CS6640 A6: More Info

Classify Algorithm

% classify algorithm (for problems 1-3)
for all connected components, cc
get a model, m_cc, for cc
for all models, m_k
pick model m_k which minimizes Euclidean distance |m_cc-m_k|
end
set imo pixels for that cc to m_k (if close enough)
end

RFE

get border points, pts (as rows,cols)

get mean of pts: rm, cm

get distance from [rm,cm] to each [r,c] in pts --> produces f

get Fourier coefficients: F = fft(f)

get amplitudes: A = abs(F)

sort amplitudes: [vals,indexes] = sort(A,'descend')

keep top n values: indexes(1:n)

set s (as a column vector nx1)

Hu Moments

need CS6640_Hu_M and CS6640_Hu_eta

PCA

get covariance matrix (i.e., use cov)
get eigenstuff (use eig function)
rotate points (ptsr = (V'*T')')
get number of dimensions to keep: q = floor(p*d)
keep last q dimensions: ptsd = ptsr(:,q:d)
call kmeans with ptsd

how to check? \rightarrow use the T set in CS6640_Week12.m

PCA_kmeans:

[cidx,ctrs] = CS6640_PCA_kmeans(T,1/2,2);

should produce 2 clusters:

cidx = 1 1 1 2 2 2 with centers: ctrs = -6.9282

6.9282

Run on 728*1477x44 vectors with FFT, Laws and RGB dimensions