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2D convolution 

•  2D convolution theorem: 

•  Equivalently:  



Impulse response 

•  Filter H(u,v) 
•  If the input image  
•  The filtered output will be  

 
is called the impulse response of H(u,v) 
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Frequency filtering 
•  Example: Sobel derivative 

filter 
– Take Fourier transform of filter 

and image, multiply, invert 
•  But we can also design/

specify filters directly in the 
frequency domain 

•  In both cases we need to 
account for circular 
convolution via zero padding 

4 

-1 0 1 

-2 0 2 

-1 0 1 

h(x,y)	



Circular convolution 

•  Implementing filtering via DFTs and 
multiplication in the Frequency domain 
implies an assumption of periodicity 
– This is due to the periodicity property of the 

DFT we discussed earlier 
•  Care must be taken in implementing 

filtering in the frequency domain 
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• Periodic	
implementaEon	

• This	is	the	result	
that	would	be	
obtained	if	
implemenEng	in	
frequency	domain	
via	DFTs	

• Incorrect	result	is	
obtained	because	
the	periods	of	f	
and	h	interfere	
with	each	other	
(wraparound	
error)		

• Non-periodic	
implementaEon	in	
spaEal	domain	

• Assumes	values	
outside	the	
domain	of	f	and	h	
are	0		

• Note	also	the	
length	of	the	
output	sequence	is	
the	sum	of	the	
lengths	of	f	and	h	
minus	1	



Zero padding solution 

•  If f(x) has A samples and h(x) has B 
samples, pad enough zeros to both 
functions so they both have length 
P=A+B-1 or longer 

•  2D: f(x,y) size A x B, h(x,y) size C x D 
– Pad both to size P x Q where 
– P is greater than or equal to A + C -1 
– Q is greater than or equal to B + D -1 
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Frequency filtering steps 
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Input image f(x,y) 
Size M x N 
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Pad input image 
f(x,y) to size 2M x 
2N. Call result 
fp(x,y) 
Let P=2M, Q=2N 
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Let f 'p(x,y)=(-1)x+yfp(x,y) 
This will center the 
Fourier transform  



11 
©	1992–2008		R.	C.	Gonzalez	&	R.	E.	Woods		

Take DFT of f 'p(x,y) to get F(u,v) 
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Generate a real, 
symmetric H(u,v) 
of size 2M x 2N 
with center at 
coordinate M x N 
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Compute the product 
G(u,v)=F(u,v)H(u,v) 
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gp(x,y)=(Real(F-1[G(u,v)])) (-1)x+y 

We take the real 
part for ignoring 
parasitic complex 
components 
resulting from 
computational 
inaccuracy 
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Crop top left MxN image 
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Frequency domain basics 
•  Low frequencies - Slowly varying spatial 

intensities 
•  High frequencies - Abrupt changes in 

intensity: edges, noise, etc... 
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Low-Pass Filter 
•  Reduce/eliminate high frequencies 
•  Applications 

–  Noise reduction 
•  uncorrelated noise is broad band 
•  Images have sprectrum that focus on 

low frequencies 
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Power spectrum P(u,v) = | F(u,v) |2 

Total image power PT is the sum of 
P(u,v) over all u,v 
% power retained by ILPF with cutoff Do 



Extending Filters to 2D (or higher) 

•  Two options 
– Separable 

•  H(s) -> H(u)H(v) 
•  Easy, analysis 

– Rotate 
•  H(s) -> H((u2 + v2)1/2) 
•  Rotationally invariant 
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Ideal Lowpass LP - circular 
•  Passes without attenuation all frequencies 

within a radius Do from the origin and 
completely cuts off the rest 
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•  Retaining less 
power corresponds 
to more blurring 

•  Increasing cutoff 
frequency 
increases amount 
of detail retained 

•  What else do you 
see in some of 
these filtered 
images?  
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Ringing artifact of ILPF 
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Cutoff freq Ringing	–	Gibbs	phenomenon	

In	2	dimensions	



Ideal Low-Pass  
Rectangle With Cutoff of 2/3 
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Image Filtered Filtered + HE 



Ideal LP – 1/3 
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Ideal LP – 2/3 
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Lowpass filter with less ringing 
•  Avoid sharp discontinuity in H(u,v) 
•  Butterworth Lowpass Filter 
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Butterworth properties 
•  No ringing in spatial domain for n = 1 
•  Imperceptible ringing for order n = 2 
•  Ringing can be significant for n > 2 
•  Limit as n increases, same as ILPF 
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Butterworth n=2 
•  No visible 

ringing 
artifacts 
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Butterworth - 1/3 
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Butterworth – 2/3 
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Butterworth vs Ideal LP 
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Gaussian lowpass filter (GLPF) 
•  A Gaussian in the frequency domain 

•  is also a Gaussian in the spatial domain 

•  Notice the reciprocal behavior in their widths 
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GLPF properties 
•  Since the spatial domain representation 

is also a Gaussian, there is no ringing 
artifact. 

•  The cutoff of this filter is not sharp at all. 
But results are comparable to BLPF 
with n=2. Good for cases where ringing 
is unacceptable. 
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High Pass Filtering 

•  HP = 1 - LP 
– All the same filters as HP apply 

•  Applications 
– Visualization of high-freq data (accentuate) 

•  High boost filtering 
– HB = (1- a) + a(1 - LP) = 1 - a*LP 
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High-Pass Filters 
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High-Pass Filters in Spatial Domain 
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High-Pass Filtering with IHPF 
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BHPF 
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GHPF 
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Highpass filter application 
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BuUerworth	highpass	filter	removes	slow	variaEons	in	intensity	
across	the	image.	This	in	turn	allows	a	single	global	threshold	
to	separate	the	ridges	and	valleys	of	the	fingerprint.	



HP, HB, HE 
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High-Boost Filtering 
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Band-Pass Filters 

•  Shift LP filter in Fourier domain by convolution with 
delta 
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LP 

BP Typically 2-3 parameters 
- Width 
- Slope 
- Band value 



Band Pass - Two Dimensions 
•  Two strategies 

– Rotate 
•  Radially symmetric 

–  Translate in 2D 
•  Oriented filters 

•  Note: 
– Convolution with delta-pair in FD is multiplication with cosine 

in spatial domain  
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Band Bass Filtering 
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Bandreject filters 

•  D is the distance from the center of 
frequency domain 

•  Do is the radial center of the band to be 
rejected 

•  W is the width of the band to be 
rejected 
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Bandpass ‒ bandreject relationship   

•  We can obtain a bandpass filter from a 
bandreject filter: HBP(u,v) = 1 - HBR(u,v) 
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Notch reject filters 
•  We can 

reject 
frequencies 
more 
selectively 
than 
bandreject 
filters  
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What was rejected? 
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Image Degradation/Restoration 
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Linear, space invariant 
degradations 

•  General model 
–  g(x,y)=H[ f(x,y) ] + n(x,y) 

•  Linearity: 
– H[ a f1(x,y) + b f2(x,y) ] = a H[ f1(x,y) ] + b 

H[ f2(x,y) ]  
•  Position invariance: 

– H [ f ( x-a,y-b ) ] = g ( x-a,y-b ) 
•  Linear, position invariant model 

g(x, y) = h(x, y)∗ f (x, y) +η(x, y)
G(u,v) = H (u,v)F(u,v) + N(u,v)



Point spread function 
•  A large class of degradations can be 

approximated as linear, space invariant 
processes 
– Example: most physical optical systems blur 

(spread) a point of light to some degree 
–  Impulse response h(x,y) = H[ δ(x,y) ] is 

sometimes called the point spread function 
(PSF) 
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Inverse filtering 

•  The main idea is 

•  This assumes we know H(u,v)… 

G(u,v) = H (u,v)F(u,v) + N(u,v)

F̂(u,v) = G(u,v)
H (u,v)

= F(u,v) + N(u,v)
H (u,v)



Estimation by observation  
(for blurring H) 

•  Choose a small area of the image with 
strong signal content: gs(x,y) 
– High contrast area 
– Edge 

•  Create an unblurred version of the area 
– Sharpening 
– Processing by hand 

•  Then, we can estimate (assuming 
negligible noise) 

Hs (u,v) =
Gs u,v( )
F̂s (u,v)

f̂s (x, y)



Estimation by Experimentation 
•  If you have access to the instrument used 

to acquire the image to be restored 
•  Capture the image of a small dot of light 

– Call the capture image g(x,y) 
– A dot of light is our approximation to the Dirac 

delta function: f(x,y) = Aδ(x,y)  
– F(u,v) = F[ Aδ(x,y) ] = A 
– A is the amplitude of the dot of light 

H (u,v) =
G u,v( )
A
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Estimation by Modeling 
•  Sometimes it might be possible to 

mathematically derive a model for the 
degradation 

•  Example motion blur. Due to 
– Camera motion. Camera on a moving 

platform.  
– Objects moving 

g(x, y) = f x − xo t( ), y − yo t( )( )dt
0

T

∫



g(x, y) = f x − xo t( ), y − yo t( )( )dt
0

T

∫

G(u,v) = f x − xo t( ), y − yo t( )( )dt
0

T

∫
#

$%
&

'(∫∫ e− j2π ux+vy( )dxdy

G(u,v) = f x − xo t( ), y − yo t( )( )∫∫ e− j2π ux+vy( )dxdy( )dt
0

T

∫

G(u,v) = F(u,v)e− j2π uxo t( )+vyo t( )( )dt
0

T

∫

G(u,v) = F(u,v) e− j2π uxo t( )+vyo t( )( )dt
0

T

∫ Motion blur 
H(u,v) 



Motion blur example 
•  If the motion variables are known then we 

can find H(u,v) 
•  Example: Linear motion 

–  xo(t) = at/T, yo(t)=bt/T 

H (u,v) = T
π ua + vb( )

sin π ua + vb( )"# $%e
− jπ ua+vb( )
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Inverse filtering 

•  The main idea is 

•  We now have an estimate of H(u,v) 
•  But there is still a problem 

G(u,v) = H (u,v)F(u,v) + N(u,v)

F̂(u,v) = G(u,v)
H (u,v)

= F(u,v) + N(u,v)
H (u,v)



The problem with inverse filtering 

•  Even if we know H(u,v) we can’t recover 
f(x,y) because N(u,v) is not known 

•  Also if H(u,v) has very small values for 
some (u,v), then the N(u,v)/H(u,v) part 
can easily dominate for those (u,v) 

F̂(u,v) = G(u,v)
H (u,v)

= F(u,v) + N(u,v)
H (u,v)



Inverse filtering example 
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Degraded     Inverse filtering   

Motion blur + additive noise 



Optimal/Weiner Filter 

•  Power spectrum of signal, noise are known 
•  H(u) is known 
•  The expected squared error of restoration with filter 

w  
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E f − f̂
2"

#$
%
&'

f̂ = w*g

g(x, y) = h(x, y)∗ f (x, y)+η(x, y)



Optimal/Weiner Filter 

•  Power spectrum of signal, noise are known 
•  H(u) is known 
•  The expected squared error of restoration with filter 

w, formulated in Fourier domain  
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E F − F̂
2"

#$
%
&'

F̂(u,v) =W (u,v)G(u,v)

G(u,v) = H (u,v)F(u,v)+ N(u,v)



Optimal/Weiner Filter 

•  Power spectrum of signal, noise are known 
•  H(u) is known 
•  Filter that minimizes the expected squared error of 

reconstruction is: 
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G(u) =
H⇤(u)S(u)

|H(u)|2S(u) +N(u)



Optimal/Weiner Filter 
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G(u) =
1

H(u)

|H(u)|2

|H(u)|2 + N(u)
S(u)

G(u) =
1

H(u)

|H(u)|2

|H(u)|2 + 1
SNR(u)

G(u) =
H⇤(u)S(u)

|H(u)|2S(u) +N(u)



Wiener filtering example 
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Motion blur + additive noise 

Motion blur     Inverse filtering   Wiener filtering 



Another use of the frequency domain: 
Image Registration 

•  Find dx and dy that best matches two images 
•  Cross correlation can give the best translation 

between two images 
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Normalized Cross Correlation 

•  Subtract the mean of the image and divide by the 
S.D. 
– This maps the image to the unit sphere 
– A single integral is the dot product of these to vectors 

•  angles between the two normalized images 
– Helps alleviate intensity differences 
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Phase Correlation 
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Phase Correlation 
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Connectomics	
•  Mapping	connecEvity	paUerns	of	neurons	

–  Sparse/Dense	neural	circuit	reconstrucEon	
•  C.	Elegans	complete	neural	circuit	[1975]	

–  Electron	micrographs	
–  302	neurons,	10	years	manual	effort	

•  Imaging	is	no	longer	the	boUleneck…		
–  Serial	secEon	TEM	(ssTEM)	

•  Image	alignment	problem	
–  Serial	block	face	SEM	(SBFSEM)	

•  Stable	block,	no	image	alignment	problem	
•  In-plane	resoluEon	limited	

–  Serial	secEon	SEM	(ssSEM)	
•  Fast,	can	generate	very	large	datasets	
•  Image	alignment	problem	

–  Focused	ion	beam	milling	SEM	(FIBSEM)	
•  No	image	alignment	problem,	isotropic	resoluEon	
•  Smaller	field	of	view	

•  Analysis	is	the	boUleneck	for	reconstrucEon	of	larger	neural	circuits	
–  Fly	brain	
–  Primate	corEcal	column	

Wormbook, www.wormbook.org 



Volume assembly 
•  Data: 

– 0.2mm x 0.2mm area 
– Each section: ~1000 tiles 
– 341 sections at 90nm thickness 
– Each image 4K x 4K pixels 

•  Assembling 2D sections  
•  Section-to-section registration 

Volume		
assembly	

Neuron	
segmentaEon	

Synapse		
detecEon	

Serial	secEon	
TEM	Eles	 Filtering	



Assembling 2D mosaics 
•  Find the displacement between tiles 

– Closed-form solution using phase 
correlation, Girod and Kuo’89 

 

 

 Inverse Fourier transform of P interpreted 
as a displacement probability distribution 

– Need at least 10% overlap for reliable 
displacement estimate 

F-1(P) 

P w( ) = F1(w)F2
*(w)

F1(w)F2
*(w)

= e jwa

F I1 x − a( )"# $% = e
− jwaF I1 x( )"# $%

Normalized 
cross power 
spectrum 

Fourier shift 
theorem 



132 tile mosaic 


