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Fourier Series 
 

•  J. B. Joseph 
Fourier, 1807 
– Any periodic function 

can be expressed as 
a weighted sum of 
sines and/or cosines 
of different 
frequencies. 
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What is the period of this function? 
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Fourier Series 
 •  f(t) periodic 

signal with 
period T 

•  Frequency of 
sines and 
cosines 
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The complex exponentials form an orthogonal basis 
for the range [-T/2,T/2] or any other interval with 
length T such as [0,T] 
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Types of functions  
Continuous 
f(t) 

Discrete 
f(n) 

Periodic Fourier series Discrete 
Fourier series 

Non-periodic Fourier 
transform 

Discrete 
Fourier 
transform 
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Fourier Transform Pair 

•  The domain of the Fourier transform is 
the frequency domain. 
–  If t is in seconds, mu is in Hertz (1/seconds) 

•  The function f(t) can be recovered from 
its Fourier transform. 
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Fourier Transform example 

•  Fourier transform of the box function is the 
sinc function. 

•  In general, the Fourier transform is a complex 
quantity. In this case it is real. 

•  The magnitude of the Fourier transform is a 
real quantity, called the Fourier spectrum (or 
frequency spectrum). 
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Convolution and Fourier Trans. 

Can see this by change of variables t’ = t - Τ
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•  Convolution in time domain is 
multiplication in frequency domain 

•  Multiplication in time domain is 
convolution in frequency domain 
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Unit impulse function 

•  Properties 
– Unit area 

– Sifting 
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Unit discrete impulse 

•  x: Discrete variable 

•  Properties 
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Fourier Transform of Impulses 
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Impulse train 

•  Periodic function 
(period = ΔT) so can 
be represented as a 
Fourier sum 

12 
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Fourier Trans. of Impulse Train 
Substitute for cn 

 

 

 
 
Linearity of Fourier 
transform 
 
Duality 
FT of an impulse 
train is an impuse 
train!  
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Proof of duality for impulses 
From before 
 
 
 
 
 
 
 
 
 
Take Fourier Trans. 
of both sides 



Discrete Sampling and Aliasing 

•  Digital signals and images are discrete 
representations of the real world  
– Which is continuous 

•  What happens to signals/images when we 
sample them? 
– Can we quantify the effects?   
– Can we understand the artifacts and can we limit 

them? 
– Can we reconstruct the original image from the 

discrete data? 
15 
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Sampling 

•  We can sample 
continuous function   
f(t) by multiplication 
with an impulse train 
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Fourier trans. of sampled func. 

•  What does this mean?  
17 



Fourier Transform of A Discrete Sampling 

18 

u 



Fourier Transform of A Discrete Sampling 

u 

Energy from higher 
freqs gets folded back 
down into lower freqs – 
Aliasing 

Frequencies get 
mixed.  The 
original signal is 
not recoverable. 



What if F(u) is Narrower in the Fourier Domain? 
•  No aliasing! 
•  How could we recover the original signal? 

20 

u 
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•  Fourier transform 
of band-limited 
signal 

•  Over-sampling 

•  Critically-sampling 

•  Under-sampling 
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What Comes Out of This Model 

•  Sampling criterion for complete recovery  
•  An understanding of the effects of sampling 

– Aliasing and how to avoid it 
•  Reconstruction of signals from discrete samples 
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Sampling theorem 

•  When can we recover 
f(t) from its sampled 
version? 
–  f(t) has to be band-

limited 
–  If we can isolate a 

single copy of F(µ) 
from the Fourier 
transform of the 
sampled signal. Nyquist rate 
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Sampling Theorem 

•  Quantifies the amount of information in a signal 
– Discrete signal contains limited frequencies 
– Band-limited signals contain no more information then 

their discrete equivalents 
•  Reconstruction by cutting away the repeated 

signals in the Fourier domain 
– Convolution with sinc function in space/time 
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Function recovery from sample 
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What is this function in time?  
It is a sinc function 



Reconstruction 

•  Convolution with sinc function 
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rect (�Tu)

Note: Sinc function has infinite 
duration. Why?  
Ideal reconstruction is not feasible 
in practice 
What happens if you truncate the 
sinc? 
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Aliasing example 
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Figure: 
Sampling 
rate less than 
Nyquist rate 

f (t) = sin(πt)

Period = 2, Frequency = 0.5 
Nyquist rate = 2 x 0.5 = 1 

Sampling rate must be strictly greater than the Nyquist 
rate. What happens if we sample this signal at exactly the 
Nyquist rate?  
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Inevitable aliasing 

•  No function of finite duration can be 
band-limited!!  

•  Assume we have a band-limited signal 
of infinite duration. We limit the duration 
by multiplication with a box function: 
– We already know the Fourier transform of 

the box function is a sinc function in 
frequency domain which extends to infinity. 

– Multiplication in time domain is convolution 
in frequency domain. Therefore, we 
destroyed the band-limited property of the 
original signal 
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Two-dimensional Fourier 
Transform Pair 

Properties from 1D carry over to 2D:  
Shifting in space <-> Multiplication with a complex 
exponential 
Duality of multiplication and convolution 
Etc..  
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2D impulse function 

30 6 
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2D sampling 

•  2D impulse train as sampling function 

•  Sampling theorem 
– Band-limited 

– Sampling rate limits 

31 
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Aliasing in images 

Over-sampled Under-sampled 
Aliasing 
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Aliasing example 

•  Digitizing a checkerboard pattern with 96 x 96 
sample array.  
–  We can resolve squares that have physical sides one 

pixel long or longer 
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16 pixels 8 pixels 

0.9174 
pixels 

0.4798 
pixels 
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Aliasing in images 

•  No time or space limited signal can be 
band limited 

•  Images always have finite extent 
(duration) so aliasing is always present 

•  Effects of aliasing can be reduced by 
slightly defocusing the scene to be 
digitized (blurring continuous signal) 

•  Resampling a digital image can also 
cause aliasing. 
– Blurring (averaging) helps reduce these 

effects 



Overcoming Aliasing 

•  Filter data prior to sampling 
–  Ideally - band limit the data (conv with sinc function) 
–  In practice - limit effects with fuzzy/soft low pass 
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Overcoming alising due to image 
resampling 
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Discrete Fourier Transform 

•  Fourier transform of sampled data was 
derived in terms of the transform of the 
original function: 

•  We want an expression in terms of the 
sampled function itself. From the 
definition of the Fourier Transform: 
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Discrete Fourier Trans. (DFT) 

•  Notice that the Fourier transform of the 
discrete signal fn is continuous and 
periodic! What is the period? 

•  We only need to sample one period of 
the Fourier transform. This is the DFT: 

– Samples taken at 

– m=0,1,...,M-1  
39 
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Discrete Fourier Transform Pair 

m=0,1,...,M-1 
 
 
n=0,1,...,M-1 

40 

Discrete signal f0, …, fM-1 
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2D Discrete Fourier Transform 

• Notation: From now on we will use x,y and u,v to 
denote discrete variables. 

• f(x,y) is a M x N digital image 
• F(u,v) is also a 2D matrix of size M x N. Its 
elements are complex quantities. 
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Spatial and frequency intervals 

•  The entire range of frequencies 
spanned by the DFT is 

•  The relationship between the spatial 
and frequency intervals is  
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Periodicity of DFT and 2D DFT 

•  Above result holds because k and x are 
integers. This also implies f(x) obtained 
by the inverse DFT is periodic! For 2D: 
– F( u, v ) = F( u + k1M , v + k2N ) 
–  f( x, y ) = f( x + k1M , y + k2N )  
– k1 and k2 integers 43 
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Fourier spectrum and phase 

•  Since the DFT is a complex quantity it 
can also be expressed in polar 
coordinates:   

44 4-quadrant arctangent, atan2 command in MATLAB  



Fourier Spectrum 

45 

Fourier spectrum 
Origin in corners 

Retiled with origin 
In center 

Log of spectrum 

Image 
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Translation properties 

•  Translation in space  

•  Translation in frequency 
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Note: Centering the Fourier transform is a shift in frequency with u0 = M/2 
and v0 = N/2 which is a multiplication by (-1)x+y in space 
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Centering the DFT 

We want half 
period (M/2) 
shift in the 
frequency 
domain:  
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In 2D... 
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Translation and rotation 
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• Translation in 
space only 
effects the 
phase but not 
the spectrum of 
the DFT 

• Rotation in 
space rotates 
the DFT (and 
hence the 
spectrum) by 
the same angle  
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Phase information 

•  Phase angle is not intuitive, but it is 
critical. It determines how the various 
frequency sinusoids add up. This gives 
result to shape!  50 
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Importance of phase angle 
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