

16.7 (a) Tranformation matrix \mathbf{A}_F of the discrete Fourier transform for N=8, where $\omega=e^{-j2\pi/8}$ or $(1-j)/\sqrt{2}$. In the real and imaginary parts of the DFT basis images of size 8×8 . For clarity, a black border has been a daround each basis image. For 1-D transforms, matrix \mathbf{A}_F is used in conjunction with Eqs. (6-43) and (6-44); D transforms, it is used with Eqs. (6-41) and (6-42).

than complex-valued—the discrete Hartley transform, discrete cosine transform, and discrete sine transform. All three transforms avoid the computational complexity of complex numbers and can be implemented via fast FFT-like algorithms.

THE DISCRETE HARTLEY TRANSFORM

The transformation matrix of the discrete Hartley transform (DHT) is obtained by substituting the inverse transformation kernel

ion cas. an aeron ym cosine-and-sin on, is defined as $= \cos(\theta) + \sin(\theta)$.

ath

$$s(x,u) = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi ux}{N}\right)$$
$$= \frac{1}{\sqrt{N}} \left[\cos\left(\frac{2\pi ux}{N}\right) + \sin\left(\frac{2\pi ux}{N}\right)\right]$$
(6-78)

Il not consider m-separable form

$$\max_{\text{cas}} \frac{2\pi(nx - vy)}{2\pi(nx - vy)}.$$

whose separable 2-D counterpart is

$$s(x, y, u, v) = \left[\frac{1}{\sqrt{N}} \cos\left(\frac{2\pi ux}{N}\right)\right] \left[\frac{1}{\sqrt{N}} \cos\left(\frac{2\pi vy}{N}\right)\right]$$
(6-79)

into Eqs. (6-22) and (6-24). Since the resulting DHT transformation matrix—denoted \mathbf{A}_{HY} in Fig. 6.8—is real, orthogonal, and symmetric, $\mathbf{A}_{HY} = \mathbf{A}_{HY}^T = \mathbf{A}_{HY}^{-1}$ and \mathbf{A}_{HY} can be used in the computation of both forward and inverse transforms. For 1-D transforms, \mathbf{A}_{HY} is used in conjunction with Eqs. (6-28) and (6-29) of Section 6.2; for 2-D transforms, Eqs. (6-35) and (6-36) are used. Since \mathbf{A}_{HY} is symmetric, the forward and inverse transforms are identical.