
(1)

(2)

(3)

If you have ever played with the RotationTransform command in Mathematica, you may have
at some point become impressed at how quickly it returns answers in an arbitrary number of
dimensions. After all, the details section of the documentation for this command says explicitly
that it “can effectively specify any element of the n-dimensional rotation group SO(n).” Since
elements of the group can be evaluated by exponentiating the generator of the element, in this
case an orthogonal matrix, it appears at first sight that Mathematica knows how to exponentiate
an orthogonal matrix in an arbitrary number of dimensions, and very quickly at that.

It  turns  out  that  there  is  a  simpler  way to evaluate  arbitrary elements  of  the group than by
explicitly exponentiating each individual matrix. To show how this works, first quickly review
the relationship between a rotation matrix and its generator. For the simplest case of rotation in a
two-dimensional plane, the rotated vector is related to the initial vector by
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for a right-hand rotation through the angle a. The generator of this rotation is represented by the
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leading to the rotation matrix given above. The generator of the rotation can be written as an
outer product of the two unit vectors along the x-axis and the y-axis,
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where the transposed vector on the right of each term is multiplied leftward onto each component
of the vector to produce matrices that are added together. Since the final result is now a general
vector statement, it can be extended immediately to higher dimensions. The equivalent three-
dimensional generator is
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where the subscript indicates that this is a right-hand rotation from the x-axis towards the y-axis.
Note  that  in  forming  this  generator,  the  first  index  appears  with  a  negative  sign  as  a  non-
transposed vector. The two remaining generators of right-hand rotations are
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Because there are three coordinate axes, the number of pairwise combinations is also three, so
that in three dimensions one can make the identifications

�� = ��� �� = ��� �� = ���

and describe  rotations  as  being  about  the  corresponding  axes.  The  rotation  matrices  can  be
evaluated separately about each axis just as for the rotation in the two-dimensional plane, with
the results
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In three dimensions one can also consider a rotation about a general  axis  by a single angle
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�  . The generator of this rotation is the linear combination � · � = �� · �  ,

where n  is a unit vector in the direction of the axis of rotation. The rotation matrix for this
general rotation is found by exponentiating the matrix
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where ��
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� = 1 because these numbers are direction cosines giving the inclination of

the axis of rotation to the three coordinate axes. The square and cube of this matrix are
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and the exponentiated matrix can be written as
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where the denominators normalize powers of the coefficient matrix. When applied to a vector,
the result is Rodrigues’ rotation formula:
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In four dimensions one can no longer describe a rotation as being about an axis, because there
are two axes perpendicular to every plane and there would be an ambiguity in the description. In
higher dimensions there are even more axes perpendicular  to each plane,  so a  rotation in n
dimensions is best described as being in an (n−1)-dimensional hyperplane in a direction from
one unit vector towards another.

The definitions above of generators in terms of outer products are in vector notation, and so can
be extended immediately to describe rotation in any hyperplane defined by two n-dimensional
vectors. Given any two orthogonal unit vectors n1 and n2, which means
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the generator of rotations in the hyperplane spanned by the two vectors is
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Forming powers of this generator,
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the n-dimensional rotation matrix is simply
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The difference of sign in the last term compared to Rodrigues’ rotation formula is due to an extra
minus  sign from the  neighboring outer  product.  This  n×n  matrix  can now be applied to  an
n-dimensional vector to find its final value after rotation in the specified hyperplane.

Given  two  vectors  that  are  not  orthogonal,  one  can  apply  the  Gram-Schmidt  orthogonality
process,  renormalize  the  second  vector  and  form  the  rotation  matrix  with  the  two  newly
orthogonal unit vectors. And that is precisely what Mathematica does in producing answers so
quickly in any number of dimensions. The exponentiation has already been carried out in the
general formula and does not need to be done explicitly for every particular case, and forming
the n×n matrix is trivial for Mathematica.

To demonstrate the consistency of this general formula with the result above in three dimensions,
one need merely choose any vector satisfying v1 · n = 0 with respect to the three-dimensional
axis of rotation, form its orthogonal vector v2 = v1×n , normalize both vectors and do a wee bit
of algebra. Since there is an entire plane of rotation in which to choose the vectors, any initial
choice leads by this method to the same result.

In  four  dimensions,  exponentiation  of  a  general  orthogonal  matrix  is  capable  of  explicit
evaluation using a method based on the local isomorphism SO(4) ∼ SO(3)⊗SO(3) . The general
coefficient matrix is
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where the minus signs have all been kept below the diagonal for convenience. Squaring this
matrix itself produces a symmetric matrix whose interpretation is not immediately clear, but if
one first writes
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then it is straightforward to verify that these two matrices commute: [�+ ,�−] = 0  .  Forming
their squares gives
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so that the complete exponentiated matrix is
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One  can  describe  this  method  as  arranging  the  six  parameters  of  SO(4)  into  two  vectors,
remembering that one is working with four-dimensional representations of SO(3).
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