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Abstract

Medical image segmentation remains a difficult, time-consuming task; currently, liver 

segmentation from abdominal CT scans is often done by hand, requiring too much time to 

construct patient-specific treatment models for hepatocellular carcinoma. Image segmentation 

techniques, such as level set methods and convolutional neural networks (CNN), rely on a series of 

convolutions and nonlinearities to construct image features: neural networks that use strictly mean-

zero finite difference stencils as convolution kernels can be treated as upwind discretizations of 

differential equations. If this relationship can be made explicit, one gains the ability to analyze 

CNN using the language of numerical analysis, thereby providing a well-established framework 

for proving properties such as stability and approximation accuracy. We test this relationship by 

constructing a level set network, a type of CNN whose architecture describes the expansion of 

level sets; forward-propagation through a level set network is equivalent to solving the level set 

equation; the level set network achieves comparable segmentation accuracy to solving the level set 

equation, while not obtaining the accuracy of a common CNN architecture. We therefore analyze 

which convolution filters are present in a standard CNN, to see whether finite difference stencils 

are learned during training; we observe certain patterns that form at certain layers in the network, 

where the learned CNN kernels depart from known convolution kernels used to solve the level set 

equation.
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1. INTRODUCTION

Liver cancer is the sixth most common form of cancer annually; in 2018, liver cancer was 

the fourth most common ICD-10 cancer-related code specified for cancer-related deaths 

globally.1 The majority of liver cancer cases are instances of hepatocellular carcinoma 

(HCC).2 A diagnosis of HCC relies heavily on the results of biopsy and medical imaging,3 

and such imaging is increasingly being used to devise more accurate radiotherapy treatment 
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plans.4 Automatic image segmentation therefore can play an important role in devising 

treatment plans for certain patients with HCC.

While many methods have been employed for both automatic and semiautomatic image 

segmentation5,6 such as statistical shape models7 and graph cut models,8 we focus on level 

set methods9 and deep convolutional neural networks,1011 with the aim of combining these 

two frameworks to provide a fast, accurate, and interpretable segmentation model. Level sets 

and CNNs are considered among the current standards for medical image segmentation. In 

this work, we examine which types of convolution kernels are important for image 

segmentation of the liver, and we compare how well the level set methods fair at liver 

segmentation when we replace the finite difference stencils in the level set equation with 

convolutions learned during training.

1.1 Level Set Methods

Level set segmentation methods conduct image segmentation as propagating either a region 

or a curve within an image as to match the desired region in question. The evolution of this 

curve is described by the level set equation (LSE), which couples the curvature of the 

expanding region, image intensities and gradients to specify exactly how the curve evolves 

in space and time;12 this equation, which governs geodesic active contours,13 is given for a 

fixed image I:Ω ⊂ ℝ2 ℝ and edge detection function gI :Ω ℝ as

∂tu − γ ∇ gI ⋅ ∇ u
convection

− gI(α + βκ(u)) ∇u
meancurvature

= 0,
(1)

where α, β, γ ∈ ℝ are scalars and κ(u) = ∇ ⋅ ∇u
∇u  is the mean curvature of the solution u. 

Level set methods are at the core of several widely-used toolkits for image segmentation, 

including the popular segmentation engine ITK-SNAP,14 and these methods are able to 

achieve decent results.9 The solution of Equation 1 is most often obtained using an upwind 

finite difference scheme paired with a fast marching method12.15

However, level set methods are limited in several regards: they require hand-tuned 

parameters to balance outward expansion versus tangential expansion; they are only 

semiautomatic, requiring an initial configuration or initial condition for propagation; they 

fail to distinguish between adjacent regions with similar intensities; and they are 

comparatively expensive to evaluate, especially for 3D imaging modalities, due to the 

growth of the number of voxels in 3D and due to the number of timesteps needed to obtain 

an accurate solution.12

1.2 Convolutional Neural Networks

CNN architectures have achieved remarkable accuracy in several online benchmarks and 

challenges; for example, the UNet10 and ResNet11 architectures both displayed fundamental 

improvements in medical image analysis, particularly for image classification. Indeed, in the 

MICCAI LiTS Challenge 2017, many of the top-performing entrants used some variation of 

CNNs.5 However, CNNs are complex systems, often treated as black boxes, lacking 

interpretability and difficult to analyze. Recent concerns surrounding data manipulation and 
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adversarial attack make these methods suspect to abuse from external bad actors.16 Slight 

manipulations, such as adding noise or making small rotations to input data,17 fool CNN 

classifiers into mistaking, for example, a skin tumor as being malignant when it should be 

classified as benign.16

1.3 Similarities between Level Set Methods and Convolutional Neural Networks

Both level sets and CNNs rely on convolutions to detect and explain image features. Upwind 

finite difference approximations, such as those in the fast marching method implemented in 

ITK-SNAP,14 can be expressed as the convolution of finite difference stencils followed by a 

ReLU nonlinearity: we sketch this similarity in Table 1. Computationally, solving the level 
set equation and passing through a convolutional neural network perform the same 
operations at each step. As such, a forward Euler discretization of the level set equation can 

be written in the same language as a CNN: a series of convolutions followed by nonlinear 

activation functions.

2. METHODS

We exploit this relationship between CNNs and level set equations to design a neural 

network whose architecture and connections mirror the structure of solving the level set 

equation, while taking advantange of the flexibility of learning convolution kernels as in a 

CNN.

To do so, we unrolled a numerical method for solving the level set equation, creating a level 
set network (LSN). In this framework, each timestep becomes a layer in a CNN. This 

concept, of treating layers in a CNN as a system of differential equations, has gained recent 

attention using the ResNet architecture in the context of adjoint equations for dynamical 

systems18.19 However, these neural network formulations do not assume that the differential 

equation in question has a specific form. As image segmentation has been accomplished 

using the level set equation, it is intuitive to attempt to construct a neural network that 

approaches this specific PDE. In this sense, the correct curve evolution is then ‘learned’ by 

the level set network. The LSN maintains the architecture of solving the level set equation, 

but replaces the finite difference operators with learned convolution kernels. Additionally, 

we are the first (to our knowledge) to incorporate the nonlinearity of the ReLU function into 

this treatment of PDEs-as-NNs by using an upwind finite difference scheme, providing a 

more stable numerical discretization to this interpretation.

2.1 Construction of a Level Set Network

To construct our Level Set Network, we approximate Equation 1 using a Forward Euler 

scheme in time and then an upwind finite difference scheme in space, similar to what ITK-

SNAP and other solvers use to approximate the solution to the level set equation. The Euler 

timestepping scheme provides residual connections as in ResNet11,18 in the sense that each 

timestep is computed by making some (nonlinear) update to the current timestep, as 

illustrated in Equation 2.
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ForwardEuler u(t + 1) = u(t) + dt γ ∇gI ⋅ ∇u + gI(α + βκ(u)) ∇u
ResNetblock u(l + 1) = u(l) + ReLU K * u(l) + b (2)

Next, in every place a finite difference kernel is applied, we replace the specified finite 

difference kernel with a convolution layer, to be learned by the LSN during training. Due to 

concerns for numerical stability, the convection term kernel was not changed in this way.

2.2 Training and Testing

To test this concept, we employed three segmentation methods on the MICCAI 2017 LiTS 

Challenge dataset,5 consisting of 131 abdominal contrast-enhanced CT image stacks. These 

methods were: UNet,10 a type of CNN; ITK-SNAP,14 a segmentation application using the 

level set equation; and our level set network (LSN).

We implemented our level set network and our UNet in Python, using the toolkit Keras.20 

Our UNet architecture is shown in Figure 1. For training, full set of 131 CT image stacks is 

divided into training (80% of stacks) and validation sets (20%). The training set is then split 

again, into a training subset (90% of slices in 80% of stacks) and a testing subset (10% of 

slices in 80% of stacks). We repeat the 80–20 split, cycling through the data as to withhold a 

different fifth of the data for validation in each instance. On the training subset, we restrict 

the training and testing data to only include CT slices that displayed some of the liver. For 

each, we use the Adam optimizer to train our networks. Our loss function L is calculated as 

an L2 relaxation of the Dice similarity coefficient (DSC) as

L(A, B) = 1 − DSC(A, B)

= 1 − 2 A, B
A 2 + B 2

= A − B 2

A 2 + B 2 .

(3)

All network weights are initialized from a random standard normal distribution, and our 

initial conditions for our level set follow a random uniform distribution. We use a timestep dt 
= 1 and a number of layers/timesteps Nt = 5. We trained until saturation (40 epochs for 

UNet, 20 for LSN). Ultimately, the number of timestep and the number of epochs for the 

LSN were constrained by limits on the number of computation hours we could run, as 

training the LSN takes noticeably longer due to the more complicated network architecture. 

Code for the LSN and UNet are available at github.com/jonasactor/livermask.

For the results using ITK-SNAP, since the software interface asks for user initialization and 

hyperparameter tuning, we allot the practitioner a fixed amount of time (10 min) to adjust 

these parameters, after which ITK-SNAP solves the level set equation until DSC scores no 

longer improved. All our computations were run using an NVIDIA Quadro P5000 GPU.
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3. RESULTS

3.1 LSN Performance

Using the three methods described above, we obtained the DSC scores listed in Table 2. It is 

somewhat unsurprising that the results from the LSN are roughly on-par with those of ITK-

SNAP, as these two methods approach segmentation using the same framework, of a curve 

propagating outwards, with its expansion rate determined by the underlying image topology. 

An example of the output from LSN is in Figure 2. The superior performance of UNets 

suggest that finite difference kernels do not explain the power of convolutional networks on 

their own.

3.2 Kernel Analysis

We confirmed this insight by plotting the convolution kernels obtained from training our 

UNet. We first flattened our learned 3×3 convolution kernels into a vector in R9, and we then 

performed clustering with k = 3 clusters using k-means, using Euclidean distance in 9-

dimensional space. To visualize our results, we projected the kernels using PCA onto the 2-

dimensional subspace spanned by the eigenvectors with greatest variation. Onto this 

projection, we superimposed the finite difference kernels used by ITK-SNAP to solve the 

level set equation exactly - the standard five-point Laplacian kernel, identity kernel, and 

various edge detection kernels. For the sake of comparison and potential interpretability, we 

also superimpose kernels that describe common image processing -the Gaussian blurring 

kernel, local mean blurring kernel, and a sharpening kernel.

Our clustering results, as illustrated in Figure 3, suggest that for many layers in this UNet, 

there is no clear distinction between various types of kernels. However, on the decoder 

(upsampling) side of the UNet architecture, several patterns begin to emerge, even if the data 

do not cleanly fall into clusters: there are several layers, specifically towards the bottom of 

the UNet and later, where otherwise-uninterpretable convolution features are frequent. We 

note from these images that there is no clear cluster among the UNet kernels around first-

order finite difference stencils i.e. up-down or left-right edge detection kernels; this 

observation reinforces our insight from above: finite difference kernels alone cannot explain 

the predictive power of our UNet.

4. DISCUSSION

We demonstrate a flexible framework for using numerical analysis to provide insight into 

CNNs: we interpret upwind finite difference schemes as a convolution layers with ReLU 

activation functions. However, this alone is not sufficient to explain why CNNs are as 

accurate as they are. Our comparison between LSN, UNet and the level set equation 

illustrates that there are substantial differences in performance between each of these 

methods, despite the similarities in the mathematical mechanisms underlying the 

computational methods for each; UNet is the most successful of these methods, while LSN 

and the level set equation produce less accurate segmentations on the MICCAI LiTS dataset. 

Our subsequent kernel analysis visualizes the differences between kernels learned by the 

UNet and those used by the level set equation - the known kernels we superimpose on our 
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clustering plots - where trends in clusters of the learned kernels begin to establish patterns in 

the decoder portions of our UNet. These patterns escape away from where the known level 

set equation kernels (and other common image processing kernels) are located on the 

clustering plots. Therefore, developing an understanding of the bottom layer and decoder 

portions of a CNN is a crucial step to being able to explain the predictive power of CNNs for 

image segmentation, which would enable an interpretation of convolution kernels in clinical 

terms.
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Figure 1: 
Architecture of our UNet for testing and comparison
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Figure 2: 
Segmentation output from LSN. Left to right: original CT image; CT image with true 

segmentation in red/green; LSN segmentation in white, overlayed with true segmentation in 

red/green.
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Figure 3: 
Visualization of 3×3 convolution kernels from selected layers of a UNet with a depth of 4. 

Colors correspond to K-means cluster assignment. Layers 1,3–10 (not shown) are similar to 

Convolution Layer 11. Layers 1–9 belong to the encoder portion of the UNet; layers 10–18 

belong to the decoder. Observe that the further along the net, the more clustered the kernels 

become.
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Table 1:

Similarities in structure between convolutional neural networks and solvers for the level set equation. Above, 

D+ and D− are shifted variants of the same finite difference kernel (for example, D+ = [−1 1 0] for a forward 

first-order approximation of ∂x and D− = [0 −1 1] for the corresponding backward first-order stencil), K is a 

learned convolution kernel, b is a bias term, and the * operator denotes convolution.

LSE CNN

Convolution finite difference kernel learned kernel

1
ℎ2

0 1 0
1 −4 1
0 1 0

k11 k12 k13
k21 k22 k23
k31 k32 k33

ReLU upwind scheme activation function

max(0, D+ * u) − max(0, − D− * u) max(0, K * x + b)
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Table 2:

DSC scores for each fold, from training the level set network. While all methods struggled with fold k = 2, 

LSN fared particularly poorly during validation, due to its initialization procedure. When discarding this fold, 

LSN compares more favorably to the other methods. ITK-SNAP and UNET numbers are on the validation set 

for each fold.

K-Fold ITK-SNAP UNET LSN Test LSN Validation

0 0.736 0.912 0.837 0.619

1 0.600 0.919 0.847 0.729

2 0.483 0.874 0.116 0.005

3 0.730 0.895 0.827 0.606

4 0.643 0.915 0.831 0.596

Avg 0.640 0.903 0.692 0.511

Avg\{2} 0.604 0.911 0.837 0.638
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