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Abstract—This paper provides a framework to automatically
generate a hybrid controller that guarantees that the robot can
achieve its task when a robot model, a class of admissible environ-
ments, and a high-level task or behavior for the robot are provided.
The desired task specifications, which are expressed in a fragment
of linear temporal logic (LTL), can capture complex robot behav-
iors such as search and rescue, coverage, and collision avoidance. In
addition, our framework explicitly captures sensor specifications
that depend on the environment with which the robot is interacting,
which results in a novel paradigm for sensor-based temporal-logic-
motion planning. As one robot is part of the environment of an-
other robot, our sensor-based framework very naturally captures
multirobot specifications in a decentralized manner. Our compu-
tational approach is based on first creating discrete controllers
satisfying specific LTL formulas. If feasible, the discrete controller
is then used to guide the sensor-based composition of continuous
controllers, which results in a hybrid controller satisfying the high-
level specification but only if the environment is admissible.

Index Terms—Controller synthesis, hybrid control, motion plan-
ning, sensor-based planning, temporal logic.

I. INTRODUCTION

MOTION planning and task planning are two fundamen-
tal problems in robotics that have been addressed from

different perspectives. Bottom-up motion-planning techniques
concentrate on creating control inputs or closed-loop controllers
that steer a robot from one configuration to another [1], [2] while
taking into account different dynamics and motion constraints.
On the other hand, top-down task-planning approaches are usu-
ally focused on finding coarse, which are typically discrete,
robot actions in order to achieve more complex tasks [2], [3].

The traditional hierarchical decomposition of planning prob-
lems into task-planning layers that reside higher in the hier-
archy than motion-planning layers has resulted in a lack of
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approaches that address the integrated system, until very re-
cently. The modern paradigm of hybrid systems, which couples
continuous and discrete systems, has enabled the formal inte-
gration of high-level discrete actions with low-level controllers
in a unified framework [4]. This has inspired a variety of ap-
proaches that translate high-level, discrete tasks to low-level,
continuous controllers in a verifiable and computationally effi-
cient manner [5]–[7] or compose local controllers in order to
construct global plans [8]–[10].

This paper, which expands on the work presented in [11],
describes a framework that automatically translates high-level
tasks given as linear temporal-logic (LTL) formulas [12] of spe-
cific structure into correct-by-construction hybrid controllers.
One of the strengths of this framework is that it allows for reac-
tive tasks, i.e., tasks in which the behavior of the robot depends
on the information it gathers at runtime. Thus, the trajectories
and actions of a robot in one environment may be totally differ-
ent in another environment, while both satisfy the same task.

Another strength is that the generated hybrid controllers drive
a robot or a group of robots such that they are guaranteed to
achieve the desired task if it is feasible. If the task cannot be
guaranteed, because of various reasons discussed in Section VI,
no controller will be generated, which indicates that there is a
problem in the task description.

To translate a task to a controller, we first lift the problem
into the discrete world by partitioning the workspace of the
robot and writing its desired behavior as a formula belonging
to a fragment of LTL (see Section III). The basic propositions
of this formula include propositions whose truth value depends
on the robot’s sensor readings; hence, the robot’s behavior can
be influenced by the environment. In order to create a discrete
plan, a synthesis algorithm [13] generates an automaton that
satisfies the given formula (see Section IV). Then, the discrete
automaton is integrated with the controllers in [8] and results in
an overall hybrid controller that orchestrates the composition of
low-level controllers based on the information gathered about
the environment at runtime (see Section V). The overall closed-
loop system is guaranteed (see Section VI) by construction to
satisfy the desired specification, but only if the robot operates in
an environment that satisfies the assumptions that were explicitly
modeled, as another formula, in the synthesis process. This leads
to a natural assume-guarantee decomposition between the robot
and its environment.

In a multirobot task (see Section VIII), as long as there are
no timing constraints or a need for joint-decision making, each
robot can be seen as a part of the environment of all other robots.
Hence, one can consider a variety of multirobot missions, such
as search and rescue and surveillance, that can be addressed in
a decentralized manner.
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This paper expands on the work outlined in [11] in several
directions. First, here, we allow the task to include specification
that relate to different robot actions in addition to the motion,
thus accommodating a larger set of tasks. Second, the contin-
uous execution of the discrete automaton has been modified in
order to allow immediate reaction to changes in the state of the
environment. Finally, this paper includes a discussion (see Sec-
tion VI) regarding the strengths, weaknesses, and extensions
of the framework, as well as the examples that demonstrate
complex tasks.

A. Related Work

The work presented in this paper draws on results from au-
tomata theory, control, and hybrid systems. Combining these
disciplines is a recurring theme in the area of symbolic con-
trol [4].

Motion description languages (MDLs and MDLe) [14]–[17]
provide a formal basis for the control of continuous systems
(robots) using sets of behaviors (atoms), timers, and events.
This formalism captures naturally reactive behaviors in which
the robot reacts to environmental events, as well as composition
of behaviors. The work presented here is similar in spirit in that
we compose basic controllers in order to achieve a task; however,
the main differences are the scope of allowable tasks (temporal
behaviors as opposed to final goals) and the automation and
guarantees provided by the proposed framework.

Maneuver automata [18], which can be seen as a subset of
MDLs, are an example for the use of a regular language to solve
the motion task of driving a complex system from an initial
state to a final state. Here, each symbol is a motion primitive that
belongs to a finite library of basic motions, and each string in the
language corresponds to a dynamically feasible motion behavior
of the system. Our paper, while sharing the idea of an automaton
that composes basic motions, is geared toward specifying and
guaranteeing higher level and reactive behaviors (sequencing of
goals, reaction to environmental events, and infinite behaviors).
Ideas, such as the ones presented in [18], could be incorporated
in the future into the framework proposed in this paper to allow
for complex nonlinear robot dynamics.

The work in [19] describes a symbolic approach to the task
of navigating under sensor errors and noise in a partially known
environment. In this paper, we allow a richer set of specifica-
tions, but perfect sensors and a fully known environment are
assumed. Exploring the ideas regarding the use of Markov deci-
sion processes (MDPs) and languages to deal with uncertainty
is a topic for future research.

This paper assumes that a discrete abstraction of the robot
behavior (motion and actions) can be generated. For simple dy-
namics, such as the kinematic model considered in this paper,
there is considerable work supporting this assumption ( [8]–
[21], etc.); however, such an assumption is harder to satisfy
when complex nonlinear dynamics are considered. Results, such
as the work reported in [22] and [23], where nonlinear dy-
namical systems are abstracted into symbolic models, could
be used in the future to enhance the work presented in this
paper.

The use of temporal logic for the specification and verification
of robot controllers was advocated way back in 1995 [24], where
computation tree logic (CTL) [12] was used to generate and
verify a supervisory controller for a walking robot. In the hybrid
systems community, several researchers have explored the use
of temporal and modal logic for the design of controllers. Moor
and Davoren [25] and Davoren and Moor [26] use modal logic
to design switching control that is robust to uncertainty in the
differential equations. There, the system is controlled such that it
achieves several requirements, such as safety, event sequencing,
and liveness, and is assumed to be closed, i.e., the controller
does not need to take into account external events from the
environment, whereas, here, we assume an open system in which
the robot reacts to its environment.

From the discrete systems point of view, [27] describes fix-
point iteration schemes to solve LTL games. The decidability of
the synthesis problem for metric temporal logic (MTL), which is
a linear time logic that includes timing constraints, is discussed
in [28].

This paper is based on ideas presented in [7], [29], and our
previous work [5], [6], and [30], such as the use of bisimu-
lations [31], [32] to lift a continuous problem into a discrete
domain while preserving important properties, as well as the
use of LTL as the formalism to capture high-level tasks. These
approaches provide a correct-by-construction controller, when-
ever one can be found, which is similar to the work presented
in this paper. The main difference between these papers and the
work presented here is that in [5]– [7] the behavior is nonreac-
tive in the sense that the behavior is required to be the same,
no matter what happens in the environment at runtime, for ex-
ample, visiting different rooms in some complex order. In these
papers, other than localization, the robot does not need to sense
its surroundings, and does not react to its environment. Here,
in contrast, the robot is operating in a possibly adversarial en-
vironment to which it is reacting, and the task specification can
capture this reactivity. Such behaviors could include, for exam-
ple, searching rooms for an object and, once an object is found,
returning to a base station. The behavior of the robot will be dif-
ferent in each execution since the environment may be different
(the object might be in different locations in each execution). As
such, this framework provides a plan of action for the robot so
that it achieves its task under any allowable circumstance. Fur-
thermore, this framework can handle nonlinear dynamics and
motion constraints as long as a suitable discrete abstraction of
the motion and a set of low-level controllers can be defined (see
Section VI).

II. PROBLEM FORMULATION

The goal of this paper is to construct controllers for mobile
robots that generate continuous trajectories that satisfy the given
high-level specifications. Furthermore, we would like to achieve
such specifications while interacting, by using sensors, with a
variety of environments. The problem that we want to solve is
graphically illustrated in Fig. 1.
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Fig. 1. Problem description.

To achieve this, we need to specify a robot model, as-
sumptions on admissible environments, and the desired system
specification.

1) Robot Model: We will assume that a mobile robot (or,
possibly, several mobile robots) is operating in a polygonal
workspace P . The motion of the robot is expressed as

ṗ(t) = u(t), p(t) ∈ P ⊆ R
2 , u(t) ∈ U ⊆ R

2 (1)

where p(t) is the position of the robot at time t, and u(t) is
the control input. We will also assume that the workspace P
is partitioned using a finite number of cells P1 , . . . , Pn , where
P = ∪n

i=1Pi , and Pi ∩ Pj = ∅, if i �= j. Furthermore, we will
also assume that each cell is a convex polygon. The partition
naturally induces Boolean propositions {r1 , r2 , . . . , rn}, which
are true if the robot is located in Pi

ri =
{

True, if p ∈ Pi

False, if p �∈ Pi.

Since {Pi} is a partition of P , exactly one ri can be true at any
time.

The robot may have actions that it can perform, such as mak-
ing sounds, operating a camera, transmitting messages to a base
station, etc. In this paper, we allow actions that can be turned on
and off at any time, and we encode these actions as propositions
A = {a1 , a2 , . . . , ak}

ai =
{

True, if action i is being executed

False, if action i is not being executed.

We define act(t) ⊆ A as the set of actions that are active (true)
at time t as

ai ∈ act(t), iff ai is true at time t.

Combining these propositions together with the location propo-
sitions, we can define the set of robot propositions as Y =
{r1 , r2 , . . . , rn , a1 , a2 , . . . , ak}. Note that if two actions can-
not be active at the same time, then such a requirement must
be added to the system specification either by the user (if it is
task-dependent) or automatically from the robot model (when
the actions for a specific robot are defined).

2) Admissible Environments: The robot interacts with its en-
vironment using sensors, which, in this paper, are assumed to be
binary. This is a natural assumption when considering simple
sensors, such as temperature sensors or noise-level detectors,
which can indicate whether the sensed quantity is above or

below a certain threshold, but this is also a reasonable abstrac-
tion when considering more complex sensors, such as vision
systems, where one can utilize decision-making frameworks or
computer-vision techniques. Furthermore, in this paper, we as-
sume that the sensors are perfect, i.e., they always provide the
correct and accurate state of the world. Relaxing this assumption
is a topic for future research.

The m binary sensor variables X = {x1 , x2 , . . . , xm} have
their own (discrete) dynamics that we do not model explicitly.
Instead, we place high-level assumptions on the possible behav-
ior of the sensor variables, thus defining a class of admissible
environments. These environmental assumptions will be cap-
tured (in Section III) by a temporal-logic formula ϕe . Our goal
is to construct controllers that achieve their desired specifica-
tion not for any arbitrary environment, but rather for all possible
admissible environments satisfying ϕe .

3) System Specification: The desired system specification
for the robot will be expressed as a suitable formula ϕs in a
fragment of LTL [12]. Informally, LTL will be used (see Sec-
tion III) to specify a variety of robot tasks that are linguistically
expressed as

1) coverage: “go to rooms P1 , P2 , P3 , P4 in any order”;
2) sequencing: “first go to room P5 , then to room P2”;
3) conditions: “If you see Mika, go to room P3 , otherwise

stay where you are”;
4) avoidance: “Do not go to corridor P7 .”
Furthermore, LTL is compositional, which enables the con-

struction of complicated robot-task specifications from simple
ones.

Putting everything together, we can describe the problem that
will be addressed in this paper.

Problem 1 [Sensor-based temporal-logic-motion planning]:
Given a robot model (1) and a suitable temporal-logic formula
ϕe modeling our assumptions on admissible environments, con-
struct (if possible) a controller so that the robot’s resulting trajec-
tories p(t) and actions act(t) satisfy the system specification ϕs

in any admissible environment, from any possible initial state.
In order to make Problem 1 formal, we need to precisely de-

fine the syntax, semantics, and class of temporal-logic formulas
that are considered in this paper.

III. TEMPORAL LOGICS

Generally speaking, temporal logic [12] consists of proposi-
tions, the standard Boolean operators, and some temporal oper-
ators. They have been used in several communities to represent
properties and requirements of systems, which range from com-
puter programs to robot-motion control. There are several dif-
ferent temporal logics, such as CTL, CTL∗, real-time logics, etc.
In this paper, we use a fragment of LTL for two reasons. First, it
can capture many interesting and complex robot behaviors, and
second, such formulas can be synthesized into controllers in a
tractable way (see Section IV).

We first give the syntax and semantics of the full LTL and
then describe, by following [13], the specific structure of the
LTL formulas that will be used in this paper.
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A. LTL Syntax and Semantics

Syntax: Let AP be a set of atomic propositions. In our setting,
AP = X ∪ Y , which includes both sensor and robot proposi-
tions. LTL formulas are constructed from atomic propositions
π ∈ AP according to the following grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕU ϕ.

As usual, the Boolean constants True and False are defined as
True = ϕ ∨ ¬ϕ and False = ¬True, respectively. Given nega-
tion (¬) and disjunction (∨), we can define conjunction (∧),
implication (⇒), and equivalence (⇔). Furthermore, given
the temporal operators “next” (©) and “until” (U), we can
also derive additional temporal operators such as “Eventually”
♦ϕ = TrueU ϕ and “Always” �ϕ = ¬♦¬ϕ.

Semantics: The semantics of an LTL formula ϕ is defined
over an infinite sequence σ of truth assignments to the atomic
propositions π ∈ AP . We denote the set of atomic propositions
that are true at position i by σ(i) . We recursively define whether
sequence σ satisfies LTL formula ϕ at position i (denoted σ, i |=
ϕ) by

σ, i |= π, iff π ∈ σ(i)
σ, i |= ¬ϕ, iff σ, i �|= ϕ
σ, i |= ϕ1 ∨ ϕ2 , iff σ, i |= ϕ1 or σ, i |= ϕ2
σ, i |= ©ϕ, iff σ, i + 1 |= ϕ
σ, i |= ϕ1 U ϕ2 , there exists k ≥ i such that σ, k |= ϕ2

and for all i ≤ j < k, we have σ, j |= ϕ1 .

Intuitively, the formula ©ϕ expresses that ϕ is true in the
next “step” (the next position in the sequence), and the formula
ϕ1 U ϕ2 expresses the property that ϕ1 is true until ϕ2 becomes
true. The sequence σ satisfies formula ϕ if σ, 0 |= ϕ. The se-
quence σ satisfies formula �ϕ if ϕ is true in every position of
the sequence, and satisfies the formula ♦ϕ if ϕ is true at some
position of the sequence. Sequence σ satisfies the formula �♦ϕ
if at any position ϕ will eventually become true, i.e., ϕ is true
infinitely often.

B. Special Class of LTL Formulas

Due to computational considerations mentioned in
Section IV, we consider a special class of temporal-logic for-
mulas [13]. We first recall that we have divided our atomic
propositions into sensor propositions X = {x1 , . . . , xm} and
robot propositions Y = {r1 , . . . , rn , a1 , . . . , ak}.

These special formulas are LTL formulas of the form ϕ =
(ϕe ⇒ ϕs), where ϕe is an assumption about the sensor propo-
sitions, and, thus, about the behavior of the environment, and
ϕs represents the desired behavior of the robot. The formula ϕ
is true if ϕs is true, i.e., the desired robot behavior is satisfied,
or ϕe is false, i.e., the environment did not behave as expected.
This means that when the environment does not satisfy ϕe , and
is thus not admissible, there is no guarantee about the behavior
of the system. Both ϕe and ϕs have the following structure:

ϕe = ϕe
i ∧ ϕe

t ∧ ϕe
g ; ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g

Fig. 2. Workspace of Example 1.

where ϕe
i and ϕs

i are nontemporal Boolean formulas constrain-
ing (if at all) the initial value(s) for the sensor propositions
X and robot propositions Y , respectively, ϕe

t represents the
possible evolution of the state of the environment and con-
sists of a conjunction of formulas of the form �Bi , where
each Bi is a Boolean formula constructed from subformulas
in X ∪ Y ∪©X and where ©X = {©x1 , . . . ,©xn}. Intu-
itively, formula ϕe

t constrains the next sensor values ©X based
on the current sensor X and robot Y values, ϕs

t represents the
possible evolution of the state of the robot and consists of a
conjunction of formulas of the form �Bi , where each Bi is a
Boolean formula in X ∪ Y ∪©X ∪©Y . Intuitively, this for-
mula constrains the next robot values ©Y based on the current
robot Y values and on the current and next sensor X ∪©X val-
ues. The next robot values can depend on the next sensor values
because we assume that the robot first senses, and then acts, as
explained in Section IV, and ϕe

g and ϕs
g represent goal assump-

tions for the environment and desired goal specifications for the
robot. Both formulas consist of a conjunction of formulas of the
form �♦Bi , where each Bi is a Boolean formula in X ∪ Y .

The formula φ = (ϕe
g ⇒ ϕs

g ), which will be discussed in
Section IV, is a generalized reactivity(1) [GR(1)] formula.

This class of LTL imposes additional restrictions on the struc-
ture of allowable formulas. Therefore, some LTL formulas can-
not be expressed, for example, ♦�φ, which is true if at some
unknown point in the future, φ becomes true and stays true
forever.1 However, according to our experience, there does not
seem to be a significant loss in expressivity as most specifica-
tions that we encountered can be either directly expressed or
translated to this format. More formally, any behavior that can
be captured by an implication between conjunctions of deter-
ministic Buchi automata can be specified in this framework [13].
Furthermore, the structure of the formula very naturally reflects
the structure of most sensor-based robotic tasks. We illustrate
this with a relatively simple example.

Example 1: Consider a robot that is moving in the workspace
shown in Fig. 2 consisting of 12 regions labeled 1, . . . , 12 (which
relate to the robot propositions {r1 , . . . , r12}). Initially, the robot
is placed either in region 1, 2, or 3. In natural language, the
desired specification for the robot is as follows: Look for Nemo
in regions 1, 3, 5, and 8. If you find him, turn your video camera
ON, and stay where you are. If he disappears again, turn the
camera OFF, and resume the search.

1The restricted class of LTL can capture a formula that states that right after
something happens, φ becomes true and stays true forever, but it cannot capture
that φ must become true at some arbitrary point in time.
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Since Nemo is part of the environment, the set of sen-
sor propositions contains only one proposition X = {sNemo},
which becomes True if our sensor has detected Nemo. Our
assumptions about Nemo are captured by ϕe = ϕe

i ∧ ϕe
t ∧

ϕe
g . The robot initially does not see Nemo, and thus, ϕe

i =
(¬sNemo). Since we can only sense Nemo in regions 1, 3, 5,
and 8, we encode the requirement that in other regions the value
of sNemo cannot change. This requirement is captured by the
formula

ϕe
t = �((¬r1 ∧ ¬r3 ∧ ¬r5 ∧ ¬r8) ⇒ (©sNemo ⇔ sNemo)).

We place no further assumptions on the environment proposi-
tions, which means that ϕe

g = �♦(True), completing the model-
ing of our environment assumptions. Note that the environment
is admissible whether Nemo is there or not.

We now turn to modeling the robot and the desired specifica-
tion, which are captured by ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g . We define 13
robot propositions Y = {r1 , . . . , r12 , a

CameraON}.
Initially, the robot starts somewhere in region 1, 2, or 3 with

the camera; hence

ϕs
i =




(r1 ∧i∈{2,···,12} ¬ri ∧ ¬aCameraON)∨
(r2 ∧i∈{1,3,···,12} ¬ri ∧ ¬aCameraON)∨
(r3 ∧i∈{1,2,4,···,12} ¬ri ∧ ¬aCameraON).

The formula ϕs
t models the possible changes in the robot state.

The first block of subformulas represent the possible transitions
between regions, for example, from region 1, the robot can move
to adjacent region 9 or stay in 1. The next subformula captures
the mutual exclusion constraint, i.e., at any step, exactly one of
r1 , . . ., r12 is true. For a given decomposition of workspace P ,
the generation of these formulas is easily automated. The final
block of subformulas is a part of the desired specification and
states that if the robot sees Nemo, it should remain in the same
region in the next step, and the camera should be ON. It also
states that if the robot does not see Nemo, the camera should be
OFF

ϕs
t =







∧
�(r1 ⇒ (©r1 ∨©r9))∧
�(r2 ⇒ (©r2 ∨©r12))

...∧
�(r12 ⇒ (©r2 ∨©r9 ∨©r11 ∨©r12))∧

�( (©r1 ∧i �=1 ¬© ri)
∨(©r2 ∧i �=2 ¬© ri)
...

∨(©r12 ∧i �=12 ¬© ri)


∧
�( ©sNemo ⇒
(∧i∈{1,···,12} © ri ⇔ ri) ∧©aCameraON)∧
�( ¬© sNemo ⇒ ¬© aCameraON ).

Finally, the requirement that the robot keeps looking in regions
1, 3, 5, and 8, unless it has found Nemo, is captured by

ϕs
g =

{ �♦(r1 ∨ sNemo)
∧

�♦(r3 ∨ sNemo)∧
�♦(r5 ∨ sNemo)

∧
�♦(r8 ∨ sNemo).

This completes our modeling of the robot specification as well.
Combining everything together, we get the required formula
ϕ = (ϕe ⇒ ϕs).

Having modeled a scenario using ϕ, our goal is now to syn-
thesize a controller-generating trajectories that will satisfy the
formula if the scenario is possible (if the formula is realizable).
Section IV describes the automatic generation of a discrete au-
tomaton satisfying the formula, while Section V explains how
to continuously execute the synthesized automaton.

IV. DISCRETE SYNTHESIS

Given an LTL formula, the realization or synthesis problem
consists of constructing an automaton whose behaviors satisfy
the formula, if such an automaton exists. In general, creating
such an automaton is proven to be doubly exponential in the
size of the formula [33]. However, by restricting ourselves to the
special class of LTL formulas, we can use the efficient algorithm
that was recently introduced in [13], which is polynomial O(n3)
time, where n is the size of the state space. Each state in this
framework corresponds to an allowable truth assignment for the
set of sensor and robot propositions. In Example 1, an allowable
state is one in which, for example, the proposition r1 is true,
and all of the other propositions are false. However, a state in
which both r1 and r2 are true is not allowed (violates the mutual
exclusion formula) as is a state in which sNemo and r2 are true
(the environment assumptions state that Nemo cannot be seen
in region 2). Section IX discusses further problem sizes and
computability.

In the following, the synthesis algorithm is informally intro-
duced, see [13] for a full description.

The synthesis process is viewed as a game played between
the robot and the environment (as the adversary). Starting from
some initial state, both the robot and the environment make de-
cisions that determine the next state of the system. The winning
condition for the game is given as a GR(1) formula φ. The way in
which this game is played is that at each step, first, the environ-
ment makes a transition according to its transition relation, and
then, the robot makes its own transition. If the robot can satisfy
φ, no matter what the environment does, we say that the robot is
winning, and therefore, we can extract an automaton. However,
if the environment can falsify φ, we say that the environment is
winning and the desired behavior is unrealizable.

Relating the formulas of Section III-B to the game mentioned
previously, the initial states of the players are given by ϕe

i and
ϕs

i . The possible transitions that the players can make are given
by ϕe

t and ϕs
t , and the winning condition is given by the GR(1)

formula φ = (ϕe
g ⇒ ϕs

g ). Note that the system is winning, i.e.,
φ is satisfied if ϕs

g is true, which means that the desired robot
behavior is satisfied, or ϕe

g is false, which means that the envi-
ronment did not reach its goals (either because the environment
was faulty or the robot prevented it from reaching its goals). This
implies that when the environment does not satisfy ϕe

g , there is
no guarantee about the behavior of the robot. Furthermore, if
the environment does not “play fair,” i.e., violates its assumed
behavior ϕe

i ∧ ϕe
t , the automaton is no longer valid.

Authorized licensed use limited to: The University of Utah. Downloaded on September 04,2021 at 20:44:31 UTC from IEEE Xplore.  Restrictions apply. 



KRESS-GAZIT et al.: TEMPORAL-LOGIC-BASED REACTIVE MISSION AND MOTION PLANNING 1375

The synthesis algorithm [13] takes the formula ϕ and first
checks whether it is realizable. If it is, then the algorithm ex-
tracts a possible (but not necessarily unique) automaton, which
implements a strategy that the robot should follow in order to
satisfy the desired task. The automaton that is generated by the
algorithm is modeled as a tuple A = (X ,Y, Q,Q0 , δ, γ).

1) X is the set of input (environment) propositions.
2) Y is the set of output (robot) propositions.
3) Q ⊂ N is the set of states.
4) Q0 ∈ Q is the set of initial states.
5) δ : Q × 2X → 2Q is the transition relation, i.e.,

δ(q,X) = Q′ ⊆ Q, where q ∈ Q is a state and X ⊆ X
is the subset of sensor propositions that are true.

6) γ : Q → 2Y is the state labeling function, where γ(q) =
y, and y ⊆ Y is the set of robot propositions that are true
in state q.

An admissible input sequence is a sequence X1 ,
X2 , . . . , Xj ∈ 2X that satisfies ϕe . A run of this automaton
under an admissible input sequence is a sequence of states
σ = q0 , q1 , . . .. This sequence starts at some initial state q0 ∈ Q0
and follows the transition relation δ under the truth values of the
input propositions, i.e., for all j ≥ 0, we have qj+1 ∈ δ(qj ,Xj ).
An interpretation of a run σ is a sequence y0 , y1 , . . ., where
yi = γ(qi) is the label of the ith state in the run. We use this
sequence of labels to construct the discrete path that the robot
must follow and to activate/deactivate the different robot ac-
tions. As mentioned before, when given a nonadmissible input
sequence, i.e., an input sequence that violates any part of ϕe ,
the automaton is no longer relevant, and we will not be able to
construct a correct path for the robot.

Using this synthesis algorithm, there are several ways to ex-
tract an automaton that satisfies the LTL formula. It can either
be made to be deterministic, i.e., for every input, there will be
a unique next state, or nondeterministic, as is the case in this
paper. Furthermore, the automaton can be one that always takes
the “fastest route” toward the goals, i.e., reaches the goals in
the minimum number of transitions, as in this paper, or one that
allows all possible routes, even longer ones, as long as they
eventually satisfy the task.

Example 2: Revisiting Example 1, Fig. 3 represents the syn-
thesized automaton that realizes the desired behavior. The cir-
cles represent the states of the automaton, and the propositions
that are written inside each circle are the state’s label, i.e., the
output propositions that are true in that state. The possible initial
states are shown as filled circles. The edges are labeled with the
sensor propositions that must be true in order for the transition
to be made. Edges with no labels are thus labeled with ¬sNemo .

As can be seen, the automaton causes the robot to stay where
it is and turn the camera ON if it senses Nemo; otherwise, the
robot will keep searching for Nemo, with the camera OFF, for-
ever. Note that this automaton is not unique and is nondeter-
ministic. Furthermore, this automaton can only be executed if
the environment (Nemo) is behaving according to the assump-
tions. Thus, if the robot suddenly senses Nemo in region 9, the
automaton will not have a suitable transition.

From the interpretation of a run of the automaton, we extract
a discrete path for the robot based on the location propositions.

Fig. 3. Synthesized automaton of Example 2.

What is left to do is to transform this discrete path into a con-
tinuous trajectory, as is explained in the next section.

V. CONTINUOUS EXECUTION

In order to continuously implement the discrete solution of the
previous section, we construct a hybrid controller that takes a set
of simple controllers and composes them sequentially according
to the discrete execution of the automaton.

Following the work in [5], we utilize atomic controllers that
satisfy the so-called bisimulation property [31], [32], [34]. Such
controllers are guaranteed to drive the robot from one region to
another, regardless of the initial state in the region. There are
several recent approaches for generating such simple controllers,
such as [8], [10], [20], [35], and [36]. We use the framework
developed in [8] due to its computational properties and the
variety of regions it can be applied to. In this approach, a convex
polygon is mapped to the unit disk, then Laplace’s equation
is solved (in closed form) on the disk, obtaining the potential
function, and finally, the solution is mapped back to the polygon.
This approach resembles the navigation functions introduced
in [37].

The algorithm for executing the discrete automaton is shown
in Algorithm 1. Initially, the robot is placed at position p0 in
region i such that ri ∈ γ(q0), where q0 is the initial automa-
ton state satisfying q0 ∈ Q0 . Furthermore, based on all other
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propositions γ(q0), the appropriate robot actions are activated.
At each step, the robot senses its environment and determines
the values of the binary inputs X . Based on these inputs and its
current state, it chooses a successor state NxtState and extracts
the next region NxtReg, where it should go from γ(NxtState).
Then, it invokes an atomic controller that drives it toward the
next region. If the robot enters the next region in this step, then
the execution changes the current automaton state, extracts the
appropriate actions, and activates/deactivates them. If the robot
is neither in the current region nor in the next region, which
could happen only if the environment violated its assumptions,
then the execution is stopped with an error.

This continuous execution is bisimilar to the discrete execu-
tion of the automaton that resembles the continuous execution
of a sequence of discrete states that was presented in [5] and [7].
Note that in the type of automaton that is extracted in this paper,
i.e., in which the next state is the one that advances the robot
the most toward its goals, an action might not be turned on/off
simultaneously with the sensor input change. In other words,
the change in the action might occur only when the robot enters
a new region. This may be avoided by extracting an automaton
that does not have to make progress at each step, but this is not
within the scope of this paper.

This kind of execution allows the robot to react in real time
to changing environment conditions as opposed to the approach
taken in [11], where it is assumed that the robot senses only when
it makes a transition in the automaton (enters a new region).

Example 3: Fig. 4 depicts a possible execution of the automa-
ton synthesized in Example 2. Here, the robot starts in region
3 and searches for Nemo. In Fig. 4(a), the robot finds Nemo in

Fig. 4. Possible run of the automaton of Example 2. (a) Nemo is sensed in
region 5. (b) Nemo disappeared; therefore, the robot continues the search. (c)
Robot continues to search regions 1, 3, 5, and 8.

region 5, and therefore, it stays there and turns on its camera,
which is indicated by the magenta squares. Then, as depicted in
Fig. 4(b), Nemo disappears, and the robot resumes the search.
It then continues to search all the regions of interest, as seen in
Fig. 4(c).

VI. GUARANTEES AND GENERALIZATIONS

The method presented in this paper is guaranteed, under some
conditions, to generate correct robot behavior. These conditions
can be divided into two groups. The first group refers to tasks,
or formulas, that are unrealizable. These formulas cannot be
synthesized into an automaton either because they are logically
inconsistent, for example, “Go to region 1 and never leave re-
gion 4,” or they are topologically impossible, for example, a
task that requires the robot to move between two unconnected
regions in the workspace, or the environment, has a strategy that
prevents the robot from achieving its goals.2 If the formula is
unrealizable, the synthesis algorithm will inform the user that it
is impossible to satisfy such a task.

The second group refers to tasks that are realizable, i.e., there
exists an automaton that realizes them; however, the execution
of this automaton is not correct. This can happen only if the envi-
ronment behaves “badly” or if it either violates the assumptions
encoded in ϕe , for example, a sensor proposition becomes true
when the formula states it cannot, or it causes the robot to violate
its possible transitions, for example, if someone picks the robot
up and moves it to a different region. In these cases, it is most
likely that the automaton will not have any valid transitions left,
and the execution will halt. Note that while the satisfaction of the
assumptions on the environment is crucial for correct behavior,
these assumptions can be very general and nonrestrictive.

The introduced framework can be extended very easily to
handle different robot models. By choosing controllers that are

2The synthesis of the controller is done in a worst-case approach.
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Fig. 5. Animal herding. (a) Cat is found. (b) Robot herds the cat to its meeting region, without going through the NoCats regions, by trailing yarn. It ignores
dogs sensed along the way. (c) Dog is sensed immediately after leaving the cats meeting region. It is then herded to the dogs region. A mouse is sensed along the
way. (d) Robot herds both the dog and the mouse to the dogs meeting region. (e) Mouse is herded to its meeting region. A dog is sensed. (f) Mouse stays at its
meeting region and the dog is being herded.

guaranteed to drive a robot with a more complex model from one
region to an adjacent one without going through any other re-
gion, we obtain the same guarantees of correctness, for example,
we can handle robots with car-like nonholonomic constraints by
employing the controllers in [36]. Note that we can only guar-
antee correctness and completeness if there exists a discrete
abstraction of the workspace and a set of bisimilar controllers
corresponding to the robot dynamics and the abstraction.

Furthermore, some of the assumptions made in this paper,
e.g., the partition of the workspace, can be relaxed. For this ap-
proach, we need to encode possible motion of the robot using
binary propositions that correspond to the activation of differ-
ent controllers. Whether such controllers correspond to moving
between two regions in a partition of the workspace or moving
between overlapping regions does not change the synthesis and
execution of the automaton. The only difference would be that
one would have to be careful when specifying that areas that
may now belong to the domain of several controllers should
not be reached. Relaxing the partition requirement allows us to
use controllers for convex-bodied nonholonomic robots, such as
in [9], as we have done in [38].

VII. SINGLE-ROBOT SCENARIO—ANIMAL HERDING

One of the strengths of this approach is the ability to gener-
ate a complex behavior from a large set of simple instructions
or rules. The automatically generated controller is guaranteed
to obey all given rules, as long as they are consistent, as op-
posed to the handwritten code that may contain functional,
structural, and design-software bugs. Furthermore, if the set

of rules is inconsistent, the algorithm will stop without creating
the controller, which indicates that the desired rule set cannot be
implemented.

This scenario, which is presented as an example for a complex
task, includes a robot that is moving in a workspace that has 35
connected regions, as shown in Fig. 5. The robot’s goal is to herd
dogs, cats, and mice to their respective meeting points, which
are denoted in the figure by Dogs, Cats, and Mice. In order to
do that, the robot can show a bone to the dogs, trail a piece
of yarn for the cats, and play a flute for the mice. The animals
can appear anywhere in the workspace other than the meeting
places, and while an animal is being herded, it might choose
not to follow the robot and, thus, may no longer be sensed by
the robot. We impose further restrictions on the behavior of the
robot, which are as follows.

1) The robot cannot herd a dog and a cat simultaneously.
2) The robot cannot herd a cat and a mouse simultaneously.
3) Unless there are no animals, the robot must herd at least

one animal at any given time.
4) The robot cannot herd a cat through “NoCats” regions.
5) The robot cannot herd a mouse through “NoMice.”
6) The robot must start herding a dog when it senses one,

unless it is already herding a cat.
7) When sensing a dog and a cat, the dog is to be herded.
8) When sensing a cat and a mouse, the cat is to be herded.
9) The robot must start herding a cat when it senses one,

unless it is already herding a mouse or it senses a dog.
10) The robot should continue herding an animal until it

reaches its meeting region or it disappears and should
not switch between animals randomly.
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In the original set of rules, restriction 9 stated that “the robot
must start herding a cat unless it is already herding a mouse”
without any mention of a dog that may be spotted at the same
time as the cat. This is inconsistent with requirements 1 and 6,
and therefore, no automaton was generated.

In order to encode this behavior, the set of sensor propositions
was X = {sdog , scat , smouse}, and the set of robot propositions
was Y = {r1 , . . . , r35 , a

bone , ayarn , aflute}.3 For lack of space,
we omit the full LTL formula, and only demonstrate how some
of the requirements were encoded.

All the aforementioned restriction are encoded as part of ϕs
t ,

and here, we show restrictions 1, 3, 5, and 6 as


∧
�(¬(©abone ∧©ayarn))∧
�((©sdog ∨©scat ∨©smouse)
⇒ (©abone ∨©ayarn ∨©aflute))∧
�(©aflute ⇒ ¬© r20))∧
�((©sdog ∧ (¬(ayarn ∧©scat))) ⇒ ©abone)

where region 20 is the “NoMice” region.
The robot must search the space for animals, and once it

encounters one, it must herd it to its meeting region. This re-
quirement is encoded as part of ϕs

g , where the search of each
region is encoded as

�♦(ri ∨ sdog ∨ scat ∨ smouse)

which means that region i should be searched unless an animal
is sensed, and the herding is encoded as

�♦(r1 ∨ ¬abone)
∧

�♦(r32 ∨ ¬ayarn)
∧

�♦(r36 ∨ ¬aflute)

which means that the robot should go to the dogs’ (cats’ or
mice’s) meeting region if the robot is showing a bone (trailing
yarn or playing the flute), i.e., herding a dog (cat or mouse).

Fig. 5 shows a sample run of the generated automaton. The
robot starts by searching the space. It encounters a cat (a) and
proceeds to trail yarn, indicated by the large (blue) dots. It herds
the cat to its meeting region (b), while ignoring dogs that are
present along the way. Furthermore, the robot causes the cat to
reach its meeting region without going through the “NoCats”
regions. Immediately after leaving the cats’ meeting region, the
robot encounters a dog and proceeds to herd it to its meeting
region by showing it a bone, indicated by small (red) dots.
Along the way, it finds a mouse (c) and starts playing the flute
as well, which is indicated by the light (red) stars. The robot,
now herding both a dog and a mouse, first goes to the dogs’
meeting region (d), drops the dog there, and continues, with
the mouse, to the mice’s meeting region. Along the way, it sees
another dog (e), and after dropping the mouse off, it takes the
dog to its meeting place (f).

VIII. MULTIROBOT SCENARIOS

This section illustrates that our framework naturally captures
multirobot scenarios where one robot becomes part of the en-
vironment of another robot. In a natural decentralized model,

3When coding this example, the regions are encoded as binary vectors instead
of separate proposition. Here, we continue with this notation for clarity.

each robot (or subgroup of robots) is tasked by its own formula
ϕi , resulting in its own synthesized automaton. In this case, the
coordination between robots (groups) can be done using sensor
propositions.

We illustrate this approach with the following example. In the
workspace shown in Fig. 2, two robots are placed in regions 1,
2, or 3, independently. The desired behavior is “First, Robot 1
goes looking for Nemo in regions 1, 3, 5, and 8, while Robot
2 stays in place. Once Robot 1 finds him, it stays in place and
turns on its camera. Robot 2 then comes and joins them, and
turns on its light. If Nemo disappears again, Robot 1 resumes
the search with the camera OFF, and Robot 2 stays where it is,
but turns OFF its light.”

Example 4: We write one formula for each robot, thus
creating a separate automaton for each robot. Note that
the behavior of Robot 1 is identical to the behavior of the
robot in Example 1. Following that example, we define one
environment proposition sNemo and 13 robot propositions
{r1 , . . . , r12 , a

CameraON}, which refers to the robot’s location
and action. In order to allow communication between the
robots (allowing Robot 1 to inform Robot 2 whether Nemo
was found and where), we add four more robot propositions:
{aSendNemoIn1 , aSendNemoIn3 , aSendNemoIn5 , aSendNemoIn8}.
These propositions encode the action of transmitting a message
saying that Nemo was found in a certain region. Since the
motion of Robot 1 and activation of the camera is the same as
the behavior of the robot in Example 1, formula ϕ1 encoding
Robot 1’s behavior is ϕ in this example, with additional
subformulas that take care of the new robot propositions.

The requirement that proposition aSendNemoIni is true, i.e.,
the robot sends a message that Nemo is in region i, if and only
if Robot 1 is in region i and it senses Nemo, is encoded as part
of ϕs

1 as

ϕs
1 =




ϕs
i , (from Example 1)

ϕs
t , (from Example 1)∧
�((r1 ∧©sNemo) ⇔ ©aSendNemoIn1)∧
�((r3 ∧©sNemo) ⇔ ©aSendNemoIn3)∧
�((r5 ∧©sNemo) ⇔ ©aSendNemoIn5)∧
�((r8 ∧©sNemo) ⇔ ©aSendNemoIn8)

ϕs
g , (from Example 1).

For the formula ϕ2 , which describes the desired behav-
ior of Robot 2, we define four environment propositions
{sNemoIn1 , sNemoIn3 , sNemoIn5 , sNemoIn8}, which indicate that
Nemo was found in regions 1, 3, 5, and 8, respectively.
Similar to Example 1, we define 13 robot propositions
{r1 , . . . , r12 , a

LightON} that refer to the robot’s location and
action. For ϕe

2 , we make the following assumptions about the
environment: Initially, Nemo is not sensed; hence, initially, all
environment propositions are set to False; furthermore, since
Nemo can only be in one place at a time, at most, one environ-
ment proposition can be True at any time. These assumptions
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are encoded in ϕe
2 as

ϕe
2 =




(¬sNemoIn1 ∧ ¬sNemoIn3 ∧ ¬sNemoIn5 ∧ ¬sNemoIn8)∧
�((¬© sNemoIn1 ∧ ¬© sNemoIn3

∧¬© sNemoIn5 ∧ ¬© sNemoIn8 ) ∨
(©sNemoIn1 ∧ ¬© sNemoIn3

∧¬© sNemoIn5 ∧ ¬© sNemoIn8) ∨
(¬© sNemoIn1 ∧©sNemoIn3

∧¬© sNemoIn5 ∧ ¬© sNemoIn8) ∨
(¬© sNemoIn1 ∧ ¬© sNemoIn3

∧© sNemoIn5 ∧ ¬© sNemoIn8) ∨
(¬© sNemoIn1 ∧ ¬© sNemoIn3

∧¬© sNemoIn5 ∧©sNemoIn8))∧
�♦(True).

The desired robot behavior is encoded in ϕs
2 . Initially, Robot

2 starts somewhere in region 1, 2, or 3 with the light OFF, and
hence

ϕs
i2

=




(r1 ∧i∈{2,···,12} ¬ri ∧ ¬aLightON)∨
(r2 ∧i∈{1,3,···,12} ¬ri ∧ ¬aLightON)∨
(r3 ∧i∈{1,2,4,···,12} ¬ri ∧ ¬aLightON).

The first two lines of ϕs
t2

describe the transitions and mu-
tual exclusion, as discussed before. Line 3 states that whenever
Robot 2 is in region i ∈ {1, 3, 5, 8} and Nemo is sensed there,
it should stay where it is. Line 4 forces Robot 2 to have the light
ON whenever it is region i and Nemo is sensed there. Line 5
requires the light to be OFFwhenever Robot 2 is not in the same
region as Nemo. The last subformula requires Robot 2 to stay
where it is whenever Nemo is not sensed by Robot 1.

ϕs
t2

=




Possible Transitions Between Regions∧
Mutual Exclusion of Regions∧
i∈{1,3,5,8} �((ri ∧©sNemoIni) ⇒ ©ri)∧
i∈{1,3,5,8} �((©ri ∧©sNemoIni) ⇒ ©aLightON)∧
�((¬(∨i∈{1,3,5,8}(©ri ∧©sNemoIni))) ⇒
¬© aLightON)∧
�( (∧i∈{1,3,5,8}¬© sNemoIni) ⇒
(∧i∈{1,...,12}(ri ⇔ ©ri))).

The final part of the formula ϕs
g2

requires Robot 2 to visit
region i ∈ {1, 3, 5, 8} infinitely often if Nemo is sensed in that
region

ϕs
g2

=
∧

i∈{1,3,5,8}
�♦(sNemoIni ⇒ ri).

The synthesized automaton for Robot 1 has the same number
of states and the same transitions as the automaton in Example
2. The only difference is that in this example, the robot propo-
sitions aSendNemoIn5 , i ∈ {1, 3, 5, 8} are added as labels to the
relevant states. The synthesized automata for Robot 2 satisfying
ϕ2 contains 55 states and is omitted here.

A possible execution of these automata is depicted in Fig. 6,
where the robots start in regions 3 and 2, respectively. Robot 1

Fig. 6. Possible run of the multirobot scenario of Example 4. (a) Robot 1 is
searching for Nemo, and Robot 2 stays in region 2. (b) Robot 1 finds Nemo in
region 5, and Robot 2 goes to join him. (c) Robot 2 joins Robot 1 in region 5
and turns the light ON. (d) Nemo disappears, and therefore, Robot 1 resumes the
search, and Robot 2 stays where it is.

begins by searching for Nemo, while Robot 2 stays in region 2,
as seen in Fig. 6(a). In Fig. 6(b), Robot 1 finds Nemo in region
5 and, therefore, stays there and turns on its camera, which is
indicated by the magenta squares. Finding Nemo in region 5
causes Robot 2 to move to that region as well. When Robot 2
arrives in region 5, as depicted in Fig. 6(c), it turns on its light,
which is indicated by the black triangles. Finally, in Fig. 6(d),
Nemo disappears. This causes Robot 1 to turn camera OFF and
resume the search, while Robot 2 turns off the light and stays in
place.

When considering multirobot behaviors, here, we assume that
there are no timing or concurrency constraints, such as two
robots that must reach a room at the exact same time. Such
constraints are difficult to guarantee in a purely decentralized
framework and might require a different approach.

IX. DISCUSSION

In this paper, we have described a method of creating con-
trollers that drive a robot, or a group of robots, such that it
satisfies a high-level user-specified behavior. These behaviors
are expressed in a subset of LTL, and can capture reactive tasks
in which the robot’s behavior depends on the local information
sensed from the environment during runtime. These behaviors
are guaranteed to be satisfied by the robots if the environment
in which they are operating behaves “well,” i.e., it adheres to
the assumptions made about it. We have shown that many com-
plex robot behaviors can be expressed and computed, both for
a single robot and for multiple robots.

Writing LTL formulas, especially ones that conform to
the structure presented in Section III-B, requires some ex-
perience and is not always intuitive. Therefore, we plan to
explore more user-friendly interfaces, as well as linguistic
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formalisms, that can be easily translated to the required logic
representation.

Another issue that we wish to address is that of computability.
As mentioned in Section IV, the synthesis algorithm is polyno-
mial in the state space, but this space may be exponential in the
number of inputs and outputs. Currently, we can generate an
explicit representation of an automaton that has 50 000 states
in about an hour (an automaton with a few hundred states takes
a few seconds to compute) on a regular desktop; however, by
moving to a symbolic representation and examining hierarchical
approaches, we believe that we can tackle problems of a larger
scale.

Finally, we intend to experiment with different controllers
and various robots in order to gain a good intuition re-
garding the variety of tasks and the interplay between the
robot dynamics, its behavior, and the appropriate discrete
abstractions.
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