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2D convolution

f(x,y) xh(z,y) = YYfmn (x —m,y —n)

e 2D convolutlon theorem:
f(z,y)xh(z,y) <= F(u,v)H (u,v)

* Equivalently:
f(@,y) *h(z,y) = F {F{f(z,y)}F{h(z,y)}}



Impulse response

* Filter H(u,v)
« Ifthe inputimage f(z,y) = d(z,y)
* The filtered output will be

h(z,y) =F {H(u,v)}

is called the impulse response of H(u,v)



Frequency filtering

« Example: Sobel derivative

filter

— Take Fourier transform of filter

and image, multiply, invert
« But we can also design/
specify filters directly in the
frequency domain
* In both cases we need to

account for circular
convolution via zero padding




Circular convolution

* Implementing filtering via DFTs and
multiplication in the Frequency domain
implies an assumption of periodicity
— This is due to the periodicity property of the

DFT we discussed earlier

« Care must be taken in implementing

filtering in the frequency domain
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®*Periodic

implementation

*This is the result

that would be
obtained if
implementing in
frequency domain
via DFTs

®|ncorrect result is

obtained because
the periods of f
and h interfere
with each other
(wraparound
error)



Zero padding solution

* If f(x) has A samples and h(x) has B
samples, pad enough zeros to both
functions so they both have length

P=A+B-1 or longer
« 2D: f(Xx,y) size Ax B, h(x,y) size CxD
— Pad both to size P x Q where
— P is greater than or equal to A+ C -1
— Q is greater than or equal to B + D -1



Frequency filtering steps -
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Input image f(x,y)
Size M x N



Pad input image
f(x,y) to size 2M x
2N. Call result

f (X,y)
Let P=2M, Q=2N
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Take DFT of ' (x,y) to get F(u,v)
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Generate a real,
symmetric H(u,v)
of size 2M x 2N
with center at
coordinate M x N
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Compute the product
G(u,v)=F(u,v)H(u,v)
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We take the real
part for ignoring
parasitic complex
components
resulting from
computational
Inaccuracy
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Frequency domain basics

» Low frequencies - Slowly varying spatial
intensities

* High frequencies - Abrupt changes in
intensity: edges, noise, efc...
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Low-Pass Filter

 Reduce/eliminate high frequencies
« Applications
— Noise reduction

* uncorrelated noise is broad band

* |mages have sprectrum that focus on

low frequencies Total image power Pr is the sum of

P(u,v) over all u,v
% power retained by ILPF with cutoff Do
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Power spectrum P(u,v) = | F(u,v) |? 17
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Extending Filters to 2D (or higher)

 Two options
— Separable
* H(s) -> H(u)H(v)
 Easy, analysis
— Rotate
* H(s) -> H((u2 + v2)1/2)
* Rotationally invariant
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ldeal Lowpass LP - circular

» Passes without attenuation all frequencies
within a radius Do from the origin and
completely cuts off the rest

|1 ¢f D(u,v) <D,
H(u,v) = { 0 if D(u,v)> D,

D(u,v) = v/(u— P/2)? + (v - Q/2)?

H(u, v)

: o H )

1
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Retaining less
power corresponds
to more blurring

Increasing cutoff
frequency
Increases amount
of detail retained

What else do you
see in some of
these filtered
iImages”?
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Ringing artifact of ILPF

1)

-W/2 0 W/2

In 2 dimensions

Cutoff freq Ringing — Gibbs phenomenon
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|deal Low-Pass
Rectangle With Cutoff of 2/3

Image Filtered Filtered + HE
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ldeal LP - 1/3
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ldeal LP - 2/3
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Lowpass filter with less ringing

« Avoid sharp discontinuity in H(u,v)
« Butterworth Lowpass Filter

H(u,v) = !

2n
1+ (Dg;;v))




Butterworth properties

* No ringing in spatial domain for n = 1
* Imperceptible ringing for order n = 2
* Ringing can be significant for n > 2
 Limit as n increases, same as ILPF
abcd
FIGURE 4.46 (a)-(d) Spatial representation of BLPFs of order 1, 2, 5, and 20, and corresponding intensity
20 profiles through the center of the filters (the size in all cases is 1000 x 1000 and the cutoff frequency is 5).

© 1992-2008 R. C. Gonzalez & R. E. Woods Observe how ringing increases as a function of filter order.



Butterworth n=2

* No visible
ringing
artifacts
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FIGURE 4.41 (a) Test pattern of size 688 X 688 pixels, and (b) its Fourier spectrum. The
spectrum is double the image size due to padding but is shown in half size so that it fits
in the page. The superimposed circles have radii equal to 10, 30, 60, 160, and 460 with
respect to the full-size spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8, and
99.2% of the padded image power, respectively.

27

© 1992-2008 R.C. Gonzalez & R. E. Woods

aaaaaaad

r

*TIIR R

L

.aaauaaa

N

e -
aaaaaaadd

ab
cd
e f

aaaaaaadd

FIGURE 4.45 (a) Original image. (b)—(f) Results of filtering using BLPFs of order 2,
with cutoff frequencies at the radii shown in Fig. 4.41. Compare with Fig, 4.42.




Butterworth - 1/3

28



Butterworth — 2/3
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Butterworth vs Ideal LP
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Gaussian lowpass filter (GLPF)

* A Gaussian in the frequency domain
_ D?(u,v)

H(u,v) =e 205
D(u,v) = /(u—P/2)? + (v — Q/2)’
* is also a Gaussian in the spatial domain
h(x,y) = 2%D36_2“2D3(‘”2+3’2)
* Notice the reciprocal behavior in their widths
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GLPF properties

* Since the spatial domain representation
IS also a Gaussian, there is no ringing
artifact.

* The cutoff of this filter is not sharp at all.
But results are comparable to BLPF
with n=2. Good for cases where ringing
IS unacceptable.

T —? 1.0

D“: 10
D(): 20
Dy = 40

/— D, = 100

0.667




High Pass Filtering

e« HP=1-LP

— All the same filters as HP apply
 Applications

— Visualization of high-freq data (accentuate)

* High boost filtering
—HB=(1-a)+a(1-LP)=1-a*LP
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High-Pass Filters

H (u, v) H(u, v)
! ~vior
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FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



High-Pass Filters in Spatial Domain

abec

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (¢) Gaussian frequency domain

highpass filters, and corresponding intensity profiles through their centers.
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High-Pass Filtering with IHPF
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FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with D, = 30. 60, and 160.
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BHPF

a b c

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.4 1(a) using a BHPF of order 2 with D, = 30, 60.
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained
with an I[HPF.
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GHPF

a b c
FIGURE 4.56 Results of highpass filtering the image m Fig. 4.41(a) using a GHPF with D, = 30,60, and [60.
corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.
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Highpass filter application

FIGURE 4.57 (a) Thumb print. (b) Result of highpass filtering (a). (c) Result of
thresholding (b). (Original image courtesy of the U.S. National Institute of Standards
and Technology.)
Butterworth highpass filter removes slow variations in intensity
across the image. This in turn allows a single global threshold

to separate the ridges and valleys of the fingerprint.

39
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HP, HB, HE

40
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Band-Pass Filters

« Shift LP filter in Fourier domain by convolution with
delta

0(s —sg) +0(s+ s
P (s — s0) +6(s+ s0)

Typically 2-3 parameters Bp
-Width
~Slope
-Band value

42



Band Pass - Two Dimensions

 Two strategies
— Rotate l ﬂ
» Radially symmetric

— Translate in 2D
* QOriented filters

* Note:

— Convolution with delta-pair in FD is multiplication with cosine
In spatial domain

43
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Bandreiject filters

Bandreject filters. W is the width of the band, D is the distance D(u, v) from the center of the filter, Dy is the
cutoff frequency. and # is the order of the Butterworth filter. We show D instead of D(u, v) to simplify the
notation in the table.

Ideal Butterworth Gaussian
( |
w W ») —
0 ifDy—5 =D=D+~ Hv)=
H(u,v) = < 2 2 |+ DW Hu,v)=1 - e o7
|1 otherwise D> — D}

* D is the distance from the center of
frequency domain

* D, is the radial center of the band to be
rejected

W is the width of the band to be
rejected

© 1992-2008 R.C. Gonzalez & R. E. Woods
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Bandpass — bandreject relationship

* \WWe can obtain a bandpass filter from a
bandreject filter: Hsp(u,v) = 1 - Her(u,v)

46



lters

Notch rejec. f

* We can
reject
frequencies
more
selectively
than
bandreject
filters

ab
cd

FIGURE 4.64
""""""' (N‘/H"ﬁf OGS v (a) Sampled

ool A $107 W roieet g newspaper image
: showing a
moiré pattern.
(b) Spectrum.
(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.
(d) Filtered
image.

s Brtea
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What was rejected?
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Image Degradation/Restoration

Degradation

f(x,y) I:> function

H

DEGRADATION
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g(x,y)

Noise
n(x.y)

Restoration
filter(s)

RESTORATION

f(x.y)



Linear, space invariant
degradations

General model

R g(X,y)=H[ f(X,y) ] T n(X!y)

Linearity:

— H[ d f1(X’y) T b fZ(X’y) ] = 4d H[ f1(X’y) ] T b
H[ fZ(X’y) ]

Position invariance:

—H [f(X'a’y'b ) ] =g (X'a’y'b )

Linear, position invariant model

g(X,y) = h(X,y) *f(xay) + T](.X,y)
Gu,v)=Hw,v)F(u,v)+ N(u,v)



Point spread function

* Alarge class of degradations can be
approximated as linear, space invariant
processes

— Example: most physical optical systems blur
(spread) a point of light to some degree

— Impulse response h(x,y) = H[ 8(x,y) ] is
(sogwe)tlmes called the point spread function
PSF

ab

FIGURE 5.24
Degradation
estimation by
impulse
characterization.
(a) An impulse of
light (shown
magnified).

(b) Imaged
(degraded)
impulse.
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Inverse filtering

Gu,v)=Hw,v)F(u,v)+ N(u,v)
« The main idea is

G(u,v) _ N(u,v)

ﬁ(u,v)= F(u,v)+

H(u,v) H(u,v)

* This assumes we know H(u,v)...



Estimation by observation
(for blurring H)

* Choose a small area of the image with
strong signal content: g.(x,y)

— High contrast area

— Edge
* Create an unblurred version of the area
— Sharpening A
— Processing by hand J(x,)
* Then, we can estimate (assuming
negligible noise) G (uv)

H (u,v)=—=
F (u,v)



Estimation by Experimentation

* |f you have access to the instrument used
to acquire the image to be restored

« Capture the image of a small dot of light

— Call the capture image g(x,y)

— A dot of light is our approximation to the Dirac
delta function: f(x,y) = A(S(x Y)

— F(u,v) = F[Ad(X,y) ] =
— Ais the amplltude of the dot of light

l/tV

H(u, v)—

© 1992-2008 R. C. Gonzalez & R. E. Woods



Estimation by Modeling

« Sometimes it might be possible to
mathematically derive a model for the
degradation

« Example motion blur. Due to

— Camera motion. Camera on a moving
platform.

— Objects moving

o) =[x, (1), v, (1))



g(ry) = [fx=x,(t).y -y, (1))dr
Gl = [ f( (= (e)y-5, (t))dt)e'jz”(”“vy)dxdy

G(u,v)=f(fff(x—x0(t),y—yo(t))e'ﬂ”(”“"y)dxdy)dt

T
G(u,v) = fF(u,v)e‘ﬂ”(“’“o<f>”yo<f))dt
0

T

G(u,v)=F(u,v) f g~ /2r b W) gy | 1 tion blur
H(u,v)




Motion blur example
* |f the motion variables are known then we
can find H(u,v)
 Example: Linear motion
— X, (t) = at/T, y (t)=bt/T

T .
' - b
H(u,v)= sin [Jt(ua + vb)] o /7lua+vb)
Jt(ua + vb)
\ ~ ab
107 FIGURE 5.26
_lgta]‘ (a) Original image.
(b) Result of
Ima functionin By,
ge (5.6-11) with *

a=>b=0.1and
T =1.

Processing
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Inverse filtering
Gu,v)=Hw,v)F(u,v)+ N(u,v)
« The main idea is

G(u,v) _ Nu,v)

ﬁ(u,v)= F(u,v)+

H(u,v) H(u,v)

* We now have an estimate of H(u,v)
« But there is still a problem



The problem with inverse filtering

G(u,v) _ Fuv)+ N(u,v)
H(u,v) H(u,v)

ﬁ(u,v) =

« Even if we know H(u,v) we can't recover
f(x,y) because N(u,v) is not known

* Also if H(u,v) has very small values for
some (u,v), then the N(u,v)/H(u,v) part
can easily dominate for those (u,v)



Inverse filtering example

Motion blur + additive noise

ISe variance

Smaller no

Degraded Inverse filtering
© 1992-2008 R. C. Gonzalez & R. E. Woods



Optimal/Weiner Filter

 Power spectrum of signal, noise are known
* H(u) is known
* The expected squared error of restoration with filter

W 1
f=w*g

g(X,y) = h(an)*f(an)'H’l(x»)’)

E[Hf—f

A

62



Optimal/Weiner Filter

 Power spectrum of signal, noise are known

* H(u) is known

* The expected squared error of restoration with filter
w, formulated in Fourier domain

F(u,v)=W(u,v)G(u,v)

Gu,v)=Hwu,v)F(u,v)+ N(u,v)

63



Optimal/Weiner Filter

Power spectrum of signal, noise are known

H(u) Is known

-ilter that minimizes the expected squared error of
reconstruction Is:

[H (u)|?S(u) + N(u)

G(u) =

64



Optimal/Weiner Filter

H*(u)S(u)
G(u) =
) = TH@ S (W) + N(w
. H (u)|?
G(u) H(uw) |H(u)? + 55
1 H(u)]?
6 = ) T + s

65



Wiener filtering example

oy e X R

Motion blur + additive noise

ise variance

Smaller no

[ o
Motion blur  Inverse filtering Wiener filtering
© 1992-2008 R. C. Gonzalez & R. E. Woods



Another use of the frequency domain:
Image Registration

 Find dx and dy that best matches two images

* Cross correlation can give the best translation
between two images

67



Normalized Cross Correlation

* Subtract the mean of the image and divide by the
S.D.

— This maps the image to the unit sphere

— Asingle integral is the dot product of these to vectors
* angles between the two normalized images

— Helps alleviate intensity differences
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Phase Correlation

y def \ \ \
g, y) = go((x— Ax)mod M, (y — Ay)modN)
G. =F{da}, Go = F{g} | o piuas Ay
Gylu,v) = G,lu, U)e_“m~T+ N
R _ GGG;
|GG . G,G;
R(\u, ‘U) — n
o .F_l{R} |G0Gb|
i ' Gane'znﬁ(%ﬁf—P—'ﬁi)
- o uldz , vAy
(Az, Ay) = argmax{r} |G Ge®™ 3 )|
) G, G e+ 24)
GGy
— egﬂ'i{%%i+%%!)
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Phase Correlation

Image + noise Translated Image + noise Phase Correlation

50 | 50
100} 100
150 150
200 200
250 b i O _
50 100 150 200 250 50 100 150 200 250
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Connectomics

« Mapping connectivity patterns of neurons €99
— Sparse/Dense neural circuit reconstruction

* C. Elegans complete neural circuit [1975]
Q/ﬁ\_i

Mechanoreceptor
Neurons

— Electron micrographs .
— 302 neurons, 10 years manual effort
* Imagingis no longer the bottleneck...

— Serial section TEM (ssTEM)
* Image alignment problem ) o Motor Neurons
— Serial block face SEM (SBFSEM) forward )

» Stable block, no image alignment problem
* In-plane resolution limited

Interneurons

backward

— Serial section SEM (ssSEM) — 5 Genicsynapse:  @BIDASTIE
 Fast, can generate very large datasets — mgapjunction O[] DA receptive
* Image alignment problem Wormbook, www.wormbook.org

— Focused ion beam milling SEM (FIBSEM)

* No image alignment problem, isotropic resolution
* Smaller field of view

* Analysis is the bottleneck for reconstruction of larger neural circuits
— Fly brain
— Primate cortical column



Volume assembly

e Data:

— 0.2mm x 0.2mm area
— Each section: ~1000 tiles

— 341 sections at 90nm thickness
— Each image 4K x 4K pixels

* Assembling 2D sections

« Section-to-section registration

Serial section
TEM tiles

=y

Filtering

Neuron
segmentation

> Synapse

detection




Assembling 2D mosaics

* Find the displacement between tiles

— Closed-form solution using phase
correlation, Girod and Kuo’ 89

Fourier shift

theorem F[1(x=a)]=e™F[1(x)]
Normalized () EWFE W) .
cross power = =
spectrum ‘Fl(W)Fz (W)‘

Inverse Fourier transform of P interpreted
as a displacement probability distribution

— Need at least 10% overlap for reliable
displacement estimate




Ile mosaic
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