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ABSTRACT 

Because many artificial intelligence applications require the ability to reason with uncertain know- 
ledge, it is important to seek appropriate generalizations of logic for that case. We present here a 
semantical generalization of logic in which the truth values of sentences are probabili~ values 
(between 0 and 1). Our generalization applies to any logical system for which the consistency of a 
finite set of sentences can be established. The method described in the present paper combines logic 
with probability theory in such a way that probabilistic logical entaihnent reduces to ordinary logical 
entailment when the probabilities of all sentences are either 0 or 1. 

1. Introduction 

Several artificial intelligence (AI) applications require the ability to reason with 
uncertain information. For example, in "expert  systems," many of the rules 
obtained from experts as well as data provided by users are not known with 
certainty. Since ordinary logic is so useful in those cases in which knowledge is 

certain, AI researchers have been interested in various generalizations of logic 
for dealing with uncertainties. 

There  is extensive mathematical literature on probabilistic and plausible 
inference, which we will not review here. (See for example [1-8].) One of the 
early expert systems in AI embodying a technique designed to handle uncertain 
knowledge was MVCIN [9]. The PROSPECTOR system [10] used a reasoning method 
based on Bayes' rule and is quite similar to MVClN. Lowrance and Garvey 
[11, 12] have adapted the Shafer-Dempster  theory to AI applications. AI 
researchers have also investigated methods based on finding maximum-entropy 
probability distributions [13-16]. Halpern and Rabin [17] propose a modal logic 
with a "likelihood operator ."  Although a number of reasoning methods have 
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been explored in AI, many expert systems still rely on ad hoc techniques that 
have little theoretical justification. 

In this paper we present a semantical generalization of ordinary first-order 
logic in which the truth values of sentences can range between 0 and 1. The 
truth value of a sentence in probabilistic logic is taken to be the probability of 
that sentence in ordinary first-order logic. We make precise the notion of the 
probability of a sentence through a possible-worlds analysis. Our generalization 
applies to any logical system for which the consistency of a finite set of 
sentences can be established. 

2. Possible Worlds and Probabilities 

To define what we mean by the probability of a sentence we must start with a 
sample space over which to define probabilities (as is customary in probability 
theory). A sentence S can be either true or false. If we were concerned about 
just the one sentence S, we could imagine two sets of possible worlds--one, say 
~4/" l, containing worlds in which S was true and one, say ~/4P 2, containing worlds 
in which S was false. The actual world, the world we are actually in, must be in 
one of these two sets, but we might now know which one. We can model our 
uncertainty about the actual world by imagining that it is in 7¢', with probability 
Pl, and is in ~'2 with some probability P2 = 1 - Pl- In this sense we can say that 
the probability of S (being true) is p,. 

If we have more sentences, we have more sets of possible worlds. Sentences 
may be true in some worlds and false in others-- in  different combinations. 
Each set contains worlds with a unique and consistent set of truth values for 
the sentences. If we have L sentences, we might have as many as 2 L sets of 
possible worlds. Typically though, we will have fewer than this maximum 
number because some combinations of true and false values for our L sen- 
tences will be logically inconsistent. We cannot, for example, imagine a world 
in which S t is false, S 2 is true and $1 ^ S 2 is true. That is, some sets of the 2 L 
worlds might contain only impossible worlds. 

As an example, consider the sentences 

{P, P D Q, 0}. 

The consistent sets of truth values for these three sentences are given by the 
columns in the following table: 

P true true false false 
P D Q true false true true 
Q true false true false 

In this case, there are four sets of possible worlds each one corresponding to 
one of these four sets of truth values. 
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One method for determining the sets of consistent truth values, given a set 6e 
of sentences, is based on developing a binary semantic tree. At each node we 
branch left or right, depending on whether  or not we assign one of the 
sentences in ~ a value of true or false, respectively. Just below the root we 
branch on the truth value of one of the sentences in S~, next on another  
sentence in ,.,~, and so on. Each path in the tree corresponds to a unique 
assignment of truth values to the sentences of b". We check the consistency of 
the truth-value assignments as we go, and we close off those paths correspond- 
ing to inconsistent valuations. A semantic tree for this example is shown in Fig. 
1. Closed-off paths are indicated by an x;  consistent sets of valuations are 
indicated in columns at the tips of their corresponding paths. 

The sets of possible worlds corresponding to the different sets of consistent 
truth values for the sentences in 6e comprise a sample space over  which we can 
define a probabili ty distribution. This probabili ty distribution specifies for each 
set 3V~ of possible worlds what is the probabili ty p~ that the actual world is in 
7,~,.. (We sometimes say, loosely, that Pi is the probabili ty of the set ~ of 
worlds.) The individual p~ sum to 1 because the sets of possible worlds are 
mutually exclusive and exhaustive. The  probabili ty of any sentence S in 6e is 
then reasonably taken to be just the sum of the probabilities of all the sets of 
worlds in which S is true. Since we typically do not know the ordinary 
(true~false) truth value of S in the actual world, it is convenient to imagine a 
logic that has truth values intermediate between true and false and, in this 
logic, define the truth value of S to be the probabil i ty of S. In the context of 
discussing uncertain beliefs, we use the phrases the probability of S and 
the (probabilistic logic) truth value of S interchangeably. 

Because the sets of possible worlds are identified with sets of truth values for 

s = {P, PDQ. O} 

[!] [!IN 
FIG. 1. A semantic tree. 
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sentences, these sets of possible worlds also correspond to equivalence classes 
of interpretations for these sentences. Each interpretation in the equivalence 
class associated with a set of possible worlds leads to the same set of truth 
values for the sentences in 6e. We may sometimes refer to the possible worlds 
as interpretations. 

It is convenient to introduce some vector  notation to rephrase mathematic-  
ally what we have just said. Suppose there are K sets of possible worlds for our 
L sentences in ~. These sets can be ordered in some arbitrary manner.  Let the 
K-dimensional  column vector P represent the probabilities of the sets of 
possible worlds. The ith component  Pi is the probability of the ith set of 
possible worlds 74P i. 

The sets of possible worlds themselves are characterized by the different 
consistent truth valuations that can be given to the sentences of 6 e. Let us 
arrange the sentences of ~ in arbitrary order  and let the L-dimensional 
column vectors V~, V 2 . . . . .  V K correspond to all of the consistent truth valua- 
tions of the sentences in ~. That  is, in the ith set of worlds, ~ .  the 
sentences in 6e have truth valuations characterized by Vi. We take each V~ to 
have components  equal to either 0 or 1. The component  Vsi = I if S s has the 
value true in the worlds in ~¢~; vii = 0 if S s has the value false in the worlds in 

The K column vectors V~ . . . . .  Vr, can be grouped together,  in the same 
order given to the sets of possible worlds, into an L x K matrix V. Let us 
denote  the probabili ty of each sentence S i in 6 e by the components  ,-r~ of an 
L-dimensional column vector H. The probabilities of the sentences can then be 
related to the probabilities of the possible worlds by the following simple 
matrix equation: 

H = V P .  

This equation concisely expresses what we said in words earlier, namely that 
the probabili ty of a sentence is the sum of the probabilities of the sets of 
possible worlds in which that sentence is true. 

In using these ideas for reasoning with uncertain beliefs, we are typically not 
given the probabilities Pi for the different sets of possible worlds, but must 
instead induce them from what we are given. We consider two related types of 
reasoning problems. In the first, which we call probabilistic entailment, we have 
a base set of sentences (called beliefs) ~ with associated probabilities. From 
these, we deduce a new belief, S, and its associated probability. Using the 
notation we have just introduced, in this problem our set 6e of sentences 
consists of ~ U {S}. We are given probabilities for the sentences in ~ ,  we must 
solve the matrix equation for P, and then use it again to compute  the probability of S. 
There are several difficulties in carrying out these steps, and we shall discuss this 
problem in detail momentari ly.  
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In the second type of problem, which is more closely related to the kind of 
reasoning used in expert  systems, we are given a set of beliefs ~ and their 
associated probabilities. (We might presume that this information has been 
provided by an expert  in the subject matter  under consideration). In this 
problem, we might learn new information about the actual world. For example, 
we might learn that in the actual world, some sentence S o in ~ is true (or 
false). Or, more typically, we may learn information that gives us a new 
posterior probability for S 0. Given this information, we want to compute a 
posterior probability for some sentence of interest, S. The reasoning process in 
this case is an elaboration of that used in probabilistic entailment. 

3. ProbabUistic Entailment 

In ordinary logic, modus ponens allows us to infer Q from P and P 3 Q. Also, 
Q is logically entailed by the set {P, P D Q}. (Modus ponens is a sound rule of 
inference.) In this section, we investigate the analogue of logical entailment for 
probabilistic logic. We shall be concerned with the question of determining the 
probability of an arbitrary sentence S given a set ~ of sentences and their 
probabilities. That is, we consider the probabilistic entailment of S from ~.  

We begin our discussion by considering the three sentences P, P 3 Q, and Q. 
Just as we cannot consistently assign arbitrary (true~false) truth values to these 
three sentences, neither can we consistently assign arbitrary probability values 
to them. The consistent truth-value assignments are given by the columns in 
the matrix V, where true is represented by 1 and false is represented by O. 

El l°il V= 1 0 1 . 

1 0 1 

The first row of the matrix gives truth values for P in the four sets of possible 
worlds. The second row gives truth values for P D Q, and the third row gives 
truth values for Q. Probability values for these sentences are constrained by the 
matrix equation 

H = V P  

and by the rules of probability, X,.pi = 1 and 0 ~< pi <~ 1 for all i. 
These constraints can be given a simple geometric interpretation. The matrix 

equation maps a space of probability values over possible worlds into a space 
of probability values over  sentences. The mapping is linear and therefore maps 
extreme values of P into extreme values of H. The extreme values of P are 
those for which individual values of p~ are equal to 1. But only one p~ in P can 
be equal to 1; the rest must be 0. Thus there are four extreme P vectors, 
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namely [1, 0, 0, 0], [0, t, 0, 0], [0, 0, I, 0], and [0, 0, 0, 1]. (These are all column 
vectors: we write them in row format in running text.) The extreme H vectors 
corresponding to these extreme P vectors are simply the columns of the V 
matrix. This result is not surprising, when the sentences are given an inter- 
pretation corresponding to one of the sets of possible worlds, then the truth 
values of the sentences are the truth values assigned in that possible world. The 
principal benefit of this analysis comes from observing that, for arbitrary values 
of P, H must lie within the convex hull of the extreme values of H. 

A picture of this mapping is shown in Fig. 2. The extreme values of H are 
indicated by solid dots. Consistent values for the probabilities of the three 
sentences must lie in the convex hull of these points which is the solid region 
shown in the figure. 

Now suppose we are given the probability values for the sentences P and 
P ~ Q. In terms of our notation, the probability of P, denoted by p(P) is ~-~; 
the probability of P 3 Q, denoted by p(P ~ Q) is ~'z. We can see from Fig. 2 
that ~'3 or p(Q) must then lie between the two bounding planes shown in the 
figure. Calculating these bounds analytically results in the following inequality: 

p(P ~ Q)+ p(P)- l <~p(Q)<~p(P ~ O). 

pip D o 1 " -  ~ 

/t 3 

p(Q) 

I " 

x I 

l 

\ \  
\ 

\ ~.. ~'~" p(p) 

FIG. 2. The convex region of consistent probability values for P, P D Q, and Q. 
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(setting P(Q) equal to its lower and upper bounds gives equations for the 
lower and upper bounding planes of Fig. 2.) 

This example reveals some interesting points about probabilistic logic. First, 
just as it is possible to assign inconsistent true-false truth values to sentences, 
it is also possible to assign them inconsistent probabilities (that is, probabilistic 
truth values). For the sentences {P, P 3 Q, Q} any assignment outside the 
convex region shown in Fig. 2 is inconsistent. (Assignment of consistent 
subjective probabilities to sentences is a well-known problem in designing 
expert systems. A solution suggested by our geometric view would be to move 
an inconsistent H vector to a "nearby" point in the consistent region, perhaps 
preferring larger adjustments to the probabilities of some sentences than to the 
probabilities of others.) Second, even if consistent probabilities are assigned to 
P and to P 3 Q, the probability of Q is not, in general, determined uniquely, 
but is bounded by the expressions given above. Thus, we can expect that 
probabilistic entailment will, as a rule, merely bound (rather than precisely 
specify) the probability of the entailed sentence. 

Solving probabilistic entailment problems can be done by adding the entailed 
sentence, S, to the base set of beliefs ~ ,  computing the consistent sets of truth 
values for this expanded set (the columns of V), computing the convex hull of 
these points, and then entering this convex hull along coordinates given by the 
probabilities of the sentences in ~ to find the probability bounds on S. The 
three sentences of our example produced a simple, 3-dimensional probabilistic 
entailment problem. In general, when we have L sentences and K sets of 
possible worlds, we will have to find the bounding hyperplanes of a K-vertex 
solid in L dimensions. 

Before continuing with our discussions about solution methods for prob- 
abilistic entailment problems, let us consider one more example small enough 
to permit three-dimensional geometric insight. This time we consider a simple 
problem in first-order logic. 

Let ~ be the set {(3y)P(y), Otx)[P(x)D Q(x)]}, and let S be the sentence 
(3z)Q(z). We are given probabilities for the sentences in ~ and want to 
compute bounds on the probability of (3z)Q(z). 

We first create Se by adding S to ~ and then compute the consistent sets of 
truth values for the sentences in .5" by the semantic-tree method illustrated in 
Fig. 3. In that figure, we have represented sentences and their negations in 
Skolem form; A, B, and C are Skolem constants. Paths corresponding to 
inconsistent sets of truth values are closed off by x. The consistent sets of truth 
values (in 0, 1 notation) are indicated in columns at the tips of their cor- 
responding paths. These column vectors are shown as points in Fig. 4, and their 
convex hull is indicated. This region contains all consistent probabilities for the 
three sentences in 6e. In terms of consistent probability values for (3y)P(y) and 
(Vx)[P(x) ~ Q(x)], the bounds on p[(3z)Q(z)] are given by: 
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S = {(3y} P(y), (vx} [P(x l~O(x)J,  (3z}a(z}~ 

fil[!] [i] 
Flo. 3. A semantic tree for a problem in first-order logic. 

¢r 3 
p[(~z)Q(z)] 

7r 2 

(Vx) P(x) :~ O(x)] 

_tl \ \  
)- \ \  

" 4 ' ~ *  \ 

P[( :J y) P(y)] 

FIG. 4. The region of consistent probability values. 
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+ p[(Vx)[P(x) O ( x ) ] l  - 1 p[(3z)O(z)] 1. 

As is apparent from Fig. 4, these bounds loosen markedly as we move away 
from 

p[(3y)P(y)] = 1 and p[Olx)[P(x)D O(x)]] = 1. 

In principle, the probabilistic entailment problem can be solved by linear 
programming methods, but the size of problems encountered in probabilistic 
reasoning is usually much too large to permit a direct solution. Our  focus will 
be to look for solution methods, sometimes approximate ones, that reduce the 
full problem to smaller problems of practical size. We first outline a canonical 
form for setting up probabilistic entailment problems. We have already men- 
tioned that we arbitrarily order  the sentences in ~ to permit specifying the 
consistent truth values as column vectors, V~. We include the constraint that 
Y~iPi = 1 by adding a row vector of all ones as the top row of the matrix V. This 
row can be made to appear  in V merely by including the tautology T as the first 
element of 6e. ( T  has value true in all possible worlds.) By convention, we 
include the entailed sentence, S, as the last sentence in ~ ;  thus the last row of 
V represents the consistent truth values of S in the various sets of possible 
worlds. The other  rows of V (except the first and last) then represent the 
consistent truth values for the sentences in the base set of beliefs, ~ .  

We assume that we are given consistent probability values for all but the last 
sentence in ~. (The probability of the first sentence, namely T, is 1.) We 
compute the L x K matrix V (perhaps using the semantic tree method). Next 
we consider the matrix equation 

H = V P .  

The K-dimensional column vector, P, is unknown--as  is the last element o f /7 .  
To solve for P formally, we first construct the ( L -  1) x K matrix V' from V by 
eliminating the last row, call it S, of V. We construct the ( K -  1)-dimensional 
column vector H '  by eliminating the last element of H. Now we attempt to 
solve H '  = V'P for P. Having done so, we can compute zr t = p(S) = SP. 

Usually the equation H ' =  V'P is underdetermined and permits many solu- 
tions for P. In these cases, assuming V is small enough to permit computations 
on it, we will be interested in those solutions that give bounds for p(S). We will 
postpone until later a discussion of approaches toward solving problems with 
impractically large V matrices. 

4. Computations Appropriate for Small Matrices 

Using the notation of the last section, we denote  the last row of V by the row 
vector $. This vector gives the truth values for the entailed sentence S that are 
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consistent with the truth values for the other sentences in 5e. Then the 
probability, p(S), of S is given by SP where P is a solution to H ' =  V'P. 
Analogously, we might denote the other rows in V by the row vectors S c St. = S 
and recall that S, = [I, 1 . . . . .  1]. (This notation is suggestive; the rows of V 
represent the sentences in 5~ in terms of all possible truth values that are 
consistent with the truth values for the other sentences.) 

In certain degenerate cases we can compute a unique P given V' and H" For 
example, if S happens to be identical to the ith row of V', then SP = 7ri. More 
generally, if $ can be written as a linear combination of rows of V', then SP 
can be simply written as the same linear combination of the ,-r,. For example, 
this method can be used to establish the following identities: 

p(O) = p(P)+ p(P D O ) -  p(Q 23 P),  

p(O) = p(P D Q)+ p ( ~ P  D Q ) -  1. 

(To illustrate, we observe that in the first of these, after setting up the matrix V, 
P is represented by the row vector [1, 1, 0, 0], P D O by [1, 0, 1, 1], (2 D P by 
[I, 1, 0, 1], and Q by [1, 0, I, 0]. The last vector is the sum of the first two minus 
the third.) 

We might also imagine that if S can be approximated (in some sense) by a 
linear combination of the rows of V', then SP can be approximated by the 
same linear combination of the ~'i. Such approximations may well be useful and 
worth looking for. An approximation that we might consider is S*, the 
projection of S onto the subspace defined by the row vectors of V'. By 
assumption, S* will be some linear combination of the row vectors in V', say: 

L - I  

s*= Z c/,. 
i= l  

An approximation to the probability of S could then be taken to be S'P, which is 
given by: 

L - !  L - I  

s * P  = E ¢,s ,e  : E 
iffil iffil 

Suppose we use this method to approximate the probability of Q given the 
sentences P, with probability 7r2= p(P), and P 23 Q, with probability ~-3 = 
p(P 23 Q). (Recall that we include the sentence T, with probability rr~ = 1, in 
6e.) V' and H '  are then given by: 

I 1  1 1 i l  [ 1  1 V ' =  1 1 0 , H ' =  rr 2 , 

1 0 1 rr~ 
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The row vector  representat ion for Q (that is, the last row of V) is Q =  
[1, 0, 1, 0], and its projection onto the subspace defined by the row vectors of 
V' is Q* [1, t t t = 0, .~, ~]. The coefficients ci are given by c~ = -~, c, = .~, and c 3 = 1. 
Using these, the approximate  value for p(Q) is: 

- ~ x T r ~ + ~ x T r 2 + I x T r 3 = - ~ +  p ( P ) + p ( P D Q ) .  

It is interesting to note that this value happens to be midway between the two 
bounds on p(Q) established in our earlier example.  

Another  technique that can be used when we are given underdetermined 
(but consistent) V' and H '  is to select from among the possible solutions for P 
that P with maximum entropy. This distribution assumes the minimum ad- 
ditional information about P given the sentences in :~ and their probabilities. 

The  entropy of a probabili ty distribution, it', is defined to be: 

H = - ~ Pi log Pi = - -  p t  log P, 
i 

where P '  is the transpose (i.e., the row vector form) of the column vector P, 
and log P is a (column) vector whose components  are the logarithms of the 
corresponding components  of P. 

To  maximize H, by varying P, subject to the constraint t h a t / / ' =  V'P, we use 
the method of Lagrange multipliers from the calculus of variations (following 
Cheeseman [16]). First we write H as follows: 

H = - P ~  log P + l l ( r  q - S z P )  + 12(lr 2 - S 2 P )  + • • • 

+ ltt_l)('n'tL_l)-- StL_I)P), 

where I t . . . . .  ltt_t) are Lagrange multipliers; ~'t . . . . .  ~'tt-l~ are the components  
of H ' ,  and S~ . . . . .  Sc,_l~ are the row vectors of V'. 

Differentiating this expression with respect to Pi and setting the result to zero 
yields: 

- log Pi - 1 - llvli . . . . .  I (L_ I ) I ) (L_ I )  i = O, 

where v/i is the ith component  of the j th  row vector in V'. 
Thus, the distribution that maximizes the entropy has components  

Pi = e - I  e - ( / w l i )  " " " e - ( t c L - t ) v l t - u i )  • 

Cheeseman [16] used the following definitions to simplify this expression: 

a t = e -t e -~t0, a / =  e -t~j), j = 2 . . . . .  ( L -  1). 
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We then see that each Pi can be written as a product of some of the aj, where a i 

is included in pi if vj~ is 1 and is not included otherwise. We note that a~ is 
included in each of the Pi because v~i = 1 for all i. 

Now we can solve directly for the aj by substituting these expressions for p~ 
as components of P and solving the equation H '  = V ' P  for the a r 

Let us calculate the maximum-entropy distribution given the sentences P 
with probability ~r 2 and P ~ Q with probability %. As before, V' and H '  are 
given by: 

I 1  1 1 ! 1  I l l  V ' =  1 1 0 , H ' =  rr 2 . 

1 0 1 % 

We can read down the columns of V' to express each (entropy-maximizing) p~ 
in terms of products of the aj: 

Pl  = a l a 2 a 3 ,  P2 = a ~ a 2 ,  P3 = a ~ a 3 ,  P4 = a l a 3 .  

Using these values i n / / ' =  V ' P  yields the equations: 

a l a 2 a 3  + a l a 2  + 2 a l a  3 = 1 ,  

a l a 2 a  3 + a l a  2 = ,,.7. 2 , a t a 2 a  3 + 2 a t a  3 = 7r 3 . 

Solving yields: 

a, = ( 1 -  r r~(1-  %)/2(rr 2 + % -  1), 

a 2 = 2(rr 2 + 7r 3 - 1)/(1 - ~'2), a3 = (rr2 + ~'3- 1)/(1 - zr3). 

Thus, the entropy-maximizing P is given by: 

zr2+ % -  11 1 - %  
P = ~(1- 7r2) " 

i 
- 

Using this probability distribution, we see that the probability of Q is 

1 [1, 0, 1, 0]P = [7'r2 -I- "/'/'3- [ = 1  1 2 p ( p  ) + p ( p  D Q )  - ~ .  

(l'his happens to be the same value calculated by the "projection ap- 
proximation" method!) 
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5. Dealing with Large Matrices 

The techniques described in the last section all involved computing a possible- 
worlds probability vector, P, from V' a n d / / ' .  When V' is as large as it might 
be with even, say, a dozen or so sentences, these methods become impractical. 
Perhaps there are much simpler techniques for computing the approximate 
probability of a sentence S probabilistically entailed by ~. 

Some approximation methods are based on subdividing ~ into smaller sets. 
Suppose for example that ~ could be partitioned into two parts, namely ~t  
and ~2 with no atom that occurs in ~1 occurring in ~2 or in S. Clearly ~t  could 
be eliminated from ~ without any effect on probabilistic entailment cal- 
culations for S. In this case, we say that the subset, ~2, is a sufficient subset for 
S. 

Or, suppose two sentences, S t and S 2, could be found such that a subset of 
~,  say ~1, was sufficient for S~ and another subset, say ~2, was sufficient for S 2. 
Then we could split the probabilistic entailment of S from ~ into two smaller 
problems: first compute the probabilistic entailments of S t from ~ and of S 2 
from ~2- Next, compute the probabilistic entailment of S from {St, $2}. The 
idea here is to find sentences, St and S 2, such that, together, they "give as much 
information" about S as does ~. In this case, ~1 and ~ :  are similar to what 
have been called local event groups [13]. This method, of course, is only 
approximate; its accuracy depends on how well the probabilities of S~ and S 2 
determine the probability of S. 

We next suggest a process for finding an "approximate" (and smaller) matrix 
for V' given ~, H', and S. This approximate matrix, which we denote by V'*, 
can be made sufficiently small to permit practical computation of approximate 
probabilistic entailment. The approximation is exact in the non-probabilistic 
case when H'  consists of only ones and zeros. It can be made as precise as 
desired by making V'* larger. 

We follow the usual process for computing the matrix V'--except in com- 
puting V'* we do not include all of the consistent sets of truth values. Instead, 
we construct a smaller set that includes only vectors "close to" the given H'. 

We first compute an approximate matrix, V*, as follows: 
(1) Construct a true-false vector, H~, f r o m / / '  by changing to 1 the values of 

those components zr i whose values are greater than or equal to ~. Change the 
values of the other components to 0. 

(2) If S can have value true consistent with the truth values for the sentences 
in ~ given by H~, then include in V* the vector formed from H~ by appending 
to it a final component equal to 1. If S can have value false consistent with the 
valuations for the sentences in ~ given by H E, then include in V* the vector 
formed from H~ by appending to it a final component equal to 0. 

(3) Reverse the values of the components of H~ one at a time, two at a 
time, and so on, starting with those components whose corresponding corn- 
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1 ponents in H '  have values closest to ~. For each of the altered true-false vectors 
thus obtained that represent consistent true-false truth values over 3 ,  add new 
vector(s) to V* according to the procedure described in step (2) immediately 
above. We use as many of these consistent, altered vectors as computational 
resources permit. The more vectors used, the better the approximation. (The 
ordering of the column vectors in V* is arbitrary.) 

We next construct the matrix V'* by deleting the last row of V*. (We take 
this last row to be an approximate vector representation S* for the sentence S.) 

It should be clear that as we include more and more vectors in V*, it 
approaches V, and V'* approaches V'. Also, if H '  is the vector with com- 
ponents all equal to 1, then H ' =  H~. In that case, if S logically follows from 3 ,  
V'* need have only a single column (of l's), P = [1], S* = [i], and p(S)= 1. If 

S logically follows from ~,  II'* still need have only a single column (of all 
l's), P = [1], S* = [0], and p(S)= 0. If both S and ~ S are consistent with ~ ,  
then V'* would have two identical columns (of all ones), P could have per- 
missible solutions [1, 0] and [0, 1], S* = [1, 0], and p(S) could range consistently 
between 0 and 1. 

Thus, our approximation behaves well at the limits of large V'* and at the 
non-probabilistic extreme. Continuity arguments suggest that performance 
ought to degrade only gradually as we depart from these limits, although the 
method has not yet been tested on large examples. If we recall that the region 
of consistent probability vectors, H, occupies the convex hull of the region 
defined by the extreme (0, 1) probability vectors, we note that our  ap- 
proximation method constructs an approximate region, namely the convex hull 
of just those extreme vectors that are "close to"  the given probability vector, 
H' .  We suspect that the more uncertain are the sentences in ~ ,  the more 
vectors will have to be included in V* to get accurate entailment. 

6. Probabil i t ies  Condit ioned on Addit ional  Information 

In typical applications of these ideas, experts in the subject matter  of the 
application would provide us with a base set ~ of beliefs and their prob- 
abilities, H. We would then like to use these uncertain beliefs to calculate the 
probability of some sentence, S, given information about some sentence, S 0. 
The information about S o might be that S o is true, or that it is false, or that it 
has some probability, P(So). In general, neither S nor S o need be in ~ - -  
although either or both could be. 

Suppose we are given that S o is true. Then we want to calculate the 
conditional probability p( S I So). Using Bayes' rule this conditional probability is: 

p(S, So) _ p(S ^ So) 
p(S I So) = 

p(So) p(So) 



PROBABILISTIC LOGIC 85 

The probabilities p(S a So) and p(So) can be calculated using any of the 
methods described in this paper. (The probability of S given S o is just the sum 
of the probabilities of each of the possible worlds in which both S and S O are 
true normalized by dividing by the probability of So. ) If the method gives 
unique values for p(S ^ So) and p(So), then the conditional probability will also have 
a unique value. If the method gives bounds on the probabilities, then the conditional 
probability will also be bounded. 

We can derive a similar expression if we are given that S O is false: 

p ( S  l - -  so)  = 
P($, ~ So) = p(S ^ - -  So) 

p ( - -  So) p ( - -  So) 

Often we do not know whether S 0 is true or false but might instead have only 
a posterior probability for S 0, say p(S o I So). In this case, we associate the sentence 
So with the event of having received some information about S o that permits us 
to assign the probability p(S01 So) to S 0. (We must not confuse P(S01 So) with 
p(So). The former is a new or posterior probability after having learned specific 
information about a particular case; the latter is the prior probability based on 
general expert knowledge.) 

Now we can compute an expression for p(S[S'o) as a weighted average of 
p(S l So) and p(S [ ~ So). Assuming that 

p(SI So, So) = p(S I So) and p(SI - -  So, So) = p(S [ - -  So), 

the expression for the posterior probability for S (given So) becomes: 

p( S I So) = p( S I So)p( So l So) + p( S l - -  So)p(-- Sol So). 

Substituting the expressions we had derived earlier for p(S[ So) and p(S:t ~ So) 
we obtain: 

p(S l S~) = p(S  ^ p(S ^ - -  So) , 
p(So~ °)p(S°IS~)4 P(~" So) P ( - -  S°[S~)" 

Our methods usually justify only the calculation of bounds on probabilities. 
Indeed, we may only know bounds on the probabilities of the sentences in ~ .  If 
the probability of a sentence S is known only to lie between a lower bound, 7r,, 
and an upper bound, ~r~, then the difference ~-~-zr, expresses our ignorance 
about S. Using upper and lower probabilities gives us a method to distinguish 
between situations in which our beliefs can be described by a single probability 
number and those in which we have even less information. To have good 
reason to believe, for example, that a particular treatment method for a certain 
disease is effective in half the cases is to have arguably more information than 
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to have no justifiable beliefs at all about  its effects. In the latter case, the 
appropriate  lower and upper  probabilit ies would be 0 and 1, respectively. 

All of the methods  described in this paper  can be easily modified to deal with 
sentences with upper  and lower probabilities. In calculating bounds on the 
probability of some sentence S, one first uses those extreme values of prob- 
abilities that give one of the bounds and then the extremes that give the other. 
Grosof  [18] has shown that an important  special case of the Shafe r -Demps te r  
procedure for assigning mass weights to sentences is itself a special case of our  
procedure adapted to deal with upper  and lower probabilities. 

7. Conclusions 

We have presented a straightforward generalization of the ordinary true-[alse 
semantics for logical sentences to a semantics that allows probabilistic values 
on sentences. Although implementat ion of the full procedure for probabilistic 
entailment would usually be computat ionally impractical, we also described a 
simple approximation method that might be appropr ia te  for realistic ap- 
plications in expert  systems. Such applications would also require a technique 
for dealing with inconsistent probabili ty values supplied by the expert and user. 
One possibility would be to move an i n c o n s i s t e n t / / v e c t o r  to a "nea rby"  point 
in the consistent region, perhaps preferring larger adjustments  to "'user prob- 
abilities" than to "exper t  probabili t ies." The technique can also be applied in 
an obvious way when the probabilities of sentences are merely bounded rather  
than having definite values. 

Some have proposed that nonmonotonic  reasoning be performed by prob- 
abilistic deductions of various kinds. In this connection, we point out that 
probabilistic entailment,  as presented here, is actually monotonic in that 
constraints on the probabili ty values of sentences (imposed by adding new 
uncertain "facts")  can only reduce the region of consistent valuations. 
Adding such constraints never  results in adding to the region of consistent 
valuations, and therefore no different valuations can result from such ad- 
ditional information. 
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