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Abstract—Temporal logic and model-checking are useful the-
oretical tools for specifying complex goals at the task level and
formally verifying the performance of control policies. We are
interested in tasks that involve constraints on real-valued energy
resources. In particular, autonomous gliding aircraft gain energy
in the form of altitude by exploiting wind currents and must
maintain altitude within some range during motion planning.
We propose an extension to probabilistic computation tree logic
that expresses such real-valued resource threshold constraints,
and present model-checking algorithms that evaluate a piecewise
control policy with respect to a formal specification and hard or
soft performance guarantees. We validate this approach through
simulated examples of motion planning among obstacles for an
autonomous thermal glider. Our results demonstrate probabilistic
performance guarantees on the ability of the glider to complete its
task, following a given piecewise control policy, without knowing
the exact path of the glider in advance.

I. INTRODUCTION

Task-level programming is a long-standing, decades-old
problem in robotics. The goal is to command complex tasks
using simple, natural language. Progress towards this goal has
been achieved recently using temporal logic to specify rich
tasks [3, 15] or complex goals [4]. In addition to providing
powerful means for representing tasks, temporal logic specifi-
cation offers the additional benefit of proving the correctness
of a plan or policy that completes a task. By verifying a plan
or policy against its logical specification while considering
uncertainty, we can provide probabilistic performance guaran-
tees. We are interested in developing provably correct control
policies with expressive task-level specifications.

Formal verification is important for safety-critical systems
and currently is widely employed in embedded systems such
as pipelined CPUs [7] and medical monitoring systems [8]. In
robotics, the significance of a probabilistic performance guar-
antee is that, given a stochastic transition model, it is possible
to provide a probability of success independent of the path
eventually executed. This principled understanding of level
of confidence is necessary for robots operating in complex
environments, especially outdoor environments, where failure
in the worst case leads to catastrophic loss of the platform and
compromises the safety of nearby humans.
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One issue in applying formal methods is choosing the
appropriate form of temporal logic [3]. Since we are interested
in systems with stochasticity, probabilistic computation tree
logic (PCTL) is the natural choice [17]. But PCTL as defined
cannot fully express the task-level specifications required in
robotics. In particular, we are interested in tasks that involve
capacity constraints on energy resources. These energy re-
sources are continuous quantities subject to upper and lower
bounds. We would like to specify these bounds in continuous
form, but PCTL specifies constraints as boolean propositions
over discrete states. It is common in applications outside
of robotics to extend temporal logic to increase expressive
power; in this paper we propose such an extension to PCTL to
model resource capacity as a real-valued reward threshold and
demonstrate its use in the context of an autonomous gliding
aircraft.

An intuitive application of a resource bound would be
to constrain fuel or battery level above some minimum.
However, in the case of an autonomous thermal glider the
‘resource’ of interest is altitude. The glider gains altitude,
and hence energy, by exploiting favourable wind currents.
Gliders must operate within a fixed altitude range for several
reasons, including maintaining the safety of the platform and
to comply with government regulations for autonomous flight.
It may seem reasonable to model altitude discretely, but as
with all discrete approximation it is then necessary to choose
an appropriate resolution. Even with a very fine resolution,
discrete approximation can lead to inaccurate evaluation of the
safety criteria. For example, there may exist conditions where
the length scale of wind features is less than the discretisation
of altitude. A policy could then lead the glider into an unsafe
wind gust yet is evaluated as safe. From the perspective of
formal methods, there is no strong guarantee in the evaluation
since such approximation may find the presence of certain
behaviour, but not the absence of such behaviour.

Our approach is to extend PCTL to admit resource thresh-
old constraints in continuous form. We present Resource
Threshold-PCTL (RT-PCTL), in which the logic is not only
able to formally represent high-level symbolic specifications,
but also a constraint on an accumulated real-valued resource.
RT-PCTL includes a set of operators to formally represent hard
guarantees and soft guarantees by considering the probability
of mission success in all possible immediate transitions from a



state. For a hard guarantee, all possible immediate transitions
from a state lead to a successor state that satisfies a given
probability requirement for mission success. For a soft guar-
antee, there exists at least one immediate transition that leads
to a successor state that satisfies the requirement.

Because control actions in our approach depend on temporal
conditions (the value of accumulated resource at the time a
state is entered), we define a piecewise control policy, where
the value of a control action varies with accumulated resource.
We also define a piecewise probability function (PPF) that
represents the probability of mission success in a given state
with respect to the value of accumulated resource. A set of
PPFs, one for each state, represents the formal performance
guarantee for a given control policy over all possible paths.
Finally, we present algorithms for model-checking the control
policy and associated PPF set against a given safety-critical
requirement (hard or soft guarantee).

We validate our approach by developing an example with an
autonomous thermal glider [19] in a hexagonal grid environ-
ment. The glider flies non-holonomically with a priori knowl-
edge of the thermal airflow distribution. The resource threshold
constraint requires the glider to maintain its altitude between
given upper and lower bounds. We investigate two scenarios
specified in RT-PCTL: 1) reaching the goal while avoiding
danger states, and 2) reaching the goal while traversing either
only safe states, or semi-safe states where all successor states
are not danger states. The tasks are model-checked against the
hard and soft constraints defined. We also compare the PPF
evaluation with discrete evaluation at several fixed resolutions
to demonstrate the need for representing resource values in
continuous form.

II. RELATED WORK

Temporal logic has been used extensively in embedded
systems to specify required system properties over all pos-
sible paths that are not possible using traditional proposi-
tional logic. System properties include functional correctness,
liveness, safety, fairness, reachability and real-time property
[5, 7, 8, 20]. With the formal specification, model-checking
is then used to systematically determine if the specification
holds [2]. The critical difference between model-checking
and testing/simulation is that model-checking is capable of
detecting the absence of error whereas testing/simulation is
only able to detect the presence of error. Therefore the
formalism plays an important role in safety-critical systems.

Various forms of temporal logic have been proposed, in-
cluding linear temporal logic (LTL) [21] and computation
tree logic (CTL) [11]. Neither is defined to include stochastic
transition models in their basic forms. For temporal logic to
represent real-world environments with sensor noise and actu-
ation error, probabilistic computation tree logic (PCTL) [17]
was introduced to replace the non-determinism of CTL with
probabilities.

The application of temporal logic has recently become an
important topic in robotics where a control policy generated
is formally guaranteed to ensure safety [3, 13, 14]. The focus

has been on systems where temporal logic is used for high-
level discrete mission planning complemented by low-level
planners or controllers operating in continuous space [4],
and with approximation methods [1]. LTL is often used
since stochasticity is not directly considered in the discrete
abstraction layer [6, 9, 16], and there have been attempts to
use LTL for motion-planning in uncertain environments with
probabilistic guarantees [10]. Our work is distinct in that we
focus on probabilistic transitions in the high-level discrete
layer, with real-valued resource threshold constraints.

Other related work using MDPs and PCTL for com-
plex mission specifications includes extending the MDP for-
mation to maintain the probability of entering undesired
states below a given constant [22], extending PCTL for
more complex missions [18], and approximating PCTL [12].
Kwiatkowska et al. [17] have shown that PCTL can specify the
reward structure such that a mission satisfies reward-related
requirements such as ‘the expected amount of energy that
an agent acquires during the mission’. However, the reward
structure in PCTL only considers the expected value at the end
of the time horizon and thus is not suitable for a mission where
success depends not only on the mission specification but also
on the accumulated reward within the path. Our approach
addresses this case directly.

III. PROBLEM FORMULATION

A labelled discrete-time Markov chain (DTMC) M has
a tuple < S, s0, rs, rss′ , hs, P,AP,L > with a finite set of
states S, an initial state s0 ∈ S, and a set of transition prob-
abilities P : S × S → [0, 1] where

∑
s′∈S Pss′ = 1,∀s ∈ S.

Scalar rs ∈ R is an instant resource gained when entering the
state s and rss′ ∈ R2 is a transition resource gained while
transiting from state s to state s′. Scalar set hs = [hls, h

u
s ]

represents the lower and upper resource bounds respectively
at state s. Function L : S → 2AP is a labelling function that
assigns atomic propositions AP for each state s ∈ S.

To illustrate the need for resource threshold constraints, a
simple environment using the DTMC M is given in Fig. 1(a)
with three states where state s3 is the goal state. The agent
starting from s1 must maintain its accumulated resource be-
tween 0 and 5 until it reaches the goal state. The formulation
using PCTL [17] allows us to compute the satisfaction of
a property over an indefinite number of paths as shown in
Fig. 1(b) without considering the resource bounds where the
probability is computed to be 0.9728 after four time steps.
However, the resource structure in standard PCTL is only
able to model-check against ‘expected accumulated resource
after k time steps’, ‘expected instantaneous state resource at k
time steps’, and ‘expected accumulated state resource before
satisfying a formula’. Since these all compute the expectation
of the resource at or after a certain number of time steps,
standard PCTL is unable to determine if the accumulated
resource within a path ever violates the bounds. As a result,
the computation tree keeps branching from the state within
the path that already went below threshold. Note that although
the final resource at the end is above threshold, the mission



(a) Simple environment

(b) Probabilistic computation tree without resource constraint

(c) Probabilistic computation tree with resource constraint

Fig. 1. Subfigs. 1(b) and 1(c) show computation trees for 1(a), without and
with resource constraints.

is considered to be unsuccessful if any state within the path
does not satisfy the constraint.

The computation tree with a threshold constraint (Fig. 1(c))
shows that branching terminates at a state when the accumu-
lated resource goes below zero. The probability of success
in this case is 0.1536. From Fig. 1(c) it is shown intuitively
that the successful path within four time steps is the one in
which the agent stays in state s1 for two time steps until its
accumulated resource exceeds +1. Hence there is a need for a
control policy structure and evaluation function that depend on
the accumulated resource. This will be discussed in Sec. IV.

A. Resource Threshold-Probabilistic Computation Tree Logic
(RT-PCTL)

The syntax for RT-PCTL is defined as

Φ ::=true|a|¬Φ|Φ1 ∧ Φ2|Φ1 ∨ Φ2|Aφ|Eφ|P x:h∼λ [φk]

φk ::=XΦ|F≤kΦ|Φ1U≤kΦ2

where Φ is a state formula,

φk is a path formula,

a is an atomic proposition,

∼∈ {<,≤,≥, >},
x ∈ R and λ ∈ [0, 1] and k ∈ N .

(1)

A and E are quantifiers over a path and they state ‘with
all paths’ and ‘with at least one path’ respectively. In this
paper, the quantifiers A and E are used to evaluate hard and
soft guarantees. X, F and U are path-specific quantifiers. [Xp],
[F≤kp] and [p1U≤kp2] represent ‘the property p is satisfied in
the next time step’, ‘the property p is satisfied in future within
k time steps’ and ‘the property p1 holds until p2 is satisfied
within k time steps’. A transition from s to s′ (s → s′) is
said to be valid if Pss′ > 0. Path(s) is defined as a set of all
infinite sequences of states starting from state s in which all
consecutive transitions are valid. ω ∈ Path(s) is a path in the
set. For the evaluation of state formulae Φ, we use the notation
Sat(Φ) = {s ∈ S | s |= Φ} which denotes ‘a set of states that
satisfy the formula Φ’. We use the notation P x:hs

∼λ [Φ] to specify
probability inequality [∼ λ], initial resource x and upper and
lower resource bounds hs = [hls, h

u
s ] to a state formula Φ that

is related to either Aφk or Eφk. Probs(x, hs, φk) indicates
the probability of satisfying the path formula φk with initial
resource of x over set of paths Path(s).

The satisfaction relation |= is defined for state formulae by:

s |= a ⇐⇒ a ∈ L(s)

s |= ¬Φ ⇐⇒ s 6|= Φ

s |= Φ1 ∧ Φ2 ⇐⇒ s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 ⇐⇒ s |= Φ1 or s |= Φ2

s |= Aφk+1 ⇐⇒ ω′ ∈ Path(s′) |= φk,∀(s→ s′)

s |= Eφk+1 ⇐⇒ ω′ ∈ Path(s′) |= φk,∃(s→ s′)

s |= P x:h∼λ [Aφk+1] ⇐⇒ Probs′(x
′, hs, φ

k) ∼ λ,∀(s→ s′)

s |= P x:h∼λ [Eφk+1] ⇐⇒ Probs′(x
′, hs, φ

k) ∼ λ,∃(s→ s′)

and Probs(x, hs, φk+1) ∼ λ
where x′ = x+ rs + rss′

(2)

Given a path ω in M, the satisfaction relation is defined:

ω |= XΦ ⇐⇒ ω[1] |= Φ

ω |= F≤kΦ ⇐⇒ trueU≤kΦ

ω |= Φ1U≤kΦ2 ⇐⇒ ω[i] |= Φ2 ∧ ω[j] |= Φ1,

∃0 ≤ i ≤ k,∀0 ≤ j < i

(3)

Two examples are shown below:

• P
2:[0,10]
<0.05 [AXdanger] = ‘with all possible paths from

the starting state, the probability of reaching the danger
state in the next time step is less than 0.05, given the
initial accumulated resource of 2, while maintaining the
accumulated resource between 0 and 10’.

• P
0:[2,4]
>0.8 [E[¬dangerU≤20sgoal]] = ‘there exists at least

one path from the starting state where the probability
of reaching the goal state while avoiding the danger
states within 20 seconds is greater than 0.8, given the
initial accumulated resource of 0 while maintaining the
accumulated resource between 2 and 4’.



B. Definition of Piecewise Function

This section defines the properties and operations of piece-
wise functions that are used later.

1) Piecewise Function: Suppose f(x) is a piecewise func-
tion,

f(x) =



pf1 if x > cf1
...
pfk if cfk−1 ≥ x > cfk
...
pfn if cfn−1 ≥ x > cfn
0 else

=



pf1 if x > cf1
...
pfk elseif x > cfk
...
pfn elseif x > cfn
0 else

where k ∈ N , pfk = [0, 1] and cfk+1 < cfk ,∀k ∈ N
(4)

2) Addition:

f(x) + g(x) =



...
f(c) + g(c) elseif x > c
...
0 else

where c ∈ (cf ∪ cg)

(5)

3) Shift:

f(x+ c) =


p1 if x > c1 − c
...
pn elseif x > cn − c
0 else

(6)

4) Multiplication:

c · f(x) =


c · p1 if x > c1
...
c · pn elseif x > cn

0 else

(7)

5) Conditioning:

f(x)	 c =

{
f(x) if x > c

0 else
(8)

6) Merging:

f(x)⊕ g(x) =

{
f(x) if x > cfn
g(x) else

(9)

7) Bound Function: Returns zero if x is above cu or below
cl; otherwise return f(x).

Γcucl (f(x)) =


0 if x > cu

f(x) elseif x > cl

0 else
(10)

IV. PERFORMANCE EVALUATION OF CONTROL POLICY

To evaluate a control policy, we analytically solve a piece-
wise probability function (PPF) at each state. In this section,
we show how to compute PPFs with respect to quantifiers
X (next), U (until), and F (future).

A. PPF Solutions for Quantifiers X, U, and F
The quantifier X specifies a path property from a state where

[Xp] denotes ‘property p holds in the next transition’. The solu-
tion for computing the PPF is shown in (11) for a single-action
control policy π(s). Note that Probs(x, h,XΦ) is a piecewise
function defined in III-B that returns the probability of holding
the property Φ in the next transition starting from the state s
with the entering accumulated resource of x while maintaining
the accumulated resource between hs = [hls, h

u
s ],∀s ∈ S. The

algorithm for solving (11) is shown in Alg. 1. Pπ(s)ss′ denotes
the transition probability from s to s′ for an action π(s).

Probs(x, hs,XΦ)

=


0 if x > hus − rs∑
s′∈S

P
π(s)
ss′ · Probs′(x

′, hs,X0Φ) if x > hls − rs

0 else

=Γ
hu
s−rs
hl
s−rs

(
∑
s′∈S

P
π(s)
ss′ · Probs′(x

′, hs,X0Φ)),

where Probs(x, hs,X0Φ) = Γ
hu
s−rs
hl
s−rs

(1),∀s ∈ Sat(Φ),

x′ = x+ rs + rss′

(11)

The quantifier U specifies the satisfaction of a property Φ
along the path until it ends with another property Ψ, formally
written as [ΦUΨ]. The PPF is shown in (12) for a single-action
control policy π(s) and the algorithm is defined in Alg. 2. The
formula [F≤kΨ] is identical to [trueU≤kΨ].

Probs(x, hs,ΦU≤k+1Ψ),∀s ∈ Sat(Φ ∧ ¬Ψ)

= Γ
hu
s−rs
hl
s−rs

(
∑
s′∈S

P
π(s)
ss′ · Probs′(x

′, hs,ΦU≤kΨ)),

where x′ = x+ rs + rss′

Probs(x, hs,ΦU≤kΨ),∀s ∈ Sat(Ψ)

= Γ
hu
s−rs
hl
s−rs

(1)

Probs(x, hs,ΦU≤kΨ),∀s ∈ Sat(¬Φ ∧ ¬Ψ)

= 0

(12)

B. Piecewise Control Policy
The choice of action at a given state s, in our formulation,

depends on the value of the accumulated resource x. We
represent this as a piecewise control policy π(s, x) where A(s)
is a set of possible actions at state s:

π(s, x) =


a1 ∈ A(s) if x > xsa1
...
an ∈ A(s) elseif x > xsan
∅ else

. (13)



Algorithm 1 Solve for Probs(x, hs,XΦ),∀s ∈ S
1: Probs(x, hs,X0Φ)← 0,∀s ∈ Sat(¬Φ)

2: Probs(x, hs,X0Φ)← Γ
hu
s−rs
hl
s−rs

(1),∀s ∈ Sat(Φ)

3: for s ∈ S\Sat(Φ) do
4: Probas(x, hs, XΦ)← Λ(s, a),∀a ∈ A(s)
5: Probs(x, hs, XΦ)← (Proba1s (. . .)	 xsa1)⊕ . . .

. . .⊕ (Probans (. . .)	xsan)
6: end for
7: return Probs(x, hs,XΦ),∀s ∈ S
8: where Λ(s, a)

= Γ
hu
s−rs
hl
s−rs

(
∑
s′∈S

P ass′ ·Probs′(x+ rs + rss′ , hs,X0Φ))

Algorithm 2 Solve for Probs(x, hs,ΦU≤KΨ),∀s ∈ S
1: Probs(x, hs,ΦU≤0Ψ)← 0,∀s ∈ Sat(¬Ψ)

2: Probs(x, hs,ΦU≤0Ψ)← Γ
hu
s−rs
hl
s−rs

(1),∀s ∈ Sat(Ψ)

3: for k = 1 to K do
4: for s ∈ Sat(Φ ∧ ¬Ψ) do
5: Probas(x, hs,ΦU≤kΨ)← Λ(s, a, k− 1),∀a ∈ A(s)
6: Probs(x, hs,ΦU≤kΨ)← (Proba1s (. . .)	 xsa1)⊕ . . .

. . .⊕ (Probans (. . .)	 xsan)
7: end for
8: end for
9: return Probs(x, hs,ΦU≤KΨ),∀s ∈ S

10: where Λ(s, a, k)

= Γ
hu
s−rs
hl
s−rs

(
∑
s′∈S

P ass′ ·Probs′(x+ rs + rss′ , hs,ΦU≤kΨ))

For evaluation of the control policy, we define
Probas(x, hs, · · ·≤k · · · ) as the PPF for the state s of
taking action a at time k. and this function would come
from IV-A. The PPF with respect to a piecewise control
policy π(s, x) is shown in (14). It is important to note that
Probs(x, hs, · · ·≤k · · · ) and Probas(x, hs, · · ·≤k · · · ) should
always be computed in the same iteration; they cannot be
computed separately.

Probs(x, hs, · · ·≤k · · · )
= (Probπ(s,x1)

s (x, hs, · · ·≤k · · · )	 xsa1)⊕
. . .⊕ (Probπ(s,xn)

s (x, hs, · · ·≤k · · · )	 xsan)

=


Prob

π(s,x1)
s (x, hs, · · ·≤k · · · ) if x > xsa1

...
Prob

π(s,xn)
s (x, hs, · · ·≤k · · · ) elseif x > xsan

0 else
(14)

C. Hard and Soft Guarantees

For a given control action at a state, there may be a number
of paths that an agent may take due to uncertainty in transition.
In RT-PCTL, we add hard guarantee constraints and soft guar-
antee constraints with quantifiers A and E to the conventional

Algorithm 3 Solve for P x:hs

∼λ [Aφ≤k+1]

1: P ← {∅}
2: Get Probs(x, hs, φ≤k),∀s ∈ S
3: for s ∈ S do
4: if Probs′(x+ rs + rss′ , hs, φ

≤k) ∼ λ,∀Pss′ > 0 then
5: P ← s ∪ P
6: end if
7: end for
8: return P

Algorithm 4 Solve for P x:hs

∼λ [Eφ≤k+1]

1: P ← {∅}
2: Get Probs(x, hs, φ≤k),∀s ∈ S
3: for s ∈ S do
4: if Probs′(x+ rs + rss′ , hs, φ

≤k) ∼ λ, ∃Pss′ > 0
and Probs(x, hs, φ≤k+1) ∼ λ then

5: P ← s ∪ P
6: end if
7: end for
8: return P

PCTL for richer expressivity of safety-critical requirements.
Along with quantifiers φ≤k ∈ {Xp,F≤kp, p1U≤kp2}, [Aφ≤k]
and [Eφ≤k] define the hard and soft satisfaction guarantees
that specify ‘all transitions from the initial state should lead to
states that satisfy the formula φ≤k’ and ‘at least one transition
from the initial state should lead to states that satisfy it’.

The solutions to computing the set of states that satisfy
the hard guarantee and soft guarantee are shown in (15)
and (16), where φ≤k ∈ {Xp,F≤kp, p1U≤kp2}. Note that
Sat(P x:hs

∼λ [Aφ≤k]) ⊆ Sat(P x:hs

∼λ [Eφ≤k]). This is shown al-
gorithmically in Algs. 3 and 4.

Sat

(
P x:hs

∼λ

[
Aφ≤k+1

])
= {s ∈ S | ∀Pss′ > 0,

P robs′(x+ rs + rss′ , hs, φ
≤k) ∼ λ}

(15)

Sat

(
P x:hs

∼λ

[
Eφ≤k+1

])
= {s ∈ S | Probs(x, hs, φ≤k+1) ∼ λ

and (Probs′(x+ rs + rss′ , hs, φ
≤k) ∼ λ, ∃Pss′ > 0)}

(16)

D. Calculation Example

We illustrate the calculation of a PPF using the simple
scenario shown earlier in Fig. 1(a). The agent can move
left or right with probability 0.8 of moving as intended, and
probability 0.2 of self-transition. Attempting to move past
the left or right boundary always results in self-transition.
The agent starts in state s1 with entering resource value 0
and attempts to reach goal state s3 while maintaining the
value of accumulated resource between the resource bound



hs = [0, 5],∀s ∈ S.

π(s1) = Right,

π(s2) = Right

Prob1(x, hs,F≤4s3) =



0.0000 if x > +3.79

0.7680 if x > +3.11

0.6400 if x > +2.58

0.7936 if x > +1.90

0.7680 if x > +1.37

0.7936 if x > +0.95

0.1536 if x > −0.26

0.0256 if x > −1.21

0 else

(17)

A purely state-based policy for this example is shown
in (17), where Prob1(x, hs,F≤4s3) and π(s1) are the PPF and
policy at state s1 within four time steps. Prob1(x, hs,F≤4s3)
represents the PPF of the logic specification to reach state s3
with accumulated resource x within four time steps with
resource constraint hs at state s1. The policy is simply to move
right at states s1 and s2. Since we constrain the accumulated
resource to be above zero and below five, the agent is likely
to fail if it enters state s2 with zero accumulated resource;
transitioning from state s1 to state s2 results in accumulated
resource −0.95.

In contrast, evaluation of the piecewise control policy is
shown in (18). Here, the action mapping varies with the initial
accumulated resource and the agent attempts to go left until
its accumulated resource exceeds +1.0. With such a policy,
the probability of mission success has jumped from 0.1536 to
0.768. Note that the resource values can be any real number.

π(s1, x) =

{
Right if x > +1.0

Left else

π(s2, x) = Right,∀x ∈ R

Prob1(x, hs,F≤4s3) =



0.0000 if x > +3.79

0.7680 if x > +3.11

0.6400 if x > +2.58

0.7936 if x > +1.90

0.7680 if x > +1.37

0.7936 if x > +1.00

0.7680 if x > −0.21

0.6400 if x > −1.21

0 else

(18)

V. TASK PLANNING FOR AN AUTONOMOUS GLIDER

Suppose there is an autonomous thermal glider in a hexag-
onal grid-based environment that gains or loses altitude based
on instantaneous thermal wind energy. The glider has precise
a priori knowledge of the time-invariant thermal energy dis-
tribution as shown in Fig. 2. The environment is discretised

Fig. 2. Scenario environment (colour indicates change in altitude in metres).

(a) (b)
Fig. 3. Glider dynamics in a hexagonal grid where (a) shows possible
transitions and (b) defines the glider’s non-holonomic behaviour.

into a 10x10 grid with six possible glider orientation values. A
state-direction pair is denoted (s, d). Each state is labelled with
S, D, S̄ and G that denote safe, danger, semi-safe and goal.
The task is formulated based on the labels. The glider fails its
mission when: 1) it hits the boundary of the environment, 2) it
enters a forbidden state, or 3) its altitude goes out of resource
bounds hs = [0, 30],∀s ∈ S. The glider satisfies the mission
when it completes its task without violating any constraints.

Fig. 3(a) shows the dynamics of the glider in this scenario.
There are three possible actions defined relative to current
orientation. The two actions that correspond to 60-degree turns
lead to an altitude reduction of 0.1m, whereas maintaining
the previous direction does not incur any loss of altitude.
Transitions are stochastic; the glider moves in its intended
direction with probability 0.8 and moves 60 degrees to either
side of the intended direction with probability 0.1.

For the purpose of evaluation, a piecewise control policy
is generated based on a heuristic that is divided into risky
and conservative actions based on the agent’s altitude when it
enters a region of interest. Note that in general, a control policy
in RT-PCTL is capable of having any number of actions based
on accumulated resources. The risky action gives the most
direct path to the goal position without considering the energy
distribution along the path, whereas the conservative action
gives the greatest expected return of instantaneous altitude
increase. The risky action is taken when the accumulated
resource exceeds the amount of resource required to take the
most probable path to the goal state, otherwise the conserva-
tive action is taken. We do not attempt to generate the optimal
policy in this paper.



Fig. 4. The most probable path of a glider launched from minimum altitude
at (s68, d1) to reach the goal (green hexagon) without entering danger states
(red hexagons) while maintaining altitude between 0 and 30m.

Fig. 5. Probabilities of mission success with respect to entering altitudes at
state (s68, d1) after 30-step time horizon for approximation cases and PPF.

The heuristic policy is defined as:

π(s, x) =

{d ∈ A(s) | ‘Most direct route to G’} if x > α

{d ∈ A(s) | max
d

∑
s′∈S

P dss′ · rs′} else ,

(19)

where A(s) is the set of actions available at state s and α is
the negative sum of rewards along the most direct path to G
from s that avoids forbidden states.

A. Reach the Goal and Avoid Danger

We consider an initial scenario where the glider is ‘to reach
the goal state within 30 time steps while avoiding any danger
states, and maintaining minimum altitude of zero metres’. The
RT-PCTL path formula for the specification is [¬DU≤30G].

The environment and most probable path from (s68, d1) are
shown in Fig. 4. The PPF represents success probability over
all possible paths from the given state while following the
given piecewise control policy, not just for the path in Fig. 4.

Generally, the probability of success increases with altitude.
However, there are certain altitude ranges where success
probability decreases with increasing altitude. This is due to

the heuristic control policy that is not capable of finding the
optimal solution for this formulation.

Fig. 5 shows probability of mission success evaluated by
approximating altitude using discretisation versus PPF based
on real-valued altitude at (s68, d1). Probabilities were calcu-
lated using Alg. 2. In the discrete cases, accumulated reward
was rounded to the nearest value discretised at uniform reso-
lution (0.5m, 1.0m, and 2.0m) starting from 0.0m. Discrete
approximation evaluates success probability at discrete altitude
values, whereas the PPF is a piecewise-constant function. This
difference is important because success probability can change
abruptly with altitude. In Fig. 5, the PPF value has a dip
centred at 9.7m corresponding to a decision boundary in the
policy. Above this range, the glider has sufficient energy to
fly directly to the goal. Below this range, the policy directs
the glider along a more energy-conservative path. Within
this range, the policy takes the direct route but has high
probability of failure. This is a good illustration of the benefit
of the PPF representation because although the glider has
reasonable direct control over lateral position, it has less direct
control over altitude. The PPF captures safety-critical altitude
conditions exactly, but discrete approximation in general does
not.

We also illustrate the use of hard and soft guarantee con-
straints in this scenario. For the hard guarantee, we would
like to find the set of states that satisfies the requirement
that the probability of mission success is greater than 0.28 in
all potential immediate stochastic transitions. The RT-PCTL
formula for the requirement is written in (20) where 7 states
satisfy the requirement, given resource bounds hs = [0, 30].

Sat

(
P 0m:hs

≥0.28

[
A
[
¬DU≤30G

]])
=
{

(s29, d1), . . . , (s38, d4)
}

(20)

Consider state (s38, d3) which belongs to the set in (20).
The control policy at the state with altitude of zero metres is
d3 which leads to (s37, d2), (s28, d3) and (s29, d4) where the
probabilities of satisfying the specification are 0.2843, 0.2841
and 0.3165 at time step 29. As expected from (20), all paths
from the state (s38, d3) hold true for the mission requirement.
As opposed to state (s38, d3), the state (s58, d3) does not
satisfy the hard constraint although the state itself has the
success probability of 0.2812, because one of the successor
states has success probability less than 0.2387.

B. A Complex High-Level Mission Specification
In this scenario, the glider has a more complex high-level

mission specification as shown in Fig. 6, where red represents
danger and blue represents semi-safe. The mission is ‘to reach
the goal position within 30 time steps such that the glider
always travels along safe states or semi-safe states if all next
locations from the state are not dangerous’. The RT-PCTL path
formula for the specification is [

(
S ∨ (S̄ ∧ AX¬D)

)
U≤30G].

The most probable path is shown in Fig. 6.
We also consider an example of a soft guarantee where the

glider is to have probability greater than 0.20 of holding the



Fig. 6. The most probable path of a glider launched from minimum altitude
at (s68, d1) to reach the goal (green hexagon) while traversing safe states
(transparent hexagons) or semi-safe states (blue hexagons) if all successor
states are not danger states and maintaining altitude above zero.

mission specification in at least one direction. The RT-PCTL
formula is given in (21) and there are 36 states satisfying the
requirement. Consider the state (s58, d3) which belongs to the
set in (21). The successor states from the starting state have the
success probabilities of 0.2061, 0.2064 and 0.1812. Therefore
the soft guarantee requirement is met.

Sat

(
P 0m:hs

≥0.20

[
E
[(
S ∨ (S̄ ∧ AX¬D)

)
U≤30G

]])
={

(s17, d2), . . . , (s78, d4)
} (21)

VI. CONCLUSIONS AND FUTURE WORK

We have presented an extension to PCTL for systems with
real-valued resource threshold constraints and stochastic tran-
sitions. We introduced the piecewise control policy and pre-
sented algorithms for model-checking a given policy against a
formal specification and performance guarantee. We validated
our theoretical results through a simulated example of motion
planning among obstacles for an autonomous gliding aircraft.

The glider example demonstrates the significance of our
results. We provide a level of confidence in the glider’s
ability to complete its mission without knowing in advance
the exact path the glider will follow through discrete high-level
states. Model-checking in our method provides a performance
guarantee that applies to a piecewise control policy where real-
valued energy resources are represented exactly.

RT-PCTL represents an important step towards the grand
goal of complex mission specifications for stochastic systems,
but many open problems remain. We have shown how to
evaluate a given control policy, but generating an optimal
piecewise control policy is an important area of future work.
Understanding the scalability of model-checking with RT-
PCTL and developing computationally efficient algorithms for
formal verification is an open problem in general. We are also
interested in extending RT-PCTL for dynamic environments
where state labels change over time, which would be useful in
tasks such as searching and tracking. Allowing for Gaussian-
distributed and partially observable resource values are further
major avenues of future work.
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