
JOURNAL OF COMPLEXITY 4, l-11 (1988)

Probabilistic Satisfiability

GEORGE GEORGAKOPOULOS,” DIMITRIS KAVVADIAS,*
AND CHRISTOS H. PAPADIMITRIOU*-t

*Division of Computer Science, National Technical University of Athens,
Athens, Greece: and tDepartments of Computer Science and Operations Research,

Stanford University, Stanford, California 94305

We study the following computational problem proposed by Nils Nilsson: Sev-
eral clauses (disjunctions of literals) are given, and for each clause the probability
that the clause is true is specified. We are asked whether these probabilities are
consistent. They are if there is a probability distribution on the truth assignments
such that the probability of each clause is the measure of its satisfying set of
assignments. Since this problem is a generalization of the satisfiability problem for
propositional calculus it is immediately NP-hard. We show that it is NP-complete
even when there are at most two literals per clause (a case which is polynomial-
time solvable in the non-probabilistic case). We use arguments from linear pro-
gramming and graph theory to derive polynomial-time algorithms for some inter-
esting special cases. 8 1988 Academic Prers. Inc.

1. INTRODUCTION

Most approaches to decision-making in a complex, realistic environ-
ment involve the notion that a fact (or logical sentence) is true with a
certain probability. These approaches are either informal, empirical, and
non-rigorous as in expert systems (Nau, 1983; Prade, 1985), or rigorous in
a way that diverges from probability theory (Zadeh, 1971). Recently,
Nilsson proposed a rigorous framework for dealing with the probability of
logical sentences (Nilsson, 1986). Repeating his example, the question we
wish to formalize and answer is this: If the probability of proposition A is
.8 and the probability of B is .3, can the probability of A + B be .6?’ And
what does this mean exactly?

I It follows from the appropriate formalism explained below that the answer is “no.”

0885-064X/88 $3.00
Copyright 0 1988 by Academic Press, Inc.

All rights of reproduction in any form reserved.

2 GEORGAKOPOULOS, KAVVADIAS, AND PAPADIMITRIOU

In general, we have a set S = {C,, . . . , C,} of m logical sentences,
with each sentence a clause, that is the disjunction of one or more literals.
Each literal is one of II propositional variables xl, . . . , x,, or its nega-
tion. We are also given m probabilities 0 I pI , . . . , pm I 1, one for each
clause. These probabilities may be inconsistent (for example, if all proba-
bilities are 1, and the conjunction of the clauses is unsatisfiable). To define
consistency, Nilsson considers the event space consisting of all 2” truth
assignments. A probability distribution is a set of 2” probabilities rj 2 0, j
=)...) 1 2” adding up to 1. We say that a probability distribution 7r
satisfies the given clauses and probabilities if the following holds: for each
i= 1,. . . , m, the sum of the Tj’S over all truth assignments aj that
satisfy Ci equals pi. This can be written algebraically by defining an m x

2” matrix A such that the i,jth element is 1 if aj satisfies C,, and zero
otherwise. Then the requirement above can be rewritten as

The problem of probabilistic satisfiability (PSAT) is to determine whether
such a rr exists.

In the linear program above, as in the rest of this paper, we have
omitted the requirement that xj’l I rj = 1, by assuming that we add to S the
extra clause Co = true (or Co = (x, v X1)), satisfied by all truth assign-
ments, and with probability pa = 1. It is clear that we can omit from A
columns that are all zero (truth assignments that falsify all clauses) or are
repeated (as is done in Nilsson, 1986), but this does not in general result in
substantial savings. In this paper we study PSATfrom the point of view of
eficient algorithms and computational complexity. Note that in practice
we may wish to solve a different problem, such as finding upper and lower
bounds on the admissible values for the probability of a clause, fixing the
other probabilities (this is called probabilistic entailment in Nilsson,
1986). However, it is clear that these variants can be trivially reduced to
PSAT, and thus the latter problem deserves some serious study.

Since PSAT is stated in terms of the existence of a vector which is
exponentially long (and with entries of unspecified precision), its a priori
complexity seems disappointingly high (for example, it is not immediate
that the problem is in NP). However, it follows from the theory of linear
programming (from the fact that if a solution to a linear program exists,
then a basic feasible solution exists), or equivalently from Caratheodory’s
theorem, that PSAT is in NP. Also, since PSAT is a generalization of the
satisfiability problem for propositional logic (called SAT (Garey and John-
son, 1976), which is the special case with all pi’s equal to l), it is immedi-
ate that PSAT is NP-complete even in the special case in which all clauses

PROBABILISTIC SATISFIABILITY 3

consist of three literals or less. In fact, by a reduction from graph coloring
we show that PSAT remains NP-complete even in a special case in which
the ordinary SAT problem is polynomially solvable, namely, when all
clauses consist of one or two literals (this problem is called 2PSAT). In
fact, our proof established the NP-completeness of another interesting
formulation, in which we are given probabilities for certain variables,
together with certain conditional probabilities. (This problem also has a
linear programming formulation, via the quotient formula for conditional
probabilities.)

On the positive side, we develop a general technique for attacking
PSAT. We show that, under very general conditions, PSAT can be re-
duced to another important generalization of SAT, in which we are given
weights for the clauses, and we are required to find the truth assignment
which maximizes the total weight of all satisfied clauses; this problem is
called MAXSAT. Our main observation is that MAXSAT is a naturaZly
dual problem to PSAT. The reduction is via the ellipsoid algorithm for
linear programming (see, for example, Khachian, 1979; Papadimitriou and
Steiglitz, 1982). Naturally, MAXSAT is known to be NP-complete even in
the case of two literals per clause (2MAXSAT) (Garey and Johnson,
1979), but still this result is of some value. The reason is that MAXSAT is
a problem which is much more elementary and intuitive than PSAT, a
more suitable target for solution by specialized algorithms and heuristic
approaches. In this paper we describe one success along these lines: We
give a polynomial-time algorithm for the special case of 2MAXSAT in
which the graph with nodes as the literals and with edges standing for the
clauses is outerplanar. Our algorithm employs (i) the ellipsoid algorithm,
(ii) a reduction from 2PSAT to MAXCUT (the problem of finding the
maximum cut in a weighted graph), and (iii) a polynomial-time algorithm
(appropriately modified) for the MAXCUT problem for planar graphs
(Orlova and Dorfman).

The rest of this paper is organized as follows: In Section 2 we show that
PSAT is in NP, and that even 2PSAT is NP-complete. In Section 3 we
show the reduction to MAXSAT, and in Section 4 the algorithm for the
outerplanar case of 2PSAT. Finally, in Section 5 we discuss further open
questions, as well as a promising algorithmic approach to ZPSAT using
linear programming and heuristics for the maximum cut problem.

2. NP-COMPLETENESS

GivenasetS={Ci,. . . , C,} of clauses on n propositional variables
Xl,. * . 7x,, letusdefineA(S)tobethem + 1 X 2”0-lmatrixwithl’son
the zeroth row, and for i > 0, A, = 1 iff the jth truth assignment on x1,

4 GEORGAKOPOULOS, KAVVADIAS, AND PAPADIMITRIOU

xn satisfies C;. PSAT is the following computational problem:
bivkri a set S = {C,, . . C,} of clauses and m probabilities 0 5 pi 5 I,
i=l,. . .) m, is there’a’2”-vector x 2 0 such that AT = p? (Here we
took p. = 1.)

PROPOSITION 1. PSAT is in NP.

Proof. If a given instance of PSAT has a solution, then by linear
programming theory (e.g., Papadimitriou and Steiglitz) there is a set of m
+ 1 columns of A (truth assignments) such that the resulting m + 1 x m +
1 system has a positive solution. These columns can serve as a certifi-
cate. n

COROLLARY 1. If a satisfying probability distribution for an instance
of PSAT exists, then there is one with at most m + 1 non-zero probabili-
ties, and with entries rationals with total precision O(m2).

Also, since the satisfiability problem for propositional logic is a special
case of PSAT, we have:

COROLLARY 2. PSAT is NP-complete.

Interestingly, we can show that PSAT remains NP-complete in the
special case, called 2PSAT, in which each clause involves at most two
literals:

THEOREM 1. 2PSAT is NP-complete.

Proof. We shall reduce the problem of graph 3-colorability (Garey
and Johnson, 1979) to PSAT.= In that problem we are given a graph G =
(V, E) and we are asked whether there is a function c : V+ {I, 2, 3) such
that for each edge [u, u] E E we have c(u) # c(u). Given such a graph we
construct an instance of 2PSAT as follows: We have three variables uI,
~2, u3 for each vertex u E V; intuitively, uj stands for the statement that
vertex u is colored by color j. As for clauses, there are 61Vj + 31EI of
them. In particular, for each vertex u we have a set S(U) of three clauses
(u,), (uZ), (Us), each with probability 4, and a set T(u) of three more ((Ei v
&), (U2 v &), and (i& v Ui)) with probability 1. Finally, for each edge [u, VI
E Ewe have a set Q(e) of three clauses ((Ui v Ui), (E2 v i&), and (& V S))
with probability also 1. This completes the construction of the instance of
2PSAT.

We claim that the instance of 2PSAT is satisfiable iff the given graph is
3-colorable. Suppose that the instance is satisfiable. Recall that p(u, v u2
v u3) = pw + Pb2) + Ph3) + P(G v d + PG2 v i3) + PG3 v 6) - 3 +
p(u, A u2 A us). From the probabilities for T(u) it follows that the last term

* The reduction is analogous to the one used in Honeyman et al. (1980) to show that the
universal instance problem for relational databases is NP-complete.

PROBABILISTIC SATISFIABILITY 5

is 0, and thus the right-hand side is 1. It follows that in any truth assign-
ment with positive nj (of which there must be at least one), exactly one of
the aj variables ul, 4, ~3, for each node U, is true. Suppose then that we
define c(u) to be k, whenever aj assigns true to uk . We claim that this is a
legal coloring, that is, c(u) # c(u) for each [u, u] = e E E. However, this is
immediate because of the clauses in Q(e) with probability 1.

Conversely, if a legal 3-coloring c of G exists, define the truth assign-
ment a in which uk is true iff c(u) = k. Assign to this assignment a 7~ off.
Consider now the colorings c’ and c” resulting by cyclically rearranging
the colors of c, and the corresponding assignments a’ and a”, also with
probability g. All other assignments have zero probability. It is clear that
the resulting vector 7~ satisfies the given instance of PSAT. n

In another variant of PSAT we are given certain conditional probabili-
ties p(x 1 y) for literals x and y ; the problem is, again, to determine whether
these are consistent. It is clear that this problem (called CONDSAT) can
also be formulated as a linear program, using the formula p(x 1 y) = p(x A
y)lp(y) and multiplying by the (non-zero) p(y). Our proof of the theorem
also establishes the following fact (by expressing p(X v .V) = I as
P(XlY) = 0):

COROLLARY 3. CONDSAT is NP-complete.

3. REDUCTION TO MAXSAT

PSAT is the problem of determining whether the linear program ATT =
p, 7~ E- 0 has a solution. The problem with this linear program is that it
involves too many variables (an exponential number). However, linear
programming duality (see, e.g., Papadimitriou and Steiglitz, 1982)
shows the following important fact:

LEMMAI. Arr = p, rr 2 0 has a feasible solution ifand only ifATx 5 0,
p’x zz 1 has a feasible solution.

The advantage of the dual formulation in the lemma is that the x sought
is an m + l-vector, subject to an exponential list of linear inequalities.
This invites an attack via the ellipsoid alogrithm (Khachian, 1979; see
Papadimitriou and Steiglitz, 1982, for an exposition). In that algorithm a
feasible solution of a linear program is found by a sequence of iterations.
In the beginning of the ith iteration we are at an infeasible point xi. We
then choose one of the inequalities violated by xi, and based on it we
compute another point xi+‘. After enough iterations, either a feasible
point has been reached, or we know that none exists. The advantage of
this algorithm is that an explicit list of the inequalities is not necessary. As

6 GEORGAKOPOULOS,KAVVADIAS, AND PAPADIMITRIOU

was pointed out by Karp and Papadimitriou (1982) among others, all we
need is a procedure which, given a point x, returns an inequality of the
linear program violated by x. Such a procedure is called a generator of
violated inequalities.

LEMMA 2. (Karp and Papadimitriou, 1982). A feasible solution of an
M x N linear program Ax I b with integer coefficients with maximum
subdeterminant 2L can be found in O(N3L) iterations, each involving a
call of the generator of violated inequalities for the program, and O(N*L)
more operations.

In our case, since the dual of the linear program in PSAT is 2” x m and
has 0 - 1 coefficients, the number of iterations is O(m*log m), and the
number of operations per iteration O(m310g n).

The important question is how can we develop a generator of violated
inequalities for the dual of PSAT. One such inequality is p’x 2 1, which
can be easily treated separately. However, there are exponentially many
other inequalities in ATx 5 0, one for each truth assignment of the n
variables. Such an inequality is violated by an m + l-vector x iff the sum
of the xi’s corresponding to the clauses satisfied by the truth assignment
is larger than --x0. That is, in order to find whether a violated inequality
exists, we must do the following: We consider the components of x as
weights (possibly negative) for the clauses. We wish to determine whether
there is a truth assignment which satisfies a set of clauses with total
weight greater than x0. However, this is an instance of a well-known
problem, called MAXSAT (Garey et al., 1976). In MAXSAT we are given
m clauses on n variables, for each clause Ci an integer weight IV,, and a
goal W; we are asked whether there is a truth assignment a of the vari-
ables so that the sum of the weights of all clauses satisfied by a is at least
W. Hence we have shown the following result:

THEOREM 2. An instance of PSAT with m clauses and n variables can
be solved in O(m*log m) iterations, each of which involves solving (a) an
instance of MAXSAT on the same clauses and weights integers with
O(m) bits, and (b) O(m310g m) more operations.

COROLLARY 4. PSAT restricted to some class of clauses is polyno-
mial-time reducible to MAXSAT on the same class of clauses.

4. OUTERPLANAR 2PSAT

Consider a graph with weights on its edges. A cut in this graph is a
partition of its nodes in two subsets S and T. The weight of the cut is the
sum of the weights of the edges which have endpoints in both S and T.

PROBABILISTIC SATISFIABILITY 7

MAXCUT is the problem of determining, given a weighted graph and an
integer B, whether there is a cut with weight B or more.

2MAXSAT (maximum weight satisfiability with at most two literals per
clause) can be polynomial-time reduced to MAXCUT. The basic obser-
vation is that any triangle with unit weights on the edges is going to
contribute to the maximum cut either zero (if all three nodes are in the
same set) or two (in all other situations). Given an instance of 2MAXSAT
(a set S of clauses Cl, . . . , C, with at most two literals each, involving
the variables xl . . . , x,,, weights wl, . . . , w, for the clauses, and a
goal W), we construct a weighted graph G = (V, E, c) and bound B as
follows: The nodes of G are {xi, Xi : i = I, . . . , n} U {F}, that is, all
literals and the node F (for “false”). As for edges, G has the edges {[xi, Xi]
:i=l,. . . , n}, each with a large weight M (say, M is 4n2 times the
largest absolute weight of a clause). Intuitively, this forces opposite lit-
erals to be on the opposite side of any sensible cut. Then, the side that
contains F is going to be the “false” side. If ((Y) is a (one-literal) clause
with weight w, we add to G an edge [F, (-u] with weight w. Finally, if (a! v
/3) is a two-literal clause with weight w, we add to G the triangle [F, (~1, [F,
p], [a, p], all edges with weight w/2. We choose the bound B to be nM +
W, where W is the desired weight in the instance of MAXSAT.

We claim that the constructed graph has a cut of weight B or more iff
there is a truth assignment that satisfies a set of clauses of total weight W
or more. Suppose that such a cut S, T exists, where F E S. Since the
bound B is attained, all n edges of weight M must contribute to the cut.
The remaining weight of W is contributed by edges corresponding to
clauses. Each clause, not all literals of which belong to S, contributes its
weight to the total weight of the cut. Let us consider the truth assignment
in which all nodes in S are false. It is clear that this truth assignment
satisfies all clauses that contribute their weight to B. It follows that this
assignment satisfies clauses with total weight at least B - nM = W. The
converse is now trivial. Hence we have shown:

LEMMA 3. 2MAXSAT is polynomially transformable to MAXCUT.

MAXCUT is known to be NP-complete (Garey and Johnson, 1979).
Another important fact about MAXCUT was first pointed out in (Orlova
and Dorfman). They showed that the problem can be solved in polynomial
time for planar graphs. We need here a slightly stronger version to cover
the case of negative weights.

3 This was the reduction first used in (Garey et al., 1976) to show that the MAXCUT
problem is NP-complete; it is a pleasure to employ in the pursuit of a more positive cause a
reduction originally used to prove NP-completeness.

8 GEORGAKOPOULOS, KAVVADIAS, AND PAPADIMITRIOU

LEMMA 4. MAXCUT for planar graphs G = (V, E, w) with positive
and negative weights can be solved in O([V14) time.

Sketch. We consider the dual graph G* = (V*, E, w) of G (the edges
of G and G* are in a natural one-to-one correspondence, hence the
weights remain the same). Since nodes of G are faces of G*, sets of nodes
of G correspond to sets of faces of G *. Thus, any cut of G corresponds in
a natural way to a set of edge-disjoint cycles in G*, or, equivalently, to a
subgraph of G* with even degree at all nodes. Thus, the task of finding the
maximum cut in G is identical to finding the Eulerial subgraph of GD
which has the largest total weight. In graphs with positive weights this is
equivalent to finding a minimum-weight complete matching of the odd-
degree nodes (the “Chinese postman problem”), but negative weights
complicate the task a little.

This latter problem can be solved in any weighted graph by solving the
b-matching problem (see, e.g., Papadimitriou and Steiglitz) in a related
graph. In the b-matching problem we are given a weighted graph and, for
each node v, its degree requirement b(v). In fact, the graph may have
multiple edges and self-loops, where inclusion of a self-loop to the sub-
graph adds two to the degree of the node involved. We are asked to find
the subgraph with the given degrees which has the largest possible total
weight. This problem can be solved by matching techniques in O([& b(v)
deg(v)12) time. (Note: Although the b-matching problem is usually posed
as a minimization problem, this is hardly a difficulty, since any feasible
subgraph has a fixed number of edges (the sum of all b’s divided by two),
and thus we can change the weights by subtracting from a suitably large
number; for the same reason negative weights are no problem.)

Given a weighted graph G = (V, E, M’) in which we are to find the
heaviest Eulerian subgraph, we construct a new one G’ = (V, E’, w’) and
a degree requirement b as follows: For each node v of degree d we add
[d/21 self-loops [u, v] of weight zero. The degree requirement for the node
is b(v) = 2ld/2]; all weights are kept the same. It is quite easy to see that
there is a one-to-one, weight-preserving correspondence between Eu-
lerian subgraphs of G and b-matchings of G’ (by adding an appro-
priate number of zero-weight loops for each node). It follows that the
problem of finding the maximum-weight Eulerian subgraph of a graph
can be solved in O([x, deg?(v)]‘) time, which is O(lVl”) for planar
graphs. n

A graph is outerplanar if it is planar, and furthermore it can be embed-
ded in the plane so that all of its nodes lie on the same face. Suppose that
we are given a set S of clauses, with at most two literals per clause. We
define the graph of S, G(S), as follows: G(S) has as nodes the literals {xi,
Xi:i=l,. . . , n} of the clauses, and two kinds of edges: First, the edges
{[Xi,Xi]:i=l,. . . , n}; and finally, the edges of [(Y, /3], where (Y and p

PROBABILISTIC SATISFIABILITY 9

are literals appearing in the same clause. We say that a set S of clauses is
outerplanar if G(S) is outerplanar.

THEOREM 3. 2PSAT on outerplanar sets of clauses can be solved in
polynomial time.

Proof. If G(S) is outerplanar, then the graph constructed in the reduc-
tion from 2MAXSAT to MAXCUT in Lemma 3 is planar (we simply place
the new node F on the Hamiltonian face and connect it with all literals).
Therefore, the corresponding instance of MAXCUT can be solved in
O(n4) time by Lemma 4. Finally, the ellipsoid algorithm which reduces
2PSAT to 2MAXSAT (Theorem 2) runs in O(m*log m(n4 + m310g m)) =
O(n610g n) time (since for outerplanar instances m is linear in n). W

An interesting consequence of this result is that 2PSAT is polynomial
also in the case in which there are no “circular connections” between the
Boolean variables. Formally, define the summary graph of a set S of
clauses to have the variables as nodes, and an edge between x and y if x
(or its negation) appear in the same clause as y (or its negation). We say
that an instance of PSAT is acyclic if its summary graph is a tree.

COROLLARY 5. 2PSAT for acylic sets of clauses can be solved in
polynomial time.

Prooj: The key observation is that any acyclic set of clauses is outer-
planar, or can be made so easily. If a variable x has degree d > 1 in the
summary graph, we replace it with the variables xl, . . . , xd, with the
additional clauses (Xi v x2), (X2 v x3), . . . , (& v x1), all with probability
one, and from now on variable xi is going to appear in the same clause as
the jth neighbor of x in the summary graph. The graph of the resulting set
of clauses has the same tree structure as the summary graph, except that
each internal node of the tree is replaced by a cycle of length 2d, and each
edge (pair of variables appearing in a clause together) is replaced by edges
joining all pairs of literals that appear together in a clause. However, we
can assume that there are going to be at most three such appearances. The
reason is the following: If all four possible clauses involving the two
variables appear, then the probability of the fourth is simply 3 minus the
sum of the others, and thus the fourth clause can be omitted. The three
edges which replace the tree edge can then be easily drawn so that the
resulting graph is outerplanar. n

5. DISCUSSION

Early results indicate that our approach can be the basis of truly practi-
cal algorithms for a wide range of 2PSAT instances. The idea is to apply

10 GEORGAKOPOULOS,KAVVADIAS, AND PAPADIMITRIOU

simplex to the linear program. Naturally, we cannot store and manipulate
the whole tableau. We can store, however, the m x m basis, and bring
each time in the basis the column with most negative marginal cost (this
technique is called column generation). Interestingly, finding the column
with a negative marginal cost is again an instance of MAXSAT. For
outerplanar or acyclic problems we can do this in polynomial time. The
algorithm is no longer guaranteed to be polynomial, but our early compu-
tational experience shows considerable promise. We can even attack
more general instances of PSAT, by using heuristics for MAXSAT to
prove inconsistency. Our computational methods and experience will be
reported in (Kavvadias, 1987).

There are many other open questions: Under what conditions is matrix
A totally unimodular? Can we solve planar (not outerplanar) 2PSAT in
polynomial time? Can we use the same approach to solve CONDSAT, or
even mixed sets of clauses and conditionals? Can we apply this approach
to the problem of inferring an n-fold distribution from a set of marginals?
Interestingly, the acyclic case of this problem is known to be more well-
behaved in that problem as well, and a linear programming formulation is
still possible. The case in which the random variables are binary and the
marginal distributions are defined on pairs of variables is a special case of
2PSAT, not known to be NP-complete.

ACKNOWLEDGMENTS

We thank Foto Afrati, Nils Nilsson, and John Tsitsiklis for helpful discussions on this and
related problems. This research was partially supported by the National Science Founda-
tion.

REFERENCES

GAREY, M. R., AND JOHNSON, D. S. (1979), “Computers and Intractability: A Guide to the
Theory of NP-Completeness,” Freeman, New York.

GAREY, M. R., JOHNSON, D. S., AND STOCKMEYER, L. J. (1976) Some simplified NP-
complete problems, Theor. Comput. Sci. 1, 237-267.

GR~TSCHEL, M., LovAsz, L., AND SCHRIJVER, S. (1980), “The Ellipsoid Method and Its
Consequences in Combinatorial Optimization,” Technical Report, University of Bonn.

HONEYMAN, P., LADNER, R. E., AND YANNAKAKIS, M. (1980), Testing the universal in-
stance assumption, Znf. Process. Let?. 10(l), 14-19.

KARP, R. M., AND PAPADIMITRIOU, C. H. (1982), On linear characterization of combinato-
rial optimization problems, SIAM J. Comput. 11(4), 620-632.

KAVVADIAS, D. (1987), Ph.D. dissertation in preparation, University of Patras.
KHACHIAN, L. G. (1979), A polynomial algorithm for linear programming, Dokl. Akad.

Nauk. SSSR 244:5, 1093-1096.

PROBABILISTIC SATISFIABILITY 11

NAU, D. S. (1983), Expert computer systems, Comput. Sum., 63-85.
NILSSON, N. (1986), Probabilistic logic, Arfif Intel/.
PAPADIMITRIOU, C. H., AND STEIGLITZ, K. (1982), “Combinatorial Optimization: Algo-

rithms and Complexity,” Prentice-Hall. Englewood Cliffs, N.J.
PRADE, H. (1985), A computational approach to approximate and plausible reasoning with

applications to expert systems, IEEE Trans. PAM 7(3).
TSITSIKLIS, J. N. (1986), Personal communication, February.
ZADEH, L. A. (1971), Fuzzy sets, Inform. Contr. 8, 338-353.

