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Abstract— Autonomous agents often operate in uncertain
environments where their decisions are made based on beliefs
over states of targets. We are interested in controller synthesis
for complex tasks defined over belief spaces. Designing such
controllers is challenging due to computational complexity and
the lack of expressivity of existing specification languages.
In this paper, we propose a probabilistic extension to signal
temporal logic (STL) that expresses tasks over continuous belief
spaces. We present an efficient synthesis algorithm to find a
control input that maximises the probability of satisfying a
given task. We validate our algorithm through simulations of an
unmanned aerial vehicle deployed for surveillance and search
missions.

I. INTRODUCTION
In recent years, there has been an increased interest in

using formal methods in robot motion planning and control
[1]–[4]. Temporal logics, such as Linear Temporal Logic
(LTL), Computation Tree Logic (CTL), and their proba-
bilistic versions [5], [6] have been shown to be expressive
enough to capture a large spectrum of robotic missions.
Model checking and synthesis algorithms have been success-
fully to generate motion plans and control strategies from
such specifications. Most of the current works, however,
do not capture the uncertainty that is inherent in real-
world applications. Autonomous agents usually operate in
uncertain environments with limited and possibly corrupted
information.

In this paper, we propose a specification language called
probabilistic Signal Temporal Logic (PrSTL), which is a
probabilistic extension of an existing temporal logic, called
Signal Temporal Logic (STL) [7]. The specifications are
interpreted over a belief space (the space of probability
distributions over states of an environment) [8], [9] about
the locations of a set of targets. We propose a receding
horizon control strategy that maximizes the probability of
satisfying the specification. The procedure involves iterations
consisting of observations and belief updates using Bayes’
rule. We include illustrative simulation examples involving
surveillance and search and rescue.

Contribution and Related Work Temporal logics have
been used widely in robotic task planning [1], [2], [10], [11].
One of the most popular logic is linear temporal logic (LTL),
which provides an expressive mean to specify complex
robotic tasks such as converge, sequencing, conditions and
avoidance [11]. These tasks can be combined further to
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form more complex tasks. Given an LTL specification, a
provably-correct controller can be automatically generated
for finite systems by using existing synthesis algorithms [5].
Examples of robotics applications include [12]–[18]. These
works consider static environments and assume that the
robots have full knowledge over the environment. Hence, the
controllers have to be re-synthesised from scratch if changes
are made. Also, the correctness property may be violated if
the knowledge over the environment is not accurate.

In order to operate robots in dynamic environments, a
fragment of LTL called generalized reactivity (GR(1)) has
been used to synthesise reactive controllers [11], [19], [20].
This game-theoretic approach considers non-deterministic
changes in the environment and guarantees the satisfaction
under all allowed environment changes. However, since all
robot and environment behaviours are symbolically encoded
as part of an LTL formula, any unexpected changes in
dynamics cannot be captured during execution and complex
system dynamics cannot be described accurately. This ap-
proach also assumes that the robots have full knowledge of
the environment at all times but the assumption is easily
violated in practice. Furthermore, this method only considers
the worst case. Hence, the solution is often conservative and
may not find a solution at all for practical cases.

Instead of modelling the behaviour of environments by
non-determinism, probabilistic uncertainty is also considered
in robotic task planning problems. Two popular temporal
logic forms for this purpose are probabilistic computation
tree logic (PCTL) [18], [21]–[23] and probabilistic linear
temporal logic (pLTL) [14]. These logics are capable of
expressing tasks for systems with probabilistic transitions
while assuming that the transition results are precisely known
and that the regions of interest are static and known in
advance. Their semantics is defined over Markov decision
processes (MDPs). The objective is to find a control policy
that maximises the probability of satisfying a given specifi-
cation.

Extended work considers non-static environments where
the behaviour of adversarial environmental states are also
modelled by MDPs [20]. Even further, in [24], environmental
states are modelled by mixed observable MDPs where some
internal transitions are not visible from the outside. The
solution to this problem considers the beliefs on the inter-
nal states of the environment. Partially observable MDPs
(POMDPs) allows for more general abstraction of hidden
internal transitions. Even though recent results show that LTL
control synthesis over control strategies with finite memory
is decidable [25], the solutions are expensive and do not
capture environmental changes.
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Signal temporal logic (STL) is a time-bounded temporal
logic developed monitor systems with continuous dynamics.
Its semantics are defined over continuously valued sig-
nals [7]. A satisfaction of an STL specification is determined
by evaluating its degree of robustness: a measure of how
well a signal satisfies the given specification. To the best
of our knowledge, no probabilistic forms of STL exist.
In order to specify tasks over an uncertain environment
using STL and quantitatively evaluate a signal with respect
to a specification, one possible approach is to compute
the expected degree of robustness (i.e., average robustness
over an infinite set of signals). However, since computing
robustness for temporal operators requires min and max
operations, analytical evaluation of the expected robustness
is not trivial. Also, using such an approach would require
the environment to be deterministic while transitions are
assumed to be probabilistic. Our interest in this paper is in
estimating true states of targets in an environment. Since
the estimates over the target states are given in the form
of probability distributions, it makes more sense to evaluate
signals in terms of probability, not robustness. We propose an
extension to STL that can express tasks over beliefs of targets
in an environment. We then use this extension to evaluate a
probabilistic degree of satisfaction.

One of the main challenges in task planning with temporal
logic under uncertainty is the computational complexity
of solving the synthesis problem. The time complexity of
finding an optimal solution for a pLTL specification is doubly
exponential in the number of propositions [14]. Synthesis of
an STL formula also suffers from complexity blowup. Recent
work in synthesis from STL specifications suggests using
mixed integer linear program (MILP) [26] and receding
horizon control (RHC) methods. However, since MILP is
NP-hard, such algorithms are not scalable when the size of
the problem is large (i.e., the number of constraints, length
of formula, and time horizon).

Organisation The remainder of the paper is organised as
follows. Sec. II presents the problem statement and defines
the system and sensor models. In Sec. III, we define the
proposed probabilistic signal temporal logic (PrSTL). In
Sec. IV, we present an efficient synthesis algorithm from
a PrSTL formula. We then discuss the complexity of our
approach in Sec. V and present simulation examples in
Sec. VI. We conclude in Sec. VII.

II. PROBLEM FORMULATION
We consider a discrete-time dynamic agent of the form

xt+1 = f(xt, ut), (1)

where xt ∈ Rn is the continuous-valued n-dimensional state
of the agent at discrete time t, ut ∈ U is the control input
from a finite set U at discrete time t. We assume that the
sampling time ∆t is 1 (i.e., t ∈ {0, 1, 2, · · · }) and the state
of the agent is always fully known. We define a run x as a
sequence of agent states at time t where the prefix Xt is a
sequence of past states xk (i.e., past run) and the suffix X̄
is a sequence of future states x̄k (i.e., future run) given

a control sequence u. At time t, we have x = {Xt, X̄}
given u, where Xt = {x0, x1, · · · , xt}, X̄ = f(xt,u) =
{x̄t+1, x̄t+2, · · · , x̄t+|u|}. Note that X0 = {x0}.

The agent is assigned a complex task ψ associated with a
set of targets. The state of target i is in the form

x̂it+1 = gi(x̂it, û
i
t), (2)

where the true ni-dimensional state of the target x̂it ∈ Rni
evolves over time, ûit ∈ Ui is a hidden control input from a
finite set Ui, i ∈ {1, 2, · · · , I} and the number of targets I
is finite and known in advance. We assume that the state
of the agent is independent of the states of the targets. We
also assume that the agent knows the model gi(·) but the
exact states of the targets are not precisely known. Instead,
the agent maintains a belief of each target at time t defined
as bit , P(x̂it | Zit), where Zit = {zi0, zi1, · · · , zit} is
the history of observations made by sensors on the agent
and zit ∈ {0, 1} (i.e., 1 if the target i is observed at time t
and 0 otherwise).

The belief is updated using a state estimator when an
observation is made. Assuming that observation zit is inde-
pendent of the history Zit−1 given the true state of a target x̂it
(i.e., P(zit,Z

i
t−1 | x̂it) = P(zit | x̂it) ·P(Zit−1 | x̂it)), the belief

can be updated using Bayes’ rule:

P(x̂it+1 | Zit+1) = α P(zit+1 | x̂it+1) P(x̂it | Zit), (3)

where α is a normalising constant. The function P(zit |
x̂it) is the detection likelihood which is obtained from a
sensor model. Assuming conditional independence where
observations are independent of each other given the current
state, only the current observation is required to update the
belief. The no detection likelihood is the complement of the
detection likelihood (i.e., P(z̄it | x̂it) = 1− P(zit | x̂it)).

The task ψ assigned to the agent is specified using a
time-bounded temporal logic over a set of real-valued target
beliefs. An example of such a specification is the agent has to
find two targets in 20 time steps while avoiding an obstacle.
Once all the targets are found, the agent has to come back to
base in 10 time steps. The probability of finding each target
has to be greater than 50% at all time. This logic allows for
computing the probability of satisfaction given a sequence
of agent states over the target beliefs. In Sec. III, we define
such a specification language formally.

In this paper, we address the following controller synthesis
problem over a belief space.

Problem 1 (Receding horizon feedback controller synthesis
over belief space). Given a specification ψ over a finite time
horizon H , a past run Xt, a system of the form in (1), targets
of the form in (2), a state estimation model of the form in
(3) and beliefs over the targets Bt = {bit | i = 1, 2, · · · , I},
compute

uH−tt = arg max
u∈UH−t

Prob({Xt, f(xt,u)}, ψ, 0), (4)

where uH−tt = {ut, ut+1, · · · , uH−t} is a finite sequence of
control inputs, Prob is a function that returns the probability



of satisfying a specification ψ at time t = 0 given a
run {Xt, f(xt,u)}.

The problem is solved using a receding horizon control
(RHC) framework. RHC is an iterative control technique to
solve optimisation problems in which an optimal control
input over a fixed finite time horizon is determined at
each time step [4], [26]–[29]. At each time t, we compute
a sequence of control inputs that maximises an objective
function over a finite horizon H (i.e., between t and t+H)
and the first control input is chosen and executed. We repeat
this process until the mission is complete. We use RHC
to reduce the synthesis complexity and to rapidly react to
changes in belief space.

A. Examples

We present examples using an unmanned aerial vehicle
(UAV). Consider a UAV operating at a constant altitude and
airspeed va that can be described by an equation of the
form (1)

xt+1 =

xt+1

yt+1

θt+1

 =

va cos θt
va sin θt

u

 + xt, (5)

where θt is the heading angle at time t (minutes) in an
absolute Cartesian space and u is a control input from a finite
set U. The UAV is equipped with a noisy forward-facing
camera that can detect the presence of a target within the
viewing range without any distance or heading information.
A target is said to be in the view when it is within the
effective measuring distance (20m) and the angle of view
(60 deg). The detection likelihood of the camera (i.e., the
probability of detecting a target i at time t given a system
state xt and a true state of the target x̂it) is

P(zit | x̂it, xt) =

{
α · exp(−‖xt−x̂

i
t‖

2

λ ) if in the view,
0 otherwise,

(6)

where α and λ are parameters of the camera. Note that P(zit |
x̂it, xt) = P(zit | x̂it) when P(xt | x̂it) = P(xt) (i.e., the agent
state is independent of all the target states).

Example 1 (Surveillance). The UAV is required to survey
three hidden targets x̂it where i = {1, 2, 3}. The task is to
repeatedly find each of the targets over a certain horizon. The
UAV is initially given a probabilistic estimate of the targets
(i.e., where they are), and the estimate is updated according
to the dynamic model of the targets.

Example 2 (Prioritised search). The UAV is deployed
in a search mission to find two suspects x̂it where i =
{Tom, Jerry} hiding in mountains. Based on geographic
data, etc, local police has computed rough probabilistic
estimates of where the suspects would be. Tom is given
higher capture priority, hence the UAV is commanded to find
Tom first and then to find Jerry.

III. PROBABILISTIC SIGNAL TEMPORAL LOGIC
(PRSTL)

In this section, we propose a probabilistic extension of
signal temporal logic (STL) [7] called probabilistic signal
temporal logic (PrSTL). PrSTL is defined with respect to
a discrete-time continuous-valued signal x (i.e., a run). For
any sequence s, s[k] is the suffix from time k (i.e., s[k] =
{st′ | t′ ≥ k}), s(i) is i-th term of a sequence s, where
s(0) is the first term, s(last) is the last term and |s| is the
cardinality of the sequence. For instance, we have sHt [t+2] =
st+2st+3 · · · and sHt (0) = st.

The syntax of PrSTL is defined as

φ ::= > | ¬φ | φ ∧ φ | φ1 U[t1,t2]φ2 | P∼λ[ψ]

ψ ::= µ | ¬ψ | ψ ∧ ϕ | F[t1,t2]ψ | G[t1,t2]ψ,
(7)

where > is a Boolean constant for ‘true’, ¬ is a negation
(‘not’), ∧ is a conjunction (‘and’) ∼∈ {<,≤,≥, >}, λ ∈
[0, 1], U is the ‘Until’ temporal operator, F is the ‘in Future’
temporal operator, G is the ‘Globally’ temporal operator,
t1, t2 ∈ [0,∞) such that t2 ≥ t1, µ is a predicate over a real
valued function of x[t] (s.t. µ := r(x[t]) with r : Rn → B)
and ϕ ∈ {φ, ψ}. In this paper, we define two types of
temporal logic formulas: event and instance formulas. An
event formula ψ is specified over target beliefs given a run.
Thus, a satisfaction of an event formula can be specified
probabilistically. The probabilistic degree of satisfying an
event formula ψ given a run x and beliefs at time t is
computed using a function Prob(x, ψ, t). On the other hand,
an instance formula φ is defined over a sequence of truth
values. Hence, a satisfaction can be known deterministically
for a given sequence of agent states. We use P∼λ[·] operator
to determine if the probability of satisfying a given event for-
mula holds true for ∼ λ. For a synthesis problem where the
objective is to either maximise or minimise the probability,
we use special notations Pmax and Pmin respectively.

The semantics of PrSTL instance formulas are recursively
defined as

x[t] |= >,∀t
x[t] |= ¬φ ⇐⇒ x[t] 6|= φ

x[t] |= φ1 ∧ φ2 ⇐⇒ x[t] |= φ1 and x[t] |= φ2

x[t] |= φ1 U[t1,t2]φ2 ⇐⇒ ∃t
′ ∈ [t1, t2] s.t. xt′ |= φ2 and
∀t′′ ∈ [t1, t

′ − 1],xt′′ |= φ1

x[t] |= P∼λ[ψ] ⇐⇒ Prob(x, ψ, t) ∼ λ,
(8)

The satisfaction of a given event formula is measured



probabilitically as

Prob(x, µ, t) = fµ(xt)

Prob(x,¬ψ, t) = 1− Prob(x, ψ, t)

Prob(x, ψ1 ∧ ψ2, t) = Prob(x, ψ1, t) · Prob(x, ψ2, t)

Prob(x, ψ ∧ φ, t) =

{
Prob(x, ψ, t) if x[t] |= φ,

0 otherwise,

Prob(x,G[t1,t2]ψ, t) =
∏

t′∈[t1,t2]

Prob(x, ψ, t′)

Prob(x,F[t1,t2]ψ, t) = 1−
∏

t′∈[t1,t2]

(1− Prob(x, ψ, t′)),

(9)

where fµ : Rn × Rnµ → R. Given a run x =
{x0, · · · , xt, x̄t+1, · · · }, Prob(x, µ, k) = zµk ∈ {0, 1} if
k ≤ t. Otherwise, Prob(x, µ, k) = P(x̂µk | Z

µ
k).

From the existing operators, additional operators can be
derived:

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)

ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

F[t1,t2]ϕ = > U[t1,t2]ϕ
G[t1,t2]ϕ = ¬F[t1,t2]¬ϕ,

(10)

where ⇒ is an implication (i.e., if ϕ1, then ϕ2), F is a
temporal operator for ’sometime in future’ (eventually), and
G is a temporal operator for ‘globally’ (always).

Every PrSTL formula has a horizon length denoted
as hrz(ϕ) ∈ N0 (i.e., non-negative integer) [30]. The horizon
length is the minimum length in time of a signal (i.e., a
run of an agent) required to evaluate the signal against a
given specification ϕ. The horizon length can be computed
resursively as

hrz(µ) = 0

hrz(¬ϕ) = hrz(ϕ)

hrz(ϕ1 ∧ ϕ2) = max{hrz(ϕ1), hrz(ϕ2)}
hrz(ϕ1U[t1,t2]ϕ2) = t2 + max{hrz(ϕ1)− 1, hrz(ϕ2)}.

(11)

Using PrSTL, Examples 1 and 2 can be re-written as the
following.

Example 1 (cont.). The surveillance mission can be re-
written as

G[0,30](F[0,40]µ1 ∧ F[0,40]µ2 ∧ F[0,40]µ3), (12)

where µ1, µ2 and µ3 are the predicates for targets in the area.
Over 30 minutes, each target has to be located repeatedly
every 40 minutes. The horizon length of the mission is 70.

Example 2 (cont.). The search mission can be re-written as

F[0,60]µTom ∧ G[0,60](P=1[µTom]⇒ F[0,30]µJerry), (13)

where µTom and µJerry are the predicates for Tom and Jerry
respectively. In this mission, Tom has to be found in 60
minutes. Whenever Tom is located, Jerry needs to be found
in 40 minutes. The horizon length of the mission is 90.

TABLE I: Evaluations of a formula G[0,1]F[0,3]µ over trajec-
tories x, x3 and x5. Approximated numbers are shown in
shaded cells. Note that ψF = F[0,3]µ and ψG = G[0,1]ψF .

Time t
0 1 2 3 4 5

Prob(x, µ, t) 0.8 0.7 0.5 0.6 0.6 0.7
Prob(x, ψF , t) 0.988 0.976 0.976 · · · · · · · · ·
Prob(x, ψG , t) 0.964 0.953 · · · · · · · · · · · ·
Prob′(x3, µ, t) 0.8 0.7 0.5 0.6 N/A N/A
Prob′(x3, ψF , t) 0.988 0.94 0.8 0.6 N/A N/A
Prob′(x3, ψG , t) 0.929 0.752 0.48 0.6 N/A N/A
Prob′(x5, µ, t) 0.8 0.7 0.5 0.6 0.6 0.7
Prob′(x5, ψF , t) 0.988 0.976 0.976 0.952 0.88 0.7
Prob′(x5, ψG , t) 0.964 0.953 0.929 0.838 0.616 0.7

IV. RECEDING HORIZON SYNTHESIS WITH
FORWARD SEARCH

To solve Problem 1 in an efficient manner, we propose
an algorithm using forward search and RHC method. The
algorithm assumes that time bounds on temporal operators
start from zero (i.e., F[0,τ ]ϕ and G[0,τ ]ϕ).

The algorithm works as follows. Given a sequence of
past agent states Xt at time t, we iteratively apply all
the control inputs to generate a set of candidate trajecto-
ries Ct

k at k-th iteration. A candidate trajectory is a run
that consists of past agent states and future agent states.
Starting from Ct

0 = {{Xt}}, we iteratively update the set of
candidate trajectories as follows:

Ct
i+1 = {{c, f(c(last), u)} | ∀u ∈ U and ∀c ∈ Ct

i}. (14)

We repeat the process to generate a new set of candidate
trajectories until we reach the end of horizon length (i.e.,
t+i = H). However, the growth in the number of trajectories
is not scalable in practice. Therefore we introduce a heuris-
tically chosen constant N which is the maximum number of
candidate trajectories. Thus, after each iteration, we compute
the probabilistic degree of satisfaction using Prob and only
maintain N -best trajectories for the next iteration. For a set
of candidate trajectories Ct

i, we find a new set C̃t
i such that

C̃t
i = {c ∈ Ct

i | Prob(c, ψ, 0) ≤ Prob(c′, ψ, 0),∀c′ ∈ C′},
(15)

where |C′| = N . We replace Ct
i in (14) with C̃t

i to
calculate Ct

i+1. After we compute the next set of trajectories,
we check if there exists only one branch from the initial
state. If so, we stop and execute the corresponding control
input leading to the branch. Formally speaking, we stop
when the condition below is true for a set of candidate
trajectories C̃t

i = {c1, c2, · · · , cN}:

ci(t+ 1) = cj(t+ 1),∀i, j ≤ N. (16)

This is because we use RHC method in which only the
first control input from the sequence is important. Therefore,
computing any further is not computationally beneficial.

In order to evaluate a given trajectory over a PrSTL
formula, the length of the trajectory has to be equal or
greater than the horizon length of the formula as described in
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Fig. 1: Demonstration example for the forward search algo-
rithm with a PrSTL formula is F[0,5]µ, N = 3 and |U| = 2.
Each node represents a state of a agent where the number on
every node is the probability that µ is satisfied in the state.
The overall relaxed satisfaction probabilities are shown for
resulting candidate trajectories after each iteration.

Sec. III. However, the proposed synthesis algorithm requires
an evaluation when the length is shorter than the horizon
length. Hence, we propose a relaxation to evaluate short
trajectories. Given a sequence of states with finite length xn,
the approximated probability of satisfaction for a temporal
operator is re-written as

Prob′(xn, T[0,τ ]ϕ, t) = Prob(x′, T[0,min(τ,n)]ϕ, t) (17)

where T ∈ {G,F} and xn is a prefix of the infinite
sequence x′. We replace Prob in (15) with Prob′. Suppose
we have a PrSTL formula G[0,1]F[0,3]µ, the satisfaction
probability over a set of example trajectories (x, x3 and x5)
are shown in Tab. I where the probabilities in shades are
approximated.

In Fig. 1, we illustrate an example of a PrSTL for-
mula F[0,5]µ over three iterations where N = 3 and |U| = 2.
After the first iteration, we have two candidate trajectories.
At the next iteration, we again apply control inputs to every
candidate trajectories and obtain four new trajectories as
shown in Fig. 1b. As the number of trajectories is greater than
the limit, we calculate the relaxed satisfaction probability for
each trajectory and remove the least satisfying branch. We
repeat the same in the third iteration. As there exists only
one branch from the starting state, we terminate the process
and execute the corresponding control.

V. DISCUSSIONS

Using forward search and RHC, we have gained a sig-
nificant improvement in efficiency in solving the problem.

This is achieved by limiting the number of candidate trajec-
tories. If the number were not limited, the time complexity
would be proportional to |U|H−t at time t which are not
scalable in practice where agent operates over a long mission
horizon. With the limiting constant N , the complexity is
reduced to |ψ| · |N | · |U| · (H − t) where |ψ| is the size of
formula, H is the horizon length. This is because we apply
|U|-number of control inputs to |N |-number of candidate
trajectories over H − t iterations where each newly created
trajectory is approximately evaluated |ψ| times. The overall
time complexity of the mission is |ψ| · |N | · |U| ·H2.

Since we limit the number of candidate trajectories, the
completeness of the algorithm in finding the optimal solution
with respect to satisfaction probability is not assured. How-
ever, our algorithm has gained a significant improvement in
time complexity in return. In the following section, we show
that the algorithm runs fast enough for an online synthesis
in the presence of a changing belief space.

VI. CASE STUDIES

In this section, we demonstrate the simulated results of the
examples presented in Sec. II using the UAV. These examples
illustrate how an autonomous agent with a complex task
could operate over an uncertain environment. We also show
that our algorithm is efficient for an online synthesis. In both
scenarios, we have N = 10 and |U| = 3 (i.e., straight, left,
and right). We show the average clock time for synthesis
using a standard desktop with 3.4 GHz Intel CPU and 16
GB RAM.

A. Surveillance

The simulated result for the surveillance mission (Exam-
ple 1) is shown in Fig. 2 where the targets are shown in red,
blue, and magenta. At each time t, the candidate trajectories
are shown in black, the trajectory with maximum relaxed
satisfaction probability is shown in bold red, the executed
trajectory (i.e., past run) is shown in bold green, and the
camera’s field of view is shown in yellow. The true locations
of the targets are marked in bold. The initial state of the
UAV is [30m, 10m, 70 deg]T . We assume that the targets are
randomly moving at a known maximum velocity. Based on
the velocity, the belief changes over time.

The initial control of the UAV is synthesised based on
poorly estimated beliefs of the targets shown in Fig. 2a. The
beliefs are updated as the UAV makes observations, and the
UAV always uses the most up-to-date beliefs to synthesise
a new control input at any given time. Figure 2 shows how
the beliefs change over time as observations are made. It
also shows how the changing beliefs affect the way the
trajectories are generated.

The average synthesis time at each t is 2.94s where the
minimum and maximum are 1.22s and 6.67s, respectively.
For synthesising the initial control input at time t = 1, the
number of candidate trajectories generated is 683, which
took 4.85s to compute. However, if we had to solve Prob-
lem 1 without limiting the number of candidate trajectories as
shown in (15), the required number of candidate trajectories
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Fig. 2: Resulting trajectories for the surveillance mission
(Example 1). Targets are shown in contours of different
colours. A synthesis of a control is based on the current
beliefs over the targets.

in synthesis would have been 370 (≈ 2.5 × 1033) which is
not scalable in practice. To demonstrate the improvement in
synthesis time, we ran the simulation to compute the average
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Fig. 3: Resulting trajectories for the prioritised search mis-
sion (Example 2). Blue and red contours represent the belief
over Tom and Jerry, respectively.

synthesis time without the limiting constant N . However,
no solution was given in a practical time (still running
after 5 hours). Although the synthesis without the limiting
constant N would provide a complete and optimal solution,



the approach is not scalable for an online synthesis.

B. Prioritised search

We demonstrate the simulated result for Example 2 in
Fig. 3. The blue and red contours represent the beliefs over
true locations of Tom and Jerry, respectively. Like in the
previous example, we assume that Tom and Jerry are moving
at a known maximum walking velocity. The initial state of
the UAV is the same as the previous example.

Initially, the UAV assigned a task to locate Tom whose true
location is poorly estimated. Based on the belief over Tom’s
true location, the UAV heads straight to the region where
the probability of finding Tom is the highest (i.e., around
[75, 70]). At t = 10, Tom is in the view of the UAV, but the
UAV fails to detect him due to sensor noise. With the series
of observations, the belief over Tom’s location is updated
(compare Fig. 3a with 3d), and the more accurate belief is
used to synthesise a better control input. At t = 29, the
UAV finally finds Tom, and then it generates a new control
input to find Jerry while updating the beliefs. Note that the
belief over Jerry’s location at time t = 29 is wider than that
at time t = 1 because Jerry’s walking speed is reflected in
estimating Jerry’s belief. At time t = 37, Jerry is found,
and the mission ends. The average synthesis time at each
time t is 6.25s where the minimum and maximum are 1.95s
and 34.74s, respectively.

VII. CONCLUSIONS

In this paper, we proposed a probabilistic extension to
signal temporal logic to specify complex tasks over target
beliefs. We also presented an efficient receding horizon
synthesis algorithm that maximises the probability of satis-
fying a specification in this logic. Through simulations using
a simple UAV model, we showed that the algorithm can
easily adapt to changes in the belief space. This work is
an important step towards synthesis of complex tasks over a
belief space, but many open problems remain. In the future,
we will consider cases where the conditional independence
assumption is violated. We will consider models that include
uncertain external disturbaces such as wind.
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