
CHAPTER 5 

 

LINEAR TEMPORAL LOGIC (LTL) 

Presented by 

 

Rehab Ashari                     Sahar Habib 

1 



CONTENT 

 Temporal Logic & Linear Temporal Logic (LTL) 

 Syntax 

 Semantics 

 Equivalence of LTL Formulae 

 Fairness in LTL 

 Automata-Based LTL Model Checking 

 NBA & Generalized NBA  (GNBA) 

 GNBA and Closure of ϕ  

 LTL Satisfiability  and Validity checking 

2 



TEMPORAL LOGIC & LINEAR TEMPORAL LOGIC 

 
 Temporal logics (TL) is a convenient formalism for specifying and 

verifying properties of reactive systems. We can say that the 

modalities in  Temporal Logic are Time abstract 

 linear temporal logic (LTL) that is an infinite sequence of states 

where each point in time has a unique successor, based on a 

linear-time perspective. 

 Linear temporal property  is a temporal logic formula that 

describes a set of infinite sequences for which it is true 

 Purpose Translate the properties which are written using the 

natural languages into LTL by using special syntax. By given the 

TS and LTL formula φ, we can check if φ hold in TS or not. 

 Model checking tools  SPIN 

  An important way to model check is to express desired properties 

(such as the ones described above) using LTL operators and 

actually check if the model satisfies this property. One technique 

is to obtain a Büchi automaton that is "equivalent" to the model 

and one that is "equivalent" to the negation of the property. The 

intersection of the two non-deterministic Büchi automata is 

empty if the model satisfies the property. 

 

 

3 

http://en.wikipedia.org/wiki/B%C3%BCchi_automaton
http://en.wikipedia.org/wiki/B%C3%BCchi_automaton
http://en.wikipedia.org/wiki/B%C3%BCchi_automaton


SYNTAX 

 
LTL formula is built up from : 

 A finite set of Atomic propositions   (State label “a” ϵ AP in the 

transition system) 

 Basic Logical Operators      ¬ (negation) , ∧ (conjunction)   

 Basic Temporal Operators   O (next) , U (until) , true 

 There are additional logical operators are ∨ (disjunction), 

→(implication), ↔(equivalence) 

 There are additional temporal operators are : 

 

 

 

 By combining the temporal modalities ◊ and □, new temporal 

modalities are obtained.  

 

 

 

 

 

4 



SYNTAX 

 

                  

5 



SYNTAX 

 

  ◊   “F”   Finally which means something in the future. 

  □  “G”  Globally which means globally in the future. 

 ○  “X”  NeXt time.  

  LTL can be extended with past operators 

 □-1    Always in the past. 

 ◊ -1    sometimes in the past. 

 ○ -1    Previous state. 

□ ( red  ○ -1  yellow) 

 Weak until (a W b),  

   requires that a remains true until b becomes true, but does not 
require that b ever does becomes true (i.e. a remains true 
forever). It follows the expansion law of until. 

 Release (a R b),  

    informally means that b is true until a becomes true, or b is 
true forever.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 



SEMANTICS 

  LTL formulae φ stands for properties of paths  (Traces) and The path can be 
either fulfill the LTL formula or not. 

 

 First, The semantics of φ is defined as a language Words(φ). Where Words(φ) 
contains all infinite words over the alphabet 2AP   that satisfy φ 

 

 Then, the semantics of φ is extended to an interpretation over paths and states 
of a TS. 

 

 Thus, a transition system TS satisfies the LT property P if all its traces respect 
P, i.e., if all its behaviors are admissible. A state satisfies P whenever all traces 
starting in this state fulfill P. 

 

 The transition system TS satisfies ϕ if TS satisfies the LT property Words(ϕ). 

   i.e., if all initial paths of TS paths starting in an initial state s0 ∈ I satisfy ϕ. 
 

 Thus, it is possible that a TS (or si) satisfies neither ϕ  nor ￢ϕ  

 Any LTL formula can be transformed into a canonical form, the so-called 
positive normal form (PNF). In order to transform any LTL formula into PNF, 
for each operator, a dual operator needs to be incorporated into the syntax of 
PNF  

 formulae. 

 

 

 

 

 
 

 

 

 

7 



EQUIVALENCE OF LTL FORMULAE 

 

8 



FAIRNESS IN LTL 

 

 

9 

 LTL Fairness Constrains and Assumptions 

 

 

 

 

 

 

 

 

 

 That is to say , rather than determining for transition system TS 
and LTL formula ϕ whether TS|=ϕ, we focus on the fair 
executions of TS. 

 An LTL fairness assumption is a conjunction of LTL fairness 
constraints. 

 

 

 

 

Φ stands for 

“something is 

enabled”; Ψ for 

“something is 

taken” 



AUTOMATA-BASED LTL MODEL 

CHECKING 

10 

To check whether ϕ holds for TS 

Constructs an NBA for the negation of the input formula ϕ (representing 

the ”bad behaviors”) 



GENERALIZED BÜCHI AUTOMATA 

 Generalized Büchi automaton (GBA) is a variant of Büchi 
automaton 

 The difference with the Büchi automaton is its accepting 
condition, i.e., a set of sets of states.  

 A run is accepted by the automaton if it visits at least one state of 
every set of the accepting condition infinitely often.  

 Generalized Büchi automata (GBA) is equivalent in expressive 
power with Büchi automata 

 A generalized Buchi automaton (GBA) over Σ  is  

                         A = (S, Σ , T, I, F) 

 S is a finite set of states 

 Σ = {a, b, . . .} is a finite alphabet set of A 

 T ⊆ S × Σ × S is a transition relation 

 I ⊆ S is a set of initial states 

 F = {F1, . . . , Fk} ⊆ 2S is a set of sets of final states. 

 A accepts exactly those runs in which the set of infinitely often 
occurring states contains at least a state from each  F1,...,Fn. 

 A run π of a GBA is said to be accepting iff,  

                for all 1 ≤ i ≤ k, we have inf(π) ∩ Fi  = ∅ 

11 



NBA & GENERALIZED NBA (GNBA) 

12 



NBA & GENERALIZED NBA (GNBA) 

13 

A GNBA for the property 

”both processes are 

infinitely often in their 

critical section” 

F = { {q1 }, { q2 }} 

 



NBA & GENERALIZED & CLOSURE ϕ  

14 

 GNBA are like NBA, but have a distinct acceptance criterion 

 a GNBA requires to visit several sets F1, . . . , Fk (k ≥ 0) infinitely 

often 

 for k=0, all runs are accepting 

 for k=1 this boils down to an NBA 

 GNBA are useful to relate temporal logic and automata, but they are 

equally expressive as NBA 

 Closure ϕ  Consisting of all subformulae ψ of ϕ and their negation 

￢ψ 

The Satisfiability Problem:  

 for a given LTL formula ∅, there exists a model for which ∅ holds. 

That is, we have Words(∅) = ∅. 

The Validity problem: 

  Formula ∅ is valid whenever ∅ holds under all interpretations, i.e., 

ϕ ≡ true.  

 



LTL SATISFIABILITY  AND VALIDITY CHECKING 

PSPACE Complexity: 

  In computer science, the space complexity of an algorithm 

quantifies the amount of memory space that an algorithm needs to 

run as a function of the size of the input to solve the problem.  

 The space complexity of an algorithm is commonly expressed using big 

O notation. 

 In complexity theory, PSPACE is the set of all decision problems 

which can be solved by an algorithm using a polynomial amount of 

memory space.  

 In complexity theory, a decision problem is PSPACE-complete if it is 

in the complexity class PSPACE, and every problem in PSPACE can 

be reduced to it in polynomial space 

 A problem can be PSPACE-hard but not PSPACE-complete because it 

may not be in PSPACE. 

 More efficient technique cannot be achieved as both the validity and 

satisfiability problems are PSPACE-hard. In fact, both problems are 

even PSPACE-complete.  

 

15 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/PSPACE

