in the core (and doubling the number of clauses given as necessary until

they included the core). Unfortunately, it is much harder to learn a general-purpose

core predictor than one on a particular synthetic distribution for which instances

may all have similar cores. Real problems also rarely have such tiny cores, so even a

perfect core predictor might not be such a silver bullet. However, we do think that

core predictions may nonetheless be useful in guiding clause pruning. Our first efforts

here were hampered by the fact that we were rarely able to fit the majority of conflict

clauses in GPU memory given our relatively large network architecture (i.e. d=80).

Simply retraining with a smaller d would address this problem, and we plan to pursue

this in the future.

We also experimented with training NeuroSAT to imitate the decisions of the

March cubing heuristic. Based on preliminary experiments in a challenging scheduling

domain, we found that NeuroSAT trained only to imitate March may actually produce

better cubes than March itself, though it remains to be seen if this result holds up

to greater scrutiny. In contrast, using the unsat core predictions to make cubing

decisions seemed to perform consistently worse than the March baseline, though still

respectably well. We also tried using NeuroSAT’s March predictions to refocus the

EVSIDS scores, and found this to perform worse than its unsat core predictions.

However, we note that the March predictions were much peakier than the unsat core

predictions, and so the inferior performance may have been the result of using such

a low value for the temperature parameter τ .

We also briefly experimented with predicting models directly. Specifically, we used

existing solvers to find models of satisfiable problems, and then trained NeuroSAT

to predict the phases of each of the variables individually. Then, we instrumented

MiniSat to choose the phase of each decision variable in proportion to NeuroSAT’s

prediction. Note that this approach is very simplistic, since a single problem may

have many models; for example, if it suffices to assign only ε% of the variables to

satisfy all the clauses, then (1 − ε)% of the phases will be arbitrary. Nonetheless,

we still found some preliminary evidence that even this simplistic approach may help

in some cases, particularly on unsatisfiable problems, though the preliminary results

were insufficiently promising for us to pursue further at this stage. An alternative
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approach to learning a phase heuristic may be to only predict the phases of variables

for which one literal has been proven to be entailed. It is trivial to generate a huge

amount of data for this task, since every learned conflict clause provides one datapoint.

Lastly, inspired by the success of [80], we experimented with various forms of

Monte Carlo tree search and reinforcement learning, though so far the only compet-

itive heuristic we have been learn de novo is a cubing strategy for uniform random

problems. There are two main challenges for learning variable branching heuristics

by exploration alone: problems may have a huge number of variables, and it may take

substantial time to solve the (sub)problems in order to get feedback about a given

branching decision. The former challenge can be mitigated by beginning with imita-

tion learning (e.g. by imitating March). We tried to mitigate the latter by pretraining

a value function based on data collected from solving a collection of benchmarks, and

then using the value function estimates to make cheap importance sampling estimates

of the size of the search tree under different policies as described in [48]. We found

that even in the supervised context, training the value function is difficult; without

taking logs it is numerically difficult, and with taking logs, one can get very low loss

while ignoring the relatively few hard subproblems towards the roots that make the

most difference. Ultimately, we think that the satisfiability problem offers such great

opportunities for post facto analysis and principled credit assignment that there is

simply no need to resort to generic reinforcement learning methods.

We have only scratched the surface of this design space. We hope that our promis-

ing initial results with NeuroCore inspire others to try leveraging NeuroSAT in other,

creative ways.
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Conclusion

We think that one of the most important takeaways from the success of NeuroSAT

(§4) is that it is reasonable to expect that an end-to-end neural network approach can

be made to perform well even in domains that may require some form of search. This

insight is especially promising for domains where a precise representation of a search

problem is not a priori available, for which it would not be feasible to supervise the

network to reason directly nor to implement a hard-coded search procedure.

On the other hand, in domains where it is relatively straightforward to apply hard-

coded search procedures, we think end-to-end neural approaches are unlikely to rival

state-of-the-art search methods except in certain niche cases. However, the success

of NeuroCore (presented in §5) tells us that neural networks can nonetheless provide

substantial improvements on top of existing, highly engineered search procedures.

Although many details of our approach in §5 were specific to SAT (e.g. replacing the

EVSIDS scores), at a high level our approach is more broadly applicable to other

problems in discrete search, such as satisfiability modulo theories (SMT), program

synthesis, and higher-order theorem proving. The keys steps of our methodology are

as follows.

Step 1 (design network architecture). The first step is to design a custom neural

network architecture for the desired formalism that builds in useful invariances.

In the NeuroSAT case, we built in permutation and negation invariance, but

richer formalisms may have more sophisticated invariances that may be worth

57
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building in. For example, in higher-order logic, the expression (λx.λy.x ∧ y)

is trivially (α-)equivalent to (λw.λz.w ∧ z), and yet a näıve embedding of the

syntax tree would not know this a priori. However, as discussed in §4.3, not

every invariance is worth building into the model. For example, in higher-order

logic, the expression (λx.¬x)((λy.λz.z) 0 1) is β-equivalent to ¬1, and yet we see

no simple way to build β-equivalence into a neural network architecture. We

stress that designing good architectures for different formalisms may require

cleverness and experimentation.

Step 2 (collect problems). The second step is to collect diverse problems. As

in §5, there may not be enough problems easily accessible to train a neural

network, and so we advocate extensive problem transformations to augment

the dataset. One approach is to mine subproblems of the original problems by

fixing the values of subsets of the variables. Another approach is to transform

problems syntactically, for example by randomly negating variable occurrences,

by discarding clauses, or by combining components of different problems. It

may also be desirable to write synthetic problem generators, or even to train

neural networks to generate problems that are similar to the original problems.

Step 3 (perform post facto analysis). The third step is to run state-of-the-art

solvers on the collected problems, outputting a history of the search in the pro-

cess. This history can then be analyzed post facto to determine which decisions

were good and which were bad. In some cases, the history can be analyzed

to determine even better decisions than what the solver even considered. This

analysis can then be used to create a labeled dataset mapping problems to

scores for each decision being considered.

Step 4 (deploy with periodic refocusing). Except in rare cases, we consider it

unlikely that the trained network will be fast and reliable enough to replace

the underlying solver. Thus, the final step is to integrate the trained network

with an existing solver through some form of periodic refocusing, as we did in

§5.4. The exact mechanism will depend on the formalism and the solver, but

many solvers have cheap built-in heuristics that rely on numerical scores that
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are dynamically adjusted throughout the solver run, as in EVSIDS. For such

solvers, periodic refocusing can proceed analogously to §5.4. For other solvers,

the appropriate way to use the output of the neural network to refocus the

search may require cleverness and experimentation.

Although we stress that each new domain will likely require new insights, we are

cautiously optimistic that similar approaches will lead to substantial gains in many

other areas of discrete search in addition to SAT.

Lastly, we think the results of §4 help illuminate important limitations of GNNs.

As we discuss in §4.7.2, NeuroSAT seems to perform an analogue of simulated an-

nealing, and has trouble escaping from local optima. We think this weakness may

plague GNNs in other contexts too, and architectural extensions that address this

weakness (perhaps by providing a source of randomness) may prove useful in other

domains. A related weakness that we highlight in §4.8 is that NeuroSAT seems to

only perform incomplete search—unless we plant simple contradictions during train-

ing, it never becomes confident in unsatisfiability. This weakness is not surprising,

since both exhaustive backtracking search and proof systems such as resolution seem

to require more sophisticated data structures, e.g. stacks for the former and maps for

the latter. We experimented with extending NeuroSAT with a single global neural

stack [30], but found that, at least in our SR(U(10, 40)) training regime, it learned

to ignore the stack completely. It is an open question if there exists an architectural

extension that lets NeuroSAT become confident in unsatisfiability.

At a higher level, studying GNNs in the SAT domain helps clarify what may be

their most fundamental weakness: they are essentially propositional automata. As

such, we doubt that they would be capable of competent reasoning in more abstract

logics for which neither proofs nor models can be represented as bitmasks on the

syntax of the original problem. Although GNNs are unlikely to be sufficient, we do

think the methodology we adopted in §4 might prove fruitful for more abstract logics.

Can we design a neural network architecture that learns to prove (or find models

for) higher-order propositions? We think such an architecture may prove useful in

domains that require abstract reasoning, such as natural language understanding.
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[12] Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey propagation:

An algorithm for satisfiability. Random Structures & Algorithms, 27(2):201–226,

2005.

[13] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading

Wikipedia to answer open-domain questions. arXiv preprint arXiv:1704.00051,

2017.

[14] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A flexible and

efficient machine learning library for heterogeneous distributed systems. arXiv

preprint arXiv:1512.01274, 2015.
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