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Abstract

Given a lane-based airway navigation framework wherein each lane is one-way, and intersections
are handled by means of polygonal lane roundabouts, then it is possible to assign flight plans so
that the set of all such plans is strategically deconflicted. That is, no two Unmanned Aerial Systems
(UAS’s) will ever get closer in a lane than the minimum allowed headway time (or distance) of
each other. We describe here a method to determine all allowable launch times (i.e., strategically
deconflicted) given a requested launch time interval and a set of scheduled flights. Scheduling a
new flight is linear complexity in the number of scheduled flights.

1 Introduction

Currently, NASA has proposed a UAS deconfliction strategy that requires service providers (UAS
Service Suppliers or USS’s) to exchange full flight path information and to mutually find a decon-
flicted set of flights. This approach has high complexity and sacrifices UAS operator privacy. We
propose a lane-based deconfliction strategy which reduces the shared information to be simply lane
entry and exit times and UAV speed through the lane. Then given a requested launch time interval,
it is possible to determine the set of all allowable (deconflicted) time intervals within the requested
interval.



2 Strategic Deconfliction Algorithm

Figure 1 represents the airway corridors (lanes) between two ground locations. Launch and land

Ground
Location 1

Ground
Location 2

Figure 1: The Lanes (and Vertexes) for the Two Ground Locations Case.

nodes exist for both locations in this example; these are nodes 11 and 13, and 12 and 14, respectively,
and vertical lanes exist between these and the roundabout. Nodes 5, 6, and 9 lie on a circle above
the first ground location and form a (polygonal) roundabout. Lane 1 (going from node 1 to node 2)
provides a way from Ground Location 1 to 2, while Lane 2 provides a return corridor. A flight from
Ground Location 1 to 2 follows the sequence of lanes: 13, 9, 3, 1, 5, 12, 10, and 16, and can be
viewed as a polyline. In this example, Lane 1 is at altitude 534 feet, Lane 2 is at 467 feet, and the
roundabouts are at 500 feet. These may be set to other values as desired by the system designers. An
airway lane constrains the trajectory of the UAS to the center-line of the airway, referred to as the
longitudinal direction of the aircraft trajectory in prior research (e.g. [3]). The vertical and lateral
directions are assumed to be under control to remain inside the lane. Uncertain altitude and lateral
movements should be compensated for in the design of the width and height of the airway; this is
a subject of ongoing research. The critical aspect of this formulation is that there are no crossing-
conflicts. In previous work [6] we gave a discrete time slot algorithm, whereas here the solution is
over continuous intervals.

To better utilize intersections, only merging or diverging conflicts should exist because crossing
conflicts require that the scheduler manage nodes as well as segments. This would add additional
constraints on UASs requesting time within an intersection that would be independent otherwise.
Since each segment is defined by exactly one schedule that manages UAS arrivals, organizing the
airspace in this way removes the need for intersection management such as the signalized intersec-
tions in [2]. In Figure 2, the node labeled “2” is an example of a diverging conflict, where incoming
traffic is split into two traffic streams [4]. The node labeled “1” is an example of a merging conflict,
where two traffic streams are joined into one [4]. Crossing conflicts may be eliminated by imple-
menting a roundabout, a concept borrowed from ground traffic engineering [4]. Figure 2 displays
the graph model for a roundabout, which includes unidirectional edges between eight nodes (each
node represents the endpoint of a segment) in a counter-clockwise direction.
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Figure 2: Airway Roundabout.

The primary safety concern is to schedule flights so that no two UAS’s are ever closer than the
minimal specified headway time, here we use the maximum of all headway times to ensure safety,
and call it h; (we can also plan using headway distance). On the other hand, optimal resource
utilization requires packing as many flights as possible into the lanes. Assume that requested flight
launch times are uniformly distributed across a fixed-length time interval, say from [0, ]. Then this
problem has been studied by Renyi [1, 5] as a parking problem (i.e., cars of unit length are parked
in a [0, z] interval at uniformly distributed locations), and it was shown that the parking density,
M (z)/z, is Renyi’s constant, 0.74759, in the limit as x goes to infinity, where M (x) is the mean
of a number of trials with sampling from the uniform distribution. This provides a useful tool for
analyzing flight densities through the lanes. For example, in our simulations (over 20 trials) on this
problem with x = 100 (time units), the flight packing density was found to be 0.743, consistent
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Figure 3: Space-Time Lane Diagram (STLD) for two UASs in a lane. The abscissa is time and the
ordinate is distance along the lane. h; is the time headway (distance between UASs in time in lane),
and h, is the space headway (distance between UASs in lane). Note that h; and h, are are linearly
related due to the constant speed. The two trajectories in this scenario intersect at ¢t = 4 and z = 2,
however, they violate space-headway before then.

with Renyi’s constant.

The other main issue is the determination of whether a proposed flight conflicts with any scheduled
flight. The Space-Time Lane Diagram (STLD) is used to solve this problem (see Figure 3). Suppose
that there exists a set of scheduled flights which are represented in terms of lane enter-exit times and
speed through each lane (the speed of a UAS is assumed constant along a lane, but speeds may
differ across UAS’s). Let F'(c) be the set of scheduled flights through lane ¢ defined as:

F(c) = {p1,1,01,2,57; --:Pn,1, Pn,2, Sy }
where p; 1 is the lane entry time for flight ¢ and p; » is the lane exit time, and s is the speed of the
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Figure 4: Space-Time Lane Diagrams: (a) trajectory boundaries for requested launch time interval
[41, q2]. (b) The headway boundary trajectories for a scheduled flight which enters the lane at time
p and exits at time p’.

flight through the lane. Furthermore, let a flight request interval be specified as:

R=q,q2,5"]

where ¢ is the first possible launch time, g2 is the latest possible launch time, and s” is the proposed
speed. What must be determined is the set of (possibly disjoint) intervals in R which are possible
launch times (i.e., strategically deconflicted). In order to determine this, the requested launch time
interval is put in the Lane 1 STLD as shown in Figure 4(a), where d; is the length of Lane 1, g3 is
¢ + ¢ S>and gqis 1 + Csl—%. Each flight in Lane 1 is considered separately to ensure that the time
headway, hy, is respected.

To determine safe launch time intervals, first consider the labeling of the STLD shown in Figure 5.
The labels are defined as follows:

Label I: The interval [0, q1)

Label 2: The point q;

Label 3: The interval (q1, q2)

Label 4: The point g2

Label 5: The interval (g2, c0)

Label A: The interval [0, g1 + ‘j—i)
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Figure 5: Space-Time Lane Diagram Labels. 1,2,3,4,5 indicate intervals and times at the entry to
the lane, and A,B,C,D.E indicate times at the lane exit.

e Label B: The point q; + %
e Label C: The interval (q; + f—i, go + %)
e Label D: The point g2 + g—i

e Label E: The interval (g3 + %, 00)

s

The two trajectories arising from the scheduled flight are labeled according to where their endpoints
lie with respect to the requested launch interval. For example, if p;2 < ¢ and p; 2 + di/s§ <
q1 + di/s", then the label for that trajectory is 1A since both start and end points are in the first
intervals at distances 0 and d, respectively. The relation of a previously scheduled flight in a lane to
the requested launch time interval is determined by the labels of the two scheduled flight headway
trajectories; the requested launch interval is shown in red. Figure 6 shows the first 13 possible
combinations. For example, 1A,1A is the case where both headway trajectories are completely
to the left (i.e., before in time) the first possible launch time trajectory through the lane. Note
6
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Figure 6: Space-Time Lane Diagrams for the First 13 Possible Label Combinations.

— h¢, P2 i8S pi1 + he, p3 is pio + ‘j—l and py is pig + %

that in the figures, p1 is p;1 o> and ts
is the time for the requested flight to cross the lane. Also, the square brackets ([]) in the figure
indicate the empty interval. Although there are 625 total label combinations, only 139 are physically
possible; for example, no start time can be greater than the end time (see Appendix A for a complete
enumeration). For each combination, it is possible to give the safe launch intervals contained in the
requested interval (see the figure for some examples). In some cases, there is no possible safe launch
time (e.g., 1A,1E in the figure). For other combinations, the resulting safe intervals depend on the
relative speeds of the two UAS’s. An example of this is 1A,3C where a scheduled flight slower
than the requested flight has a different interval as when the scheduled flight is equal or greater in
speed. It can also happen that multiple intervals result as shown by the 2B,3C case in Figure 7. To
determine the viability of a flight through the complete sequence of lanes, each lane is considered

in order as described by Algorithm SD (Strategic Deconfliction).
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Figure 7: Space-Time Lane Diagrams for Possible Label Combinations 57 through 71.

Algorithm SD (Strategic Deconfliction)
On input:
lanes: lane sequence for requested flight
[q1, g2]: requested launch interval
n.: number of lanes
flights: flights per lane
h¢: maximum required headway time
On output:
Safe time intervals to launch
begin
possible_intervals < [q1, ¢2]
for each lane c € lanes
time_offset <— time to get to lane ¢

possible_intervals <— possible_intervals + time _offset

for each flight, f, in lane ¢
new_intervals < ()
for each interval in possible_intervals
[t1,to] < interval ¢
label + get,label(p;vl,pjcz, s;, t1,t9, 8", hy)

f_interval + get,interval(label,p%1 , piz, s;, t1,to, 8", hy)

new_intervals <— merge(new _intervals,f_intervals)

end



end
possible_intervals <— new _intervals

end

possible_intervals <— possible_intervals - time to last lane

The key computational cost of this algorithm is the determination of f_interval; however, this is done
in constant time for each scheduled flight using the trajectory labels to index to get the appropriate
resulting intervals. Appendix B gives the Matlab code for the algorithm.
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Conclusions

Algorithm SD has been developed to provide strategically deconflicted flight plans for lane-based,

larg

e-scale UAS flight management. It has been demonstrated on a number of scenarios without

problem. The next objective is to exploit the algorithm to determine optimal Urban Air Mobility
parameters (location of launch/land sites, lane speeds, etc.) which will be compared based on a
number of airway lane performance measures (e.g., flow, density, utilization, etc.) determined by
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4 Appendix A: Space-Time Lane Diagram Enumeration
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Figure 8: Space-Time Lane Diagrams for Possible Label Combinations 1 through 13.
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Figure 9: Space-Time Lane Diagrams for Possible Label Combinations 14 through 26.
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Figure 10: Space-Time Lane Diagrams for Possible Label Combinations 27 through 41.
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Figure 12: Space-Time Lane Diagrams for Possible Label Combinations 57 through 71.
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Figure 13: Space-Time Lane Diagrams for Possible Label Combinations 72 through 86.
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S Appendix B: Matlab Code for Algorithm SD

function poss
cor_lengt

launch
schedu
On input:
possibl
speed (
cor_1lis
order)
cor_len
flights
ht (flo
On output:
possibl
possibl
star
Call:
inters

o0 o® o O O O N AN A O O OO o O A° o° o°

UR_possible_

ible UR_possible_times_int (possibleO, speed, cor_list, ...
hs, flights, ht)
times_int - provide possible strategically deconflicted

time intervals given a requested interval and the
led flights
e0 (1x2 vector): first and last possible launch times
float): speed to requesting UAS
t (kxl vector): list of corridors to be traversed (in
gths (kxl vector): lengths of corridors to be traversed

(vector struct): scheduled flights (given per corridor)
at) : headway time
e (nx2 array): each row is a continuous interval of
e

ting flight times
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UR_possible_times_int ([4,35],2,[13,6,14]1,[500,6,500],f1,5);
Author:

T. Henderson

uu

Summer 2019

o o o o o° oo

len_cor_list = length(cor_1list);
intervals = possible(;

offset = 0;

c = 0;

total_time = 0;

while "isempty (intervals) &c<len_cor_list
c =c + 1;
dc = cor_lengths(c);

cor = cor_list (c);
ts = dc/speed;
[num_intervals,dummy] = size(intervals);
for k = 1l:num_intervals
intervals (k, :) = intervals(k,:) + [offset,offset];
end

c_flights = flights(cor).flights;
if “isempty(c_flights)

[num_c_flights,dummy] = size(c_flights);
f = 0;
[num_intervals,dummy] = size(intervals);
while f<num_c_flights& isempty (intervals)
f=f+ 1;
trl = min(intervals(:,1));
tr2 = max(intervals(:,2));
tsl = c_flights(£f,1);

ts2 = c_flights(f,2);
trle = trl + dc/speed;
tr2e = tr2 + dc/speed;
if T ((tsl+ht<=trlé&ts2+ht<=trle) | (tsl-ht>=tr2&ts2-ht>=tr2e))
new_intervals = [];
for k = l:num_intervals
k_intervals = UR_OK_sched_req enum(c_flights(f,1), ...
c_flights(f,2),c_flights(f,3),intervals(k,1), ...
intervals(k, 2), speed,dc, ht);
new_intervals = UR_merge_intervals (k_intervals, ...
new_intervals);
end
intervals = new_intervals;

16



if isempty (intervals)

num_intervals = 0;
else
num_intervals = length(intervals(:,1));
end
end
end
end
offset = ts;
total_time = total_time + ts;
end
total_time = total_time - ts;
[num_intervals,dummy] = size(intervals);
for k = 1l:num_intervals
intervals (k, :) = intervals(k,:) — [total_time,total_time];
end
if "isempty (intervals)
tl = intervals(1,1);
offset = 0;
for ¢ = 1l:1len_cor_list
cor = cor_list (c);
if "isempty (flights(cor).flights) ...
&abs (tl-flights(cor) .flights(1,1))<7
tch = 0;
end
tl = tl + cor_lengths(c) /speed;
end
end

% return all intervals
possible = intervals;
return

function intervals =
UR_OK_sched_req enum(tsl,ts2,s_s,trl,tr2,s_r,d, ht)

tr2
s_r

float
float

max start time requested
speed of requested flight
17

% UR_OK_sched_reqg enum - determine OK intervals for proposed flight in
% specific corridor

% On input:

% tsl (float start of scheduled flight

% ts2 (float end of scheduled flight

% s_s (float speed of scheduled flight

( )
( )
( )
trl (float): min start time requested
( )
( )



d (float): corridor length

ht (float): headway time
On output:

intervals (nx2 array): possible start time intervals
Call:

intl = UR_OK_sched_req enum(23,51,5,8,40,3,49,5);
Author:

T. Henderson

uu

Summer 2019

o o O O o0 o O A° o° o° o°

persistent first itable

if isempty (first)

first = 0;
itable = [...
111 1; % Case 1
111 2; % Case 2
111 3; % Case 3
111 4; % Case 4
111 5; % Case 5
112 1; % Case 6
112 2; % Case 7
11 2 3; % Case 8
11 2 4; % Case 9
11 2 5; % Case 10
113 1; % Case 11
113 2; % Case 12
11 3 3; % Case 13
11 3 4; % Case 14
11 3 5; % Case 15
114 1; % Case 16
114 2; % Case 17
11 4 35 % Case 18
11 4 4; % Case 19
11 4 5; % Case 20
115 1; % Case 21
115 2; % Case 22
115 3; % Case 23
1 15 4; % Case 24
1 15 5; % Case 25
1 21 3; % Case 26
1 21 4; % Case 27
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28

Case

<)
°

121 5;...

29

Case

122 3;...

30

Case

1 2 2 4;...

31

Case

122 5;...

32

Case

o)
°

123 3;...

33

Case

%

12 3 4;...

34

Case

o)
°

12 3 5;...

35

Case

12 4 5;...

36

Case

125 5;...

37

Case

1 313;...

38

Case

1 31 4;...

39

Case

<)
°

1 315;...

40
41
42
43
44
45
46
47
48
49
50

Case

1 32 3;...

Case

1 32 4;...

Case

1 32 5;...

Case

[}
°

133 3;...

Case

%

1 3 3 4;...

Case

o)
°

1 3 3 5;...

Case

1 34 5;...

Case

1 35 5;...

Case

141 5;...

Case

%

14 2 5;...

Case

<)
°

143 5;...

51

Case

%

14 4 5;...

52

Case

145 5;...

53

Case

151 5;...

54

Case

o)
°

152 5;...

55

Case

%

153 5;...

56

Case

o)
°

1 54 5;...

57

Case

155 5;...

58

Case

213 1;...

59

Case

21 3 2;...

60

Case

%

21 3 3;...

61
62

Case

<)
°

214 1;...

Case

%

21 4 2;...

63
64

Case

21 4 3;...

Case

215 1;...

65
66
67

Case

o)
°

215 2;...

Case

%

21 5 3;...

Case

[}
°

21 5 4;...

68

Case

2 1 5 5;...

69
70
71

Case

2 2 3 3;...
2 2 4 4;.

Case

Case

%

225 5;...
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72
73
74
75
76
77
78
79
80
81
82
83
84

Case

<)
°

2 33 3;...

Case

2 3 3 4;...

Case

2 3 3 5;...

Case

2 3 4 5;...

Case

o)
°

2 35 5;...

Case

%

2 4 3 5;...

Case

2 4 4 5;...

Case

2 4 5 5;,...

Case

25 3 5;...

Case

254 5;...

Case

%

255 5;...

Case

<)
°

313 1;...

Case

313 2;...

85
86
87

Case

313 3;...

Case

314 1;...

Case

[}
°

314 2;...

Case 88
89
90
91

%

314 3;...

Case

o)
°

315 1;...

Case

315 2;...

Case

315 3;...

92

Case

315 4;...

93
94
95
96
97

Case

%

315 5;...

Case

<)
°

323 3;...

Case

%

324 3;...

Case

325 3;...

Case

325 4;...

98

Case

o)
°

325 5;...

99

Case
Case 100

%

333 3;5...

o)
°

33 3 4;...

Case 101

%

33 3 5;5...

Case 102

[}
°

334 3;...

Case 103

[}
°

33 4 4;...

Case 104

%

334 5;...

Case 105

<)
°

335 3;...

Case 106

%

335 4;...

Case 107

<)
°

335 5;...

Case 108

%

34 3 5;...

Case 109

o)
°

344 5;...

Case 110

%

345 5;...

Case 111

[}
°

353 5;...

Case 112

%

354 5;...

Case 113

o)
°

355 5;...
4 15 1;.

Case 114

[}
°

Case 115

%

4 15 2;...
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Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case

end
intervals = [];
t_across = d/s_r;
%$t_across = ceil(d/s_r);
pl = tsl - ht;
p2 = tsl + ht;
pP3 = ts2 + ht;
p4 = ts2 - ht;
gl = tril;
g2 = tr2;
g3 = tr2 + t_across;
g4 = trl + t_across;
if pl<gl

il = 1;
elseif pl==ql

il = 2;

elseif pl>qglé&pl<qg2

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139



il = 3;
elseif pl==qg2

il = 4;
else

il = 5;
end
if p2<gl

i3 = 1;
elseif p2==ql

i3 = 2;
elseif p2>glé&p2<qg2

i3 = 3;
elseif p2==qg2

i3 = 4;
else

i3 = 5;
end
if p3<g4

id = 1;
elseif p3==qg4

id = 2;
elseif p3>gd4&p3<g3

i4 = 35
elseif p3==g3

id = 4;
else

i4 = 5;
end
if pd<g4

i2 = 1;
elseif péd==qg4

i2 = 2;
elseif p4>gd&pd<g3

i2 = 35
elseif p4==9g3

i2 = 4;
else

i2 = 5;
end

index = find(itable(:,1l)==il&itable(:,2)==i2&itable(:,3)==1i3...
&itable(:,4)==14);
switch index
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case {1,2,6,7,125,126,138,139}
intervals = [qgl,g2];
case {3,8,26,29,32,37,40,43}
intervals = [p3-t_across,g2];
case {4,9,14,16,17,18,19,27,30,33,38,41,44,61,62,63,86,87,88}
intervals = [g2,92];
case {11,12,58,59,60,83,84,85}
intervals = [p2,92];

case 13
if s_s<s_r
intervals = [p3-t_across,g2];
else
intervals = [p2,92];
end
case 69

intervals = [pl,ql; p2,92];
case {70,73}
intervals [pl,9l; g2,92];
case {71,74,75,76,77,78,79,80,81,82}
intervals = [pl,qgl];
case 72
intervals = [pl,qgl; p3-t_across,g2];
case {94,095}
intervals

(al,ql;q2,92];
case 99
if s_s<s_r
intervals = [gl,pl; p3-t_across,g2l;
elseif s_s==s_r
intervals = [qgl,pl; p2,92];
else
intervals = [qgl,p4-t_across; p2,92];
end
case {96,97,98,119,120,121,132,133,134}
intervals = [qgl,qgl]l;
case {100,103}
intervals = [qgl,pl; 92,92];
case 102
intervals = [pl,pd4-t_across; g2,92];
case {101,104,108,109,110,111,112,113}
intervals = [qgl,pl];
case 107
if s_s<=s_r
intervals = [gl,pl];

else
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intervals = [gl,p4-t_across];

Summer 2019

end
case {105,106,122,123,124,135,136,137}

intervals = [qgl,p4-t_across];
end
function new_int = UR_merge_intervals (intl, int?2)
% UR_merge_intervals - given two sets of intervals, merge them
% On input:
% intl (nlx2 array): first set of intervals
% int2 (n2x2 array): second set of intervals
% On output:
% new_int (px2 array): intersection of two interval sets
% Call:
% new_int = UR_merge_intervals (intl,int2);
% Author:
% T. Henderson
% uu

if isempty (intl) &isempty (int2)

new_int = [];
return
end
new_int = [intl;int2];
[vals, indexes] = sort(new_int(:,1));
new_int = new_int (indexes, :);
change = 1;
while change==
change = 0;
len_new_int = length(new_int (:,1));
for k = 1:1len_new_int-1
if new_int (k,1)==new_int (k+1,1)
v_min = min (new_int (k,2),new_int (k+1,2));
new_int (k+1,2) = v_min;
new_int(k,:) = [];
change = 1;
break
end
end
end
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