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Fourier Series

. J. B. Joseph AVATATAVAVATAVATATATATA

Fourier, 1807

— Any periodic function
can be expressed as
a weighted sum of
sines and/or cosines

of different
frequencies.

=Y cd®D

. . : N
Nn=—00 What is the period of this function”
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Fourier Series

* f(t) periodic
Z c, e’ signal with
n=—oo perlOdT
* Frequency of
sines and
1 T/2 / cosines
Cpn = f/ f(t)e_j@tdt

—T/2

The complex exponentials form an orthogonal basis
for the range [-T/2,T/2] or any other interval with
length T such as [0, T
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Types of functions

Continuous Discrete
f(t) f(n)
Periodic Fourier series |Discrete
Fourier series
Non-periodic |Fourier Discrete
transform Fourier

transform




Fourier Transform Pair
F( = F{f®) = | f)emar

p=00

f(t)=F H{F(n)} = F(p)e* ™ dy

p=—00

 The domain of the Fourier transform is
the frequency domain.
—If tis in seconds, mu is in Hertz (1/seconds)

* The function f(t) can be recovered from
Its Fourier transform.
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Fourier Transform example

F(pr) |F(,u')|

A

~1/W /W
5 = > [ 'AVAVAV/\\] /[\V V/\V/\‘ - L -1
-W/2 0 W/2 o J‘V 0 |\ e oW - VAR AN "

/ -1w 1w <
* Fourier transform of the box function is the
sinc function.

* In general, the Fourier transform is a complex
quantity. In this case it is real.

* The magnitude of the Fourier transform is a
real quantity, called the Fourier spectrum (or
frequency spectrum).
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Convolution and Fourier Trans.
F(t) % h(t) = / F(r)h(t - 7)d
F{ft)xh(t)} = / [/ f(r)h(t —T d'r] e I2mHE gy

= /_ N f(7) [ /_ - h(t—'r)e_j%“tdt} dr
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Can see this by change of variables t =t-T F{h(t—7)}=H(pn)e=327k7

B /_oo f(r)H(p)e ™" dr
(

G [ () dr = H(u)F ()



» Convolution in time domain is
multiplication in frequency domain

* Multiplication in time domain is
convolution in frequency domain

f(t)xh(t) <= Hp)F(p)
f)h(t) <= H(p)*F(p)




Unit impulse function

oo tf t=0
5(t):{ 0 if t#0

* Properties oo
— Unit area / o(t)dt =1

sitng | /080t = £0)

/ T FO8(E—to)dt = f(t,)



Unit discrete impulse

 X: Discrete variable

1 if z=0
5("”')“{0 if x#0

. ProBerties
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Fourier Transform of Impulses

F{5(t) = / 5(t)e—T2mht gy
. e—J2mu0 _ 0 _ 1
F{6(t—to)} = / 6(t — to)e 72™Htd¢

cos 2mut, — 7 81n 2wt
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Impulse train

sar(t) = i O(t —nAT)

n——oo T 3AT —2AT —AT 0 AT 2AT AT ... |
OO Y * Periodic function
SAT (t) — E c, e’ ATt (period = AT) so can
be represented as a
”2_100 AT /2 Fou;ier sum
Crh, = —— 6(t)e I AT bt
AT J_aT1/2
1 1
p— 60
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Fourier Trans. of Impulse Train

]- > 2T .
__ ATt Substitute for cn
saT(t) = — Z el AT
AT =
1 < .2m
f{SAT(t)} = }—{E Z e’ Tt}
1 oo'nz—oo Linearity of Fourier

_ T ejz"—%"t} transform

NP IRA

Duality

1 n
AT Z 5(“_E)FTofanimpulse

. . S train is an impuse
Duality - of  F{f(@)} — F(1) | trains

then F{F(t)} — f(—t)
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Proof of duality for impulses

F{o(t—t,)} = e J2THto  Erom before

F-ay = [ d-aetma

— 0O

= / §(—p +a)e??™Hidy,

/ 5(‘1’/ + a)e—jZWM’tdul
ej27rat

j:‘{ej%at} Take Fourier Trans.

_ of both sides
]:{6327rat}

F{F{6(n—a)}}
ok — a)
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Discrete Sampling and Aliasing

* Digital signals and images are discrete
representations of the real world

— Which is continuous

* What happens to signals/images when we
sample them?
— Can we quantify the effects?

— Can we understand the artifacts and can we limit
them?

— Can we reconstruct the original image from the
discrete data?
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Sampling

« We can sample A/\/\\/\/\

continuous function

f(t) by multiplication o
with an impulse train ‘ ‘ ‘ | ‘ | | ‘
f&) = f(®)sar(t) ST ST .
= Y f@®st—naT) H )
o A e b
fu = f(kAT) maen
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— / f(t)é(t_kAT)dtT | 7 L1 0 I T T | T Loy



Fourier trans. of sampled func.

F(p) =

F{f(t)sar(t)} e Z{Aii}}

F(u) * S(p) < e
1 o ® o0 n

E/_@F(T)n;wé(u—'r— E) dr

ar 2 | FO8 (=7 zp)dr
1 < n

 \What does this mean?
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Fourier Transform of A Discrete Sampling

~

ft) = ft)s(t) «~—— F(u)=F(u)*S(u)

.. =3AT —2AT —-AT 0 T 3AT .- ' 3 2 1 1 2
AT AT AT

AT 2A

u
AT AT AT
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Fourier Transform of A Discrete Sampling

e F(w) = F) S

original signal is

2 1 1 2 3
N AT AT AT AT AT
Energy from higher
freqs gets folded back

down into lower freqs -
Aliasing



What if F(u) is Narrower in the Fourier Domain?

* No aliasing!
 How could we recover the original signal?




 Fourier transform A

of band-limited
signal / \

0 e
IF(M)
* Qver-sampling /\ /\ /\ /\ /\
—l/AT 1/_\T 7/AT
F(n)
» Critically-sampling /\/\/\/\/\
} } i } - [
-2/AT  —1/AT 0 1/AT 2/AT
f(u)
T nAErSATPINg - AAANNANAN
—3}/AT —2{/AT —IE/AT 0 I/AT 2/fAT 3/AT o
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What Comes QOut of This Model

« Sampling criterion for complete recovery

* An understanding of the effects of sampling
— Aliasing and how to avoid it

 Reconstruction of signals from discrete samples
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F(u

~ M max 0

f(u

Sampling theorem

« When can we recover

f(t) from its sampled V\/\
version? | /

—f{(t) has to be band- A
limited F(p) =0 Vu > tmas
— |f we can isolate a where Umaz < OC

single copy of F(u)
from the Fourier 1

transform of the AT
sampled signal.

> QMTTL(LL

Nyquist rate

ez & R. E. Woods



Sampling Theorem

* Quantifies the amount of information in a signal
— Discrete signal contains limited frequencies

— Band-limited signals contain no more information then
their discrete equivalents

 Reconstruction by cutting away the repeated
signals in the Fourier domain

— Convolution with sinc function in space/time
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Function recovery from sample

F(u)

>
>
<
>
>

-

o

I |
1/AT 2/AT

=
=
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[
~N

What is this function in time?
It is a sinc function
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Reconstruction

e Convolution with sinc function

F(t) = F&)+F! [rect (ATu)}
= (; fro(t — kAT)) xsinc (ﬁ) = ka sinc ( AT

Note: Sinc function has infinite
duration. Why?

|deal reconstruction is not feasible
in practice

What happens if you truncate the
sinc?
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Aliasing example

. el Figure:
f(t) = Sln(ﬂt) |l ll l.i. " ll '] || 'I '. " I. |‘ l, Il l. rl : rl l. " l, II Sagmpling
,"l.i||'| l |.|,II|,',I.II|'
S 4 ratelessthan
VL] L L RIBIRIBIRY Nyquist rate

~

_>| AT }4_
Period = 2, Frequency = 0.5
Nyquist rate =2 x 0.5 =1

Sampling rate must be strictly greater than the Nyquist
rate. What happens if we sample this signal at exactly the
Nyquist rate?
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Inevitable aliasing

 No function of finite duration can be
band-limited!!

 Assume we have a band-limited signal
of infinite duration. We limit the duration
by multiplication with a box function:

— We already know the Fourier transform of
the box function is a sinc function in
frequency domain which extends to infinity.

— Multiplication in time domain is convolution
in frequency domain. Therefore, we
destroyed the band-limited property of the

original signal
28



Two-dimensional Fourier
Transform Pair

= / / f(t, z)e 32 Httv2) i,
f(t,z) / / V) el 2T BHV2) dy dy

Properties from 1D carry over to 2D:

Shifting in space <-> Multiplication with a complex
exponential

Duality of multiplication and convolution

Etc..
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2D impulse function
] oo if t=2=0
o(t, 2) = { 0 <f otherwise

/ / O(t,z)dtdz = 1

/_ f(t,2)0(t —to, 2 — 25)dt = f(to, 20)

)



2D sampling

« 2D impulse train as sampling function

saraz(t,z) = Z Z O(t — mAT,z—nAZ)

Mm=—00 N=—00

« Sampling theorem
— Band-limited

I
F(u,v) =0 for p> pmaz OT V > Vmag I ' <]J\"T|\'\'\
| » /n/LtT%‘j I

— Sampling rate limits

1

1
A M 2 max A r7 2 max
AT = H Az~
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Aliasing In images

Footprint of an

ideal lowpass
/ (box) filter

L r
| I
] I
| v
|
. / - _l .
M max <> Vv
max

\

Over-sampled

© 1992-2008 R. C. Gonzalez & R. E. Woods

Under-sampled
Aliasing

32



Aliasing example

 Digitizing a checkerboard pattern with 96 x 96
sample array.

— We can resolve squares that have physical sides one
pixel long or longer

0.4798
pixels

0.9174
pixels
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Aliasing In images

* No time or space limited signal can be
band limited

* Images always have finite extent
(duration) so aliasing is always present

» Effects of aliasing can be reduced by
slightly defocusing the scene to be
digitized (blurring continuous signal)

 Resampling a digital image can also
cause aliasing.

— Blurring (averaging) helps reduce the33e4
effects



Overcoming Aliasing

* Filter data prior to sampling
— |deally - band limit the data (conv with sinc function)
— In practice - limit effects with fuzzy/soft low pass

/T [
Jiil
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Overcoming alising due to image
resampling

e
//4///// m

abc

FIGURE 4.17 Illustration of aliasing on resampled images. (a) A digital image with negligible visual aliasing.
(b) Result of resizing the image to 50% of its original size by pixel deletion. Aliasing is clearly visible.
(c) Result of blurring the image in (a) with a 3 X 3 averaging filter prior to resizing. The image is slightly
more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Signal
Compression Laboratory, University of California, Santa Barbara.)
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Discrete Fourier Transform

* Fourier transform of sampled data was
derived in terms of the transform of the

original function:
oo

F(“):ﬁ 2. F(“ AnT)

n=-—oo

* We want an expression in terms of the
sampled function itself. From the
definition of the Fourier Transform:

Foo= [ Fwesma

— OO 37




/.
;

2.

n=-—oo

6. @)

2.

n=—oo

f(t)e I2mrt gy

Y f()8(t — nAT)e > dt
f()6(t — nAT)e 72"+ gt

f e—j27r,unAT
n
fo = f(kAT)
_ / F(0)0(t — KAT)dt
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Discrete Fourier Trans. (DFT)

* Notice that the Fourier transform of the
discrete signal f, is continuous and
periodic! What is the period?

* We only need to sample one period of
the Fourier transform. This is the DFT:

™m

—Samples taken at H = MAT

- m=0,1,..., M-1

M-—1
Fm — Z f'n,e_j
n=0

2mmmn /M

39




Discrete Fourier Transform Pair

Discrete signal f,, ..., fy,
M—1
Fro= Y fae ?2mm/M =01, M-1
n=0
| M-l
_ = j2rmn/M n=0,1,..., M-1
fn= 1" mZ:O Frne
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2D Discrete Fourier Transform

M—-1N-1
= >3 fl@y)e TR
=0 y=0
M—-1N-1
flz,y) = ZZFU’U 32 (57 + %)
u=0 v=0

* Notation: From now on we will use x,y and u,v to
denote discrete variables.

*f(x,y) is a M x N digital image

*F(u,v) is also a 2D matrix of size M x N. Its

elements are complex quantities. .



Spatial and frequency intervals

* The entire range of frequencies
spanned by the DFT is

1 1

u € _O’E_ and v € |0, —

* The relationship between the spatial

and frequency intervals is

1 1
AU_MAT cmdAv—NAZ
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Periodicity of DFT and 2D DFT

M—1
Flu+ kM) = Z f(z)e 92m(utkM)z/M
=0

M-—1

_ (Z f(x)ej%rux/M) e—j27rka:
=0

= F(u)

* Above result holds because k and x are
integers. This also implies f(x) obtained
by the inverse DFT is periodic! For 2D:
—F(u,v)=F(u+kiM,v+kaN)
—f(x,y)=f(x+kiM,y+kaN)

— k1 and kzintegers 43



Fourier spectrum and phase

* Since the DFT is a complex quantity it

can also be expressed in polar

coordinates:

F(u,v) = R(u,v) + jI(u,v)

F(u,v) = |F(u,v) |63¢(U,’0)
Fu,v)l = \/RQ(UZ’U) + Izgu, V)

¢(u,v) = arctan é(&’ ?;))

4-quadrant arctangent, atan2 command in MATLAB



Fourier Spectrum

Image

Fourier spectrum
Origin in corners
)
Retiled with origin Log of spectrum
In center

-~
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Translation properties

* Translation in space

F(Z = Toyy — o) <> F(u,v)e I27(F +1%°)

* Translation in frequency

f(CL', y)ej27r($1\1jfo+y;\)ro) S F(fu, — Upy, VUV — ’UO)

Note: Centering the Fourier transform is a shift in frequency with u, = M/2
and v, = N/2 which is a multiplication by (-1)**Y in space
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Centering the DFT

periods meet here.

|

Two back-to-back - | .

R
We want half - M1
period (M/2) :
shift in the Two bﬂck-)to-biglf
frequency S l ll

" . | .. .."_‘,.“-~ L . | . ‘. ., ...'.‘-'.‘-.:
domain: | 0 ™~ M2 M- 1

‘<— One period (M samples) —

(M/2)z

f(x)ed*™ m <= F(u—M/2)
f(@)e?™ <= F(u— M/2)
f2)(=1)" <= F(u—-M/2)



V<= F(u— M/2,v— N/2)

Four back-to-back

periods meet here.

| | = Periods of the DFT.

D = M X N data array, F(u, v).
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Translation and rotation

*Translation in
space only
effects the
phase but not
the spectrum of
the DFT

*Rotation in
space rotates
the DFT (and
hence the
spectrum) by
the same angle
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Phase information

abc

FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle
in Fig. 4.24(a), (b) to the translated image in Fig. 4.25(a), and (c) to the rotated image in
Fig.4.25(c).

* Phase angle is not intuitive, but it is
critical. It determines how the various
frequency sinusoids add up. This gives
result to shape! 50
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Importance of phase

abc
de f

FIGURE 4.27 (a) Woman. (b) Phase angle. (¢) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e¢) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.
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