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The Reinforcement Learning Problem

In this chapter we introduce the problem that we try to solve in the rest of the book.
For us, this problem defines the field of reinforcement learning: any method that is
suited to solving this problem we consider to be a reinforcement learning method.

Our objective in this chapter is to describe the reinforcement learning problem in
a broad sense. We try to convey the wide range of possible applications that can be
framed as reinforcement learning tasks. We also describe mathematically idealized
forms of the reinforcement learning problem for which precise theoretical statements
can be made. We introduce key elements of the problem’s mathematical structure,
such as value functions and Bellman equations. As in all of artificial intelligence,
there is a tension between breadth of applicability and mathematical tractability.
In this chapter we introduce this tension and discuss some of the trade-offs and
challenges that it implies.

31 The Agent-Environment Interface

The reinforcement learning problem is meant to be a straightforward framing of the
problem of learning from interaction to achieve a goal. The learner and decision-
maker is called the agent. The thing it interacts with, comprising everything outside
the agent, is called the environment. These interact continually, the agent selecting
actions and the environment responding to those actions and presenting new situa-
tions to the agent.! The environment also gives rise to rewards, special numerical

I. We use the terms agent, environment, and action instead of the engineers’ terms controller,
controlled system (or plant), and control signal because they are meaningful to a wider
audience.
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Figure 3.1 The agent—environment interaction in reinforcement learning.

values that the agent tries to maximize over time. A complete specification of an
environment defines a rask, one instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence of

discrete time steps, t =0,1,2,3, .. .. % At each time step 7, the agent receives some
representation of the environment’s state, s; € §, where § is the set of possible states,
and on that basis selects an action, a; € A(s;), where A(s;) is the set of actions
available in state s,. One time step later, in part as a consequence of its action, the
agent receives a numerical reward, r;+) € N, and finds itself in a new state, Sl
Figure 3.1 diagrams the agent—environment interaction.

At each time step, the agent implements a mapping from states to probabilities
of selecting each possible action. This mapping is called the agent’s policy and is
denoted 7, where (s, a) is the probability that a; = a if s, = 5. Reinforcement
learning methods specify how the agent changes its policy as a result of its experi-
ence. The agent’s goal, roughly speaking, is to maximize the total amount of reward
it receives over the long run.

This framework is abstract and flexible and can be applied to many different
problems in many different ways. For example, the time steps need not refer to fixed
intervals of real time; they can refer to arbitrary successive stages of decision-making
and acting. The actions can be low-level controls, such as the voltages applied to the
motors of a robot arm, or high-level decisions, such as whether or not to have lunch
or to go to graduate school. Similarly, the states can take a wide variety of forms.

2. We restrict attention to discrete time to keep things as simple as possible, even though many

of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis,
1996; Werbos, 1992: Doya, 1996).

3. We use r;; instead of r; to denote the immediate reward due to the action taken at time f
because it emphasizes that the next reward and the next state, s, are jointly determined.
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3.1 The Agent—Environment Interface

They can be completely determined by low-level sensations, such as direct sensor
readings, or they can be more high-level and abstract, such as symbolic descriptions
of objects in a room. Some of what makes up a state could be based on memory
of past sensations or even be entirely mental or subjective. For example, an agent
could be in “the state” of not being sure where an object is, or of having just been
“surprised” in some clearly defined sense. Similarly, some actions might be totally
mental or computational. For example, some actions might control what an agent
chooses to think about, or where it focuses its attention. In general, actions can be
any decisions we want to learn how to make, and the states can be anything we can
know that might be useful in making them.

In particular, the boundary between agent and environment is not often the same as
the physical boundary of a robot’s or animal’s body. Usually, the boundary is drawn
closer to the agent than that. For example, the motors and mechanical linkages of a
robot and its sensing hardware should usually be considered parts of the environment
rather than parts of the agent. Similarly, if we apply the framework to a person or
animal, the muscles, skeleton, and sensory organs should be considered part of the
environment. Rewards, too, presumably are computed inside the physical bodies of
natural and artificial learning systems, but are considered external to the agent.

The general rule we follow is that anything that cannot be changed arbitrarily by
the agent is considered to be outside of it and thus part of its environment. We do
not assume that everything in the environment is unknown to the agent. For example,
the agent often knows quite a bit about how its rewards are computed as a function
of its actions and the states in which they are taken. But we always consider the
reward computation to be external to the agent because it defines the task facing the
agent and thus must be beyond its ability to change arbitrarily. In fact, in some cases
the agent may know everything about how its environment works and still face a
difficult reinforcement learning task, just as we may know exactly how a puzzle like
Rubik’s cube works, but still be unable to solve it. The agent—environment boundary
represents the limit of the agent’s absolute control, not of its knowledge.

The agent—environment boundary can be located at different places for different
purposes. In a complicated robot, many different agents may be operating at once,
each with its own boundary. For example, one agent may make high-level decisions
which form part of the states faced by a lower-level agent that implements the high-
level decisions. In practice, the agent—environment boundary is determined once one
has selected particular states, actions, and rewards, and thus has identified a specific
decision-making task of interest.

The reinforcement learning framework is a considerable abstraction of the prob-
lem of goal-directed learning from interaction. It proposes that whatever the details
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of the sensory, memory, and control apparatus, and whatever objective one is trying
to achieve, any problem of learning goal-directed behavior can be reduced to three
signals passing back and forth between an agent and its environment: one signal to
represent the choices made by the agent (the actions), one signal to represent the basis
on which the choices are made (the states), and one signal to define the agent’s goal
(the rewards). This framework may not be sufficient to represent all decision-learning
problems usefully, but it has proved to be widely useful and applicable.

Of course, the particular states and actions vary greatly from application to ap-
plication, and how they are represented can strongly affect performance. In rein-
forcement learning, as in other kinds of learning, such representational choices are
at present more art than science. In this book we offer some advice and examples
regarding good ways of representing states and actions, but our primary focus is on
general principles for learning how to behave once the representations have been
selected.

Example 3.1: Bioreactor Suppose reinforcement learning is being applied to de-
termine moment-by-moment temperatures and stirring rates for a bioreactor (a large
vat of nutrients and bacteria used to produce useful chemicals). The actions in such
an application might be target temperatures and target stirring rates that are passed to
lower-level control systems that, in turn, directly activate heating elements and mo-
tors to attain the targets. The states are likely to be thermocouple and other sensory
readings, perhaps filtered and delayed, plus symbolic inputs representing the ingre-
dients in the vat and the target chemical. The rewards might be moment-by-moment
measures of the rate at which the useful chemical is produced by the bioreactor. No-
tice that here each state is a list, or vector, of sensor readings and symbolic inputs,
and each action is a vector consisting of a target temperature and a stirring rate. It is
typical of reinforcement learning tasks to have states and actions with such structured
representations. Rewards, on the other hand, are always single numbers. al

Example 3.2: Pick-and-Place Robot Consider using reinforcement learning to
control the motion of a robot arm in a repetitive pick-and-place task. If we want
to learn movements that are fast and smooth, the learning agent will have to control
the motors directly and have low-latency information about the current positions and
velocities of the mechanical linkages. The actions in this case might be the voltages
applied to each motor at each joint, and the states might be the latest readings of
joint angles and velocities. The reward might be +1 for each object successfully
picked up and placed. To encourage smooth movements, on each time step a small,
negative reward can be given as a function of the moment-to-moment “jerkiness” of

the motion. [ ]
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3.1 The Agent—Environment Interface

Example 3.3: Recycling Robot A mobile robot has the job of collecting empty
soda cans in an office environment. It has sensors for detecting cans, and an arm
and gripper that can pick them up and place them in an onboard bin; it runs on
a rechargeable battery. The robot’s control system has components for interpret-
ing sensory information, for navigating, and for controlling the arm and gripper.
High-level decisions about how to search for cans are made by a reinforcement learn-
ing agent based on the current charge level of the battery. This agent has to decide
whether the robot should (1) actively search for a can for a certain period of time,
(2) remain stationary and wait for someone to bring it a can, or (3) head back to its
home base to recharge its battery. This decision has to be made either periodically
or whenever certain events occur, such as finding an empty can. The agent there-
fore has three actions, and its state is determined by the state of the battery. The
rewards might be zero most of the time, but then become positive when the robot
secures an empty can, or large and negative if the battery runs all the way down. In
this example, the reinforcement learning agent is not the entire robot. The states it
monitors describe conditions within the robot itself, not conditions of the robot’s ex-
ternal environment. The agent’s environment therefore includes the rest of the robot,
which might contain other complex decision-making systems, as well as the robot’s
external environment. [ ]

Exercise 3.1 Devise three example tasks of your own that fit into the reinforcement
learning framework, identifying for each its states, actions, and rewards. Make the
three examples as different from each other as possible. The framework is abstract
and flexible and can be applied in many different ways. Stretch its limits in some way
in at least one of your examples.

Exercise 3.2 s the reinforcement learning framework adequate to usefully repre-
sent all goal-directed learning tasks? Can you think of any clear exceptions?

Exercise 3.3 Consider the problem of driving. You could define the actions in terms
of the accelerator, steering wheel, and brake, that is, where your body meets the
machine. Or you could define them farther out—say, where the rubber meets the
road, considering your actions to be tire torques. Or you could define them farther
in—say, where your brain meets your body, the actions being muscle twitches to
control your limbs. Or you could go to a really high level and say that your actions
are your choices of where to drive. What is the right level, the right place to draw the
line between agent and environment? On what basis is one location of the line to be
preferred over another? Is there any fundamental reason for preferring one location
over another, or is it a free choice?
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Is and Rewards

In reinforcement learning, the purpose or goal of the agent is formalized in terms of
a special reward signal passing from the environment to the agent. At each time step,
the reward is a simple number, r; € ). Informally, the agent’s goal is to maximize the
total amount of reward it receives. This means maximizing not immediate reward, but
cumulative reward in the long run.

The use of a reward signal to formalize the idea of a goal is one of the most
distinctive features of reinforcement learning. Although this way of formulating
goals might at first appear limiting, in practice it has proved to be flexible and widely
applicable. The best way to see this is to consider examples of how it has been, or
could be, used. For example, to make a robot learn to walk, researchers have provided
reward on each time step proportional to the robot’s forward motion. In making a
robot learn how to escape from a maze, the reward is often zero until it escapes, when
it becomes +1. Another common approach in maze learning is to give a reward of
— I for every time step that passes prior to escape; this encourages the agent to escape
as quickly as possible. To make a robot learn to find and collect empty soda cans for
recycling, one might give it a reward of zero most of the time, and then a reward of
+1 for each can collected (and confirmed as empty). One might also want to give the
robot negative rewards when it bumps into things or when somebody yells at it. For
an agent to learn to play checkers or chess, the natural rewards are +1 for winning,
—1 for losing, and 0 for drawing and for all nonterminal positions.

You can see what is happening in all of these examples. The agent always learns to
maximize its reward. If we want it to do something for us, we must provide rewards
to itin such a way that in maximizing them the agent will also achieve our goals. It is
thus critical that the rewards we set up truly indicate what we want accomplished. In
particular, the reward signal is not the place to impart to the agent prior knowledge
about how to achieve what we want it to do.* For example, a chess-playing agent
should be rewarded only for actually winning, not for achieving subgoals such as
taking its opponent’s pieces or gaining control of the center of the board. If achieving
these sorts of subgoals were rewarded, then the agent might find a way to achieve
them without achieving the real goal. For example, it might find a way to take the
opponent’s pieces even at the cost of losing the game. The reward signal is your way

4. Better places for imparting this kind of prior knowledge are the initial policy or value
function, or in influences on these. See Lin (1992), Maclin and Shavlik (1994). and Clouse
(1996).
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of communicating to the agent what you want it to achieve, not how you want it
achieved.

Newcomers to reinforcement learning are sometimes surprised that the rewards—
which define of the goal of learning—are computed in the environment rather than in
the agent. Certainly most ultimate goals for animals are recognized by computations
occurring inside their bodies, for example, by sensors for recognizing food, hunger,
pain, and pleasure. Nevertheless, as we discussed in the previous section, one can
redraw the agent—environment interface in such a way that these parts of the body
are considered to be outside of the agent (and thus part of the agent’s environment).
For example, if the goal concerns a robot’s internal energy reservoirs, then these are
considered to be part of the environment; if the goal concerns the positions of the
robot’s limbs, then these too are considered to be part of the environment—that is,
the agent’s boundary is drawn at the interface between the limbs and their control
systems. These things are considered internal to the robot but external to the learning
agent. For our purposes, it is convenient to place the boundary of the learning agent
not at the limit of its physical body, but at the limit of its control.

The reason we do this is that the agent’s ultimate goal should be something
over which it has imperfect control: it should not be able, for example, to simply
decree that the reward has been received in the same way that it might arbitrarily
change its actions. Therefore, we place the reward source outside of the agent. This
does not preclude the agent from defining for itself a kind of internal reward, or
a sequence of internal rewards. Indeed, this is exactly what many reinforcement
learning methods do.

3.3 Returns

So far we have been imprecise regarding the objective of learning. We have said that
the agent’s goal is to maximize the reward it receives in the long run. How might
this be formally defined? If the sequence of rewards received after time step 7 is
denoted r;41, 1142, 7143, - . ., then what precise aspect of this sequence do we wish
to maximize? In general, we seek to maximize the expected return, where the return,
R, is defined as some specific function of the reward sequence. In the simplest case
the return is the sum of the rewards:

Ri=rip1+rqo+re3+---+rr, (3.1)

where T is a final time step. This approach makes sense in applications in which there
is a natural notion of final time step, that is, when the agent—environment interaction
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breaks naturally into subsequences, which we call episodes,’ such as plays of a game,
trips through a maze, or any sort of repeated interactions. Each episode ends in a
special state called the terminal state, followed by a reset to a standard starting state
or to a sample from a standard distribution of starting states. Tasks with episodes of
this kind are called episodic tasks. In episodic tasks we sometimes need to distinguish
the set of all nonterminal states, denoted §, from the set of all states plus the terminal
state, denoted S.

On the other hand, in many cases the agent—-environment interaction does not
break naturally into identifiable episodes, but goes on continually without limit. For
example, this would be the natural way to formulate a continual process-control task,
or an application to a robot with a long life span. We call these continuing tasks. The
return formulation (3.1) is problematic for continuing tasks because the final time
step would be T = oo, and the return, which is what we are trying to maximize,
could itself easily be infinite. (For example, suppose the agent receives a reward of
+1 at each time step.) Thus, in this book we usually use a definition of return that is
slightly more complex conceptually but much simpler mathematically.

The additional concept that we need is that of discounting. According to this
approach, the agent tries to select actions so that the sum of the discounted rewards
it receives over the future is maximized. In particular, it chooses a; to maximize the
expected discounted return:

o0
Ri=ri+yrpe+yirnga+---= Z YEr kst (3.2)
k=0

where y is a parameter, 0 < y < |, called the discount rate.

The discount rate determines the present value of future rewards: a reward received
k time steps in the future is worth only y*=1 times what it would be worth if it were
received immediately. If y < 1, the infinite sum has a finite value as long as the
reward sequence {ry} is bounded. If y = 0, the agent is “myopic” in being concerned
only with maximizing immediate rewards: its objective in this case is to learn how
to choose a; so as to maximize only r,4. If each of the agent’s actions happened
to influence only the immediate reward, not future rewards as well, then a myopic
agent could maximize (3.2) by separately maximizing each immediate reward. But
in general, acting to maximize immediate reward can reduce access to future rewards
so that the return may actually be reduced. As y approaches 1, the objective takes
future rewards into account more strongly: the agent becomes more farsighted.

5. Episodes are often called “trials” in the literature.
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— = —

Figure 3.2 The pole-balancing task.

Example 3.4: Pole-Balancing Figure 3.2 shows a task that served as an early
illustration of reinforcement learning. The objective here is to apply forces to a cart
moving along a track so as to keep a pole hinged to the cart from falling over. A
failure is said to occur if the pole falls past a given angle from vertical or if the cart
reaches an end of the track. The pole is reset to vertical after each failure. This task
could be treated as episodic, where the natural episodes are the repeated attempts to
balance the pole. The reward in this case could be 41 for every time step on which
failure did not occur, so that the return at each time would be the number of steps
until failure. Alternatively, we could treat pole-balancing as a continuing task, using
discounting. In this case the reward would be —1 on each failure and zero at all other
times. The return at each time would then be related to —y¥, where k is the number
of time steps before failure. In either case, the return is maximized by keeping the
pole balanced for as long as possible. =

Exercise 3.4 Suppose you treated pole-balancing as an episodic task but also used
discounting, with all rewards zero except for —1 upon failure. What then would
the return be at each time? How does this return differ from that in the discounted,
continuing formulation of this task?

Exercise 3.5 Imagine that you are designing a robot to run a maze. You decide
to give it a reward of +1 for escaping from the maze and a reward of zero at all
other times. The task seems to break down naturally into episodes—the successive
runs through the maze—so you decide to treat it as an episodic task, where the goal
is to maximize expected total reward (3.1). After running the learning agent for a
while, you find that it is showing no improvement in escaping from the maze. What
is going wrong? Have you effectively communicated to the agent what you want it
to achieve?
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convention (
In the preceding section we described two kinds of reinforcement learning tasks, one possibility t
in which the agent—environment interaction naturally breaks down into a sequence Alternativel
of separate episodes (episodic tasks), and one in which it does not (continuing ,
tasks). The former case is mathematically easier because each action affects only R, — Z y
the finite number of rewards subsequently received during the episode. In this book : P '

we consider sometimes one kind of problem and sometimes the other, but often both.

It is therefore useful to establish one notation that enables us to talk precisely about including th

both cases simultaneously. tions throug

To be precise about episodic tasks requires some additional notation. Rather than parallels be
one long sequence of time steps, we need to consider a series of episodes, each
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(here T' = 3) or over the full infinite sequence. This remains true even if we introduce
discounting. Thus, we can define the return, in general, according to (3.2), using the
convention of omitting episode numbers when they are not needed, and including the
possibility that y = 1 if the sum remains finite (e.g., because all episodes terminate).
Alternatively, we can also write the return as

T

k
R = Z Y Tkl (

k=0

(98}
%)

including the possibility that 7 = oo or y = 1 (but not both®). We use these conven-
tions throughout the rest of the book to simplify notation and to express the close
parallels between episodic and continuing tasks.

*3.5 The Markov Property
In the reinforcement learning framework, the agent makes its decisions as a function
of a signal from the environment called the environment’s state. In this section we
discuss what is required of the state signal, and what kind of information we should
and should not expect it to provide. In particular, we formally define a property of
environments and their state signals that is of particular interest, called the Markov
property.

In this book, by “the state” we mean whatever information is available to the agent.
We assume that the state is given by some preprocessing system that is nominally
part of the environment. We do not address the issues of constructing, changing, or
learning the state signal in this book. We take this approach not because we consider
state representation to be unimportant, but in order to focus fully on the decision-
making issues. In other words, our main concern is not with designing the state
signal, but with deciding what action to take as a function of whatever state signal is
available.

Certainly the state signal should include immediate sensations such as sensory
measurements, but it can contain much more than that. State representations can be
highly processed versions of original sensations, or they can be complex structures

6. Ways to formulate tasks that are both continuing and undiscounted are subjects of current
research (e.g., Mahadevan, 1996; Schwartz, 1993; Tadepalli and Ok, 1994). Some of the ideas
are discussed in Section 6.7.
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built up over time from the sequence of sensations. For example, we can move our
eyes over a scene, with only a tiny spot corresponding to the fovea visible in detail
at any one time, yet build up a rich and detailed representation of a scene. Or, more
obviously, we can look at an object, then look away, and know that it is still there.
We can hear the word “yes” and consider ourselves to be in totally different states
depending on the question that came before and which is no longer audible. At a
more mundane level, a control system can measure position at two different times
to produce a state representation including information about velocity. In all of these
cases the state is constructed and maintained on the basis of immediate sensations
together with the previous state or some other memory of past sensations. In this
book, we do not explore how that is done, but certainly it can be and has been done.
There is no reason to restrict the state representation to immediate sensations; in
typical applications we should expect the state representation to be able to inform
the agent of more than that.

On the other hand, the state signal should not be expected to inform the agent of
everything about the environment, or even everything that would be useful to it in
making decisions. If the agent is playing blackjack, we should not expect it to know
what the next card in the deck is. If the agent is answering the phone, we should not
expect it to know in advance who the caller is. If the agent is a paramedic called to
a road accident, we should not expect it to know immediately the internal injuries
of an unconscious victim. In all of these cases there is hidden state information in
the environment, and that information would be useful if the agent knew it, but the
agent cannot know it because it has never received any relevant sensations. In short,
we don’t fault an agent for not knowing something that matters, but only for having
known something and then forgotten it!

What we would like, ideally, is a state signal that summarizes past sensations
compactly, yet in such a way that all relevant information is retained. This normally
requires more than the immediate sensations, but never more than the complete
history of all past sensations. A state signal that succeeds in retaining all relevant
information is said to be Markov, or to have the Markov property (we define this
formally below). For example, a checkers position—the current configuration of
all the pieces on the board—would serve as a Markov state because it summarizes
everything important about the complete sequence of positions that led to it. Much
of the information about the sequence is lost, but all that really matters for the future
of the game is retained. Similarly, the current position and velocity of a cannonball
is all that matters for its future flight. It doesn’t matter how that position and velocity
came about. This is sometimes also referred to as an “independence of path™ property
because all that matters is in the current state signal; its meaning is independent of

the “path,” or history, of signals that have led up to it.
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We now formally define the Markov property for the reinforcement learning prob-
lem. To keep the mathematics simple, we assume here that there are a finite number
of states and reward values. This enables us to work in terms of sums and probabil-
ities rather than integrals and probability densities, but the argument can easily be
extended to include continuous states and rewards. Consider how a general environ-
ment might respond at time 7 + 1 to the action taken at time 7. In the most general,
causal case this response may depend on everything that has happened earlier. In
this case the dynamics can be defined only by specifying the complete probability

distribution:
Pr {S,H =5, r=r | St5:Qrs Lt St 15i@e—11 =  « 5715 805 ao} ; (3.4)
for all s/, r, and all possible values of the past events: sy, as, ¢, . .., 1, S0, ao. If

the state signal has the Markov property, on the other hand, then the environment’s
response at ¢ + 1 depends only on the state and action representations at ¢, in which
case the environment’s dynamics can be defined by specifying only

n

Prisp1=5,rp1=r ‘ s,.a,} , (3.5)

for all s/, r, s;, and a,. In other words, a state signal has the Markov property, and
is a Markov state, if and only if (3.5) is equal to (3.4) for all s/, r, and histories,
Sty Qpy Tty oo o s r1, S0, ag. In this case, the environment and task as a whole are also
said to have the Markov property.

If an environment has the Markov property, then its one-step dynamics (3.5) enable
us to predict the next state and expected next reward given the current state and
action. One can show that, by iterating this equation, one can predict all future states
and expected rewards from knowledge only of the current state as well as would be
possible given the complete history up to the current time. It also follows that Markov
states provide the best possible basis for choosing actions. That is, the best policy for
choosing actions as a function of a Markov state is just as good as the best policy for
choosing actions as a function of complete histories.

Even when the state signal is non-Markov, it is still appropriate to think of the
state in reinforcement learning as an approximation to a Markov state. In particular,
we always want the state to be a good basis for predicting future rewards and for
selecting actions. In cases in which a model of the environment is learned (see
Chapter 9), we also want the state to be a good basis for predicting subsequent states.
Markov states provide an unsurpassed basis for doing all of these things. To the extent
that the state approaches the ability of Markov states in these ways, one will obtain
better performance from reinforcement learning systems. For all of these reasons, it

is useful to think of the state at each time step as an approximation to a Markov state,
although one should remember that it may not fully satisfy the Markov property.
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The Markov property is important in reinforcement learning because decisions and
values are assumed to be functions only of the current state. In order for these to be
effective and informative, the state representation must be informative. All of the
theory presented in this book assumes Markov state signals. This means that not all
the theory strictly applies to cases in which the Markov property does not strictly
apply. However, the theory developed for the Markov case still helps us to understand
the behavior of the algorithms, and the algorithms can be successfully applied to
many tasks with states that are not strictly Markov. A full understanding of the theory
of the Markov case is an essential foundation for extending it to the more complex
and realistic non-Markov case. Finally, we note that the assumption of Markov state
representations is not unique to reinforcement learning but is also present in most if

not all other approaches to artificial intelligence.

Example 3.5: Pole-Balancing State In the pole-balancing task introduced earlier,
a state signal would be Markov if it specified exactly, or made it possible to recon-
struct exactly, the position and velocity of the cart along the track, the angle between
the cart and the pole, and the rate at which this angle is changing (the angular veloc-
ity). In an idealized cart—pole system, this information would be sufficient to exactly
predict the future behavior of the cart and pole, given the actions taken by the con-
troller. In practice, however, it is never possible to know this information exactly
because any real sensor would introduce some distortion and delay in its measure-
ments. Furthermore, in any real cart—pole system there are always other effects, such
as the bending of the pole, the temperatures of the wheel and pole bearings, and
various forms of backlash, that slightly affect the behavior of the system. These fac-
tors would cause violations of the Markov property if the state signal were only the
positions and velocities of the cart and the pole.

However, often the positions and velocities serve quite well as states. Some early
studies of learning to solve the pole-balancing task used a coarse state signal that
divided cart positions into three regions: right, left, and middle (and similar rough
quantizations of the other three intrinsic state variables). This distinctly non-Markov
state was sufficient to allow the task to be solved easily by reinforcement learning
methods. In fact, this coarse representation may have facilitated rapid learning by
forcing the learning agent to ignore fine distinctions that would not have been useful

in solving the task. [}

Example 3.6: Draw Poker In draw poker, each player is dealt a hand of five cards.
There is a round of betting, in which each player exchanges some of his cards for
new ones. and then there is a final round of betting. At each round, each player must
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match or exceed the highest bets of the other players, or else drop out (fold). After
the second round of betting, the player with the best hand who has not folded is the
winner and collects all the bets.

The state signal in draw poker is different for each player. Each player knows the
cards in his own hand, but can only guess at those in the other players’ hands. A
common mistake is to think that a Markov state signal should include the contents of
all the players’ hands and the cards remaining in the deck. In a fair game, however,
we assume that the players are in principle unable to determine these things from
their past observations. If a player did know them, then she could predict some future
events (such as the cards one could exchange for) better than by remembering all past
observations.

In addition to knowledge of one’s own cards, the state in draw poker should include
the bets and the numbers of cards drawn by the other players. For example, if one
of the other players drew three new cards, you may suspect he retained a pair and
adjust your guess of the strength of his hand accordingly. The players’ bets also
influence your assessment of their hands. In fact, much of your past history with
these particular players is part of the Markov state. Does Ellen like to bluff, or does
she play conservatively? Does her face or demeanor provide clues to the strength of
her hand? How does Joe’s play change when it is late at night, or when he has already
won a lot of money?

Although everything ever observed about the other players may have an effect on
the probabilities that they are holding various kinds of hands, in practice this is far
too much to remember and analyze, and most of it will have no clear effect on one’s
predictions and decisions. Very good poker players are adept at remembering just the
key clues, and at sizing up new players quickly, but no one remembers everything
that is relevant. As a result, the state representations people use to make their poker
decisions are undoubtedly non-Markov, and the decisions themselves are presumably
imperfect. Nevertheless, people still make very good decisions in such tasks. We
conclude that the inability to have access to a perfect Markov state representation
is probably not a severe problem for a reinforcement learning agent. i

Exercise 3.6: Broken Vision System Imagine that you are a vision system. When
you are first turned on, an image floods into your camera. You can see lots of things,
but not all things. You can’t see objects that are occluded, and of course you can’t
see objects that are behind you. After seeing that first scene, do you have access to
the Markov state of the environment? Suppose your camera were broken and you
received no images at all, all day. Would you have access to the Markov state then?
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3.6 Markov Decision Processes

A reinforcement learning task that satisfies the Markov property is called a Markov
decision process, or MDP. If the state and action spaces are finite, then it is called a

finite Markov decision process (finite MDP). Finite MDPs are particularly important

to the theory of reinforcement learning. We treat them extensively throughout this
book; they are all you need to understand 90% of modern reinforcement learning.

A particular finite MDP is defined by its state and action sets and by the one-step
dynamics of the environment. Given any state and action, s and a, the probability of
each possible next state, s, is

,?",:Pr{s,-| =5 ’S[:S.(J, :a} : (3.6)

SS

These quantities are called transition probabilities. Similarly, given any current state
and action, s and a, together with any next state, s’, the expected value of the next

reward is
Rey = E{ris1 | si=s,ar=a, st =] (3.7

These quantities, ¢, and R{,, completely specify the most important aspects of the
dynamics of a finite MDP (only information about the distribution of rewards around
the expected value is lost). Most of the theory we present in the rest of this book
implicitly assumes the environment is a finite MDP.

Example 3.7: Recycling Robot MDP The recycling robot (Example 3.3) can be
turned into a simple example of an MDP by simplifying it and providing some more
details. (Our aim is to produce a simple example, not a particularly realistic one.)
Recall that the agent makes a decision at times determined by external events (or
by other parts of the robot’s control system). At each such time the robot decides
whether it should (1) actively search for a can, (2) remain stationary and wait for
someone to bring it a can, or (3) go back to home base to recharge its battery. Suppose
the environment works as follows. The best way to find cans is to actively search for
them., but this runs down the robot’s battery, whereas waiting does not. Whenever the
robot is searching, the possibility exists that its battery will become depleted. In this
case the robot must shut down and wait to be rescued (producing a low reward).
The agent makes its decisions solely as a function of the energy level of the
battery. It can distinguish two levels, high and low, so that the state set is § =
{high, low}. Let us call the possible decisions—the agent’s actions—wait, search,
and recharge. When the energy level is high, recharging would always be foolish,
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Table 3.1 Transition probabilities and expected rewards for the finite MDP of the recycling
robot example.

A SI a 3):1\ ‘Rilﬁ'
high high search a Rsearch
high low search 1 -« Rsearch
low high search 1-8 -3

low low search B Rsearch
high high wait 1 REait
high low wait 0 R¥ait
low high wait 0 Ruait
low low wait 1 RVait
low high recharge 1 0

low low recharge 0 0

Note: There is a row for each possible combination of current state, s, next state, s’, and action
possible in the current state, a € A(s).

so we do not include it in the action set for this state. The agent’s action sets are
A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be completed
without risk of depleting the battery. A period of searching that begins with a high
energy level leaves the energy level high with probability « and reduces it to low
with probability 1 — «. On the other hand, a period of searching undertaken when
the energy level is 1ow leaves it low with probability g and depletes the battery with
probability 1 — B. In the latter case, the robot must be rescued, and the battery is
then recharged back to high. Each can collected by the robot counts as a unit reward,
whereas a reward of —3 results whenever the robot has to be rescued. Let RS€37¢P
and R¥31t with R5€3Th > R¥AIt regpectively denote the expected number of cans
the robot will collect (and hence the expected reward) while searching and while
waiting. Finally, to keep things simple, suppose that no cans can be collected during
a run home for recharging, and that no cans can be collected on a step in which the
battery is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite MDP.
Figure 3.3 shows the transition graph for the recycling robot example. There are two
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1, Rt 1-B, -3

B .Rsearch
search

recharge

1. LRwait

o. R search I—a:. R search

Figure 3.3 Transition graph for the recycling robot example.

kinds of nodes: state nodes and action nodes. There is a state node for each possible
state (a large open circle labeled by the name of the state), and an action node for each
state—action pair (a small solid circle labeled by the name of the action and connected
by a line to the state node). Starting in state s and taking action a moves you along
the line from state node s to action node (s, a). Then the environment responds with
a transition to the next state’s node via one of the arrows leaving action node (s, @).
Each arrow corresponds to a triple (s, s’, @), where s’ is the next state, and we label the
arrow with the transition probability, ¢, and the expected reward for that transition,
R ,. Note that the transition probabilities labeling the arrows leaving an action node

always sumto I. [ ]
Exercise 3.7 Assuming a finite MDP with a finite number of reward values, write
an equation for the transition probabilities and the expected rewards in terms of the
joint conditional distribution in (3.5).

3.7 Value Functions

Almost all reinforcement learning algorithms are based on estimating value func-
tions—functions of states (or of state—action pairs) that estimate how good it is for
the agent to be in a given state (or how good it is to perform a given action in a
given state). The notion of “how good” here is defined in terms of future rewards

that can be expected, or, to be precise, in terms of expected return. Of course the
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rewards the agent can expect to receive in the future depend on what actions it will
take. Accordingly, value functions are defined with respect to particular policies.

Recall that a policy, 7, is a mapping from each state, s € §, and action, a € A(s),
to the probability 7 (s, a) of taking action a when in state s. Informally, the value of
a state s under a policy 7, denoted V7 (s), is the expected return when starting in s
and following 7 thereafter. For MDPs, we can define V7™ (s) formally as

0.0)
V()= E_-[{R, ' St = -\‘} = Err{z }’k"z—Ll\-H
k=0

S :s}. (3.8)

where E,{ } denotes the expected value given that the agent follows policy 7. Note
that the value of the terminal state, if any, is always zero. We call the function V7 the
state-value function for policy .

Similarly, we define the value of taking action a in state s under a policy r,
denoted Q7 (s, a), as the expected return starting from s, taking the action a, and
thereafter following policy 7:

o0
0" (s,a) = E,T{R, ’ Si=8,a; = a} = E,['Z y1‘>1',+/\7+1
k=0

Sy =8, a; :a}. (3.9)

We call Q7 the action-value function for policy 7 .

The value functions V™ and Q7 can be estimated from experience. For example,
if an agent follows policy 77 and maintains an average, for each state encountered, of
the actual returns that have followed that state, then the average will converge to the
state’s value, V7 (s), as the number of times that state is encountered approaches
infinity. If separate averages are kept for each action taken in a state, then these
averages will similarly converge to the action values, Q7 (s, a). We call estimation
methods of this kind Monte Carlo methods because they involve averaging over
random samples of actual returns. These kinds of methods are presented in Chapter 5.
Of course, if there are very many states, then it may not be practical to keep separate
averages for each state individually. Instead, the agent would have to maintain V7
and Q" as parameterized functions and adjust the parameters to better match the
observed returns. This can also produce accurate estimates, although much depends
on the nature of the parameterized function approximator (Chapter 8).

A fundamental property of value functions used throughout reinforcement learning
and dynamic programming is that they satisfy particular recursive relationships. For
any policy 7 and any state s, the following consistency condition holds between the
value of s and the value of its possible successor states:
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V7(s) = Ex{R; | st = 5}

o0

|

k=0

oC
k
= Ev{"zl! il 4 § Y Ti+k+2

Sy = .s}
k=0

o0
= Z (s, a) Z Po | RE + )/L-{Z Yl A } Sip1=s
a 5 |

k=0

= Z (s, a) Z P4, [.‘R‘\’\, + )/\’T(.\")] , (3.10)

a

where it is implicit that the actions, a, are taken from the set A(s), and the next states,
s’, are taken from the set §, or from $™ in the case of an episodic problem. Equation
(3.10) is the Bellman equation for V™. It expresses a relationship between the value
of a state and the values of its successor states. Think of looking ahead from one
state to its possible successor states, as suggested by Figure 3.4a. Each open circle
represents a state and each solid circle represents a state—action pair. Starting from
state s, the root node at the top, the agent could take any of some set of actions—three
are shown in Figure 3.4a. From each of these, the environment could respond with
one of several next states, s’, along with a reward, r. The Bellman equation (3.10)
averages over all the possibilities, weighting each by its probability of occurring. It
states that the value of the start state must equal the (discounted) value of the expected
next state, plus the reward expected along the way.

The value function V7 is the unique solution to its Bellman equation. We show

in subsequent chapters how this Bellman equation forms the basis of a number of

() §

Figure 3.4 Backup diagrams for (a) V™ and (b) Q™.
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ways to compute, approximate, and learn V. We call diagrams like those shown in
Figure 3.4 backup diagrams because they diagram relationships that form the basis
of the update or backup operations that are at the heart of reinforcement learning
methods. These operations transfer value information back to a state (or a state—
action pair) from its successor states (or state—action pairs). We use backup diagrams
throughout the book to provide graphical summaries of the algorithms we discuss.
(Note that unlike transition graphs, the state nodes of backup diagrams do not nec-
essarily represent distinct states; for example, a state might be its own successor.
We also omit explicit arrowheads because time always flows downward in a backup
diagram.)

Example 3.8: Gridworld Figure 3.5a uses a rectangular grid to illustrate value
functions for a simple finite MDP. The cells of the grid correspond to the states of
the environment. At each cell, four actions are possible: north, south, east, and
west, which deterministically cause the agent to move one cell in the corresponding
direction on the grid. Actions that would take the agent off the grid leave its location
unchanged, but also result in a reward of —1. Other actions result in a reward of 0,
except those that move the agent out of the special states A and B. From state A, all
four actions yield a reward of 410 and take the agent to A’. From state B, all actions
yield a reward of 45 and take the agent to B'.

Suppose the agent selects all four actions with equal probability in all states.
Figure 3.5b shows the value function, V7, for this policy, for the discounted reward
case with y = 0.9. This value function was computed by solving the system of
equations (3.10). Notice the negative values near the lower edge; these are the result
of the high probability of hitting the edge of the grid there under the random policy.
State A is the best state to be in under this policy, but its expected return is less than

Ad |B. 3.3/8.8|4.4/53[15
+5 1.5/3.0/ 2.3/ 1.9/ 0.5

40 B 0.110.7/ 0.7 0.4|-0.4

_ -1.0[-0.4-0.4-0.6-1.2

AKX actions -1.9-1.3-1.2-1.4-2.0

(a) (b)

Figure 3.5 Grid example: (a) exceptional reward dynamics; (b) state-value function for the
equiprobable random policy.
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10. its immediate reward, because from A the agent is taken to A/, from which it is
likely to run into the edge of the grid. State B. on the other hand, is valued more than
5. its immediate reward, because from B the agent is taken to B’, which has a positive
value. From B’ the expected penalty (negative reward) for possibly running into an
edge is more than compensated for by the expected gain for possibly stumbling onto
A or B. [

Example 3.9: Golf To formulate playing a hole of golf as a reinforcement learning
task, we count a penalty (negative reward) of —1 for each stroke until the ball is in
the hole. The state is the location of the ball. The value of a state is the negative of
the number of strokes to the hole from that location. Our actions are how we aim
and swing at the ball, of course, and which club we select. Let us take the former as
given and consider just the choice of club, which we assume is either a putter or a
driver. The upper part of Figure 3.6 shows a possible state-value function, VPusE(s),
for the policy that always uses the putter. The terminal state in-the-hole has a
value of 0. From anywhere on the green we assume we can make a putt; these states
have value — 1. Off the green we cannot reach the hole by putting, and the value is
greater. If we can reach the green from a state by putting, then that state must have
value one less than the green’s value, that is, —2. For simplicity, let us assume we
can putt very precisely and deterministically, but with a limited range. This gives us
the sharp contour line labeled —2 in the figure; all locations between that line and the
green require exactly two strokes to complete the hole. Similarly, any location within
putting range of the —2 contour line must have a value of —3, and so on to get all
the contour lines shown in the figure. Putting doesn’t get us out of sand traps, so they
have a value of —oo. Overall, it takes us six strokes to get from the tee to the hole by

putting. ]

Exercise 3.8 What is the Bellman equation for action values, that is, for Q™7 It
must give the action value Q7 (s, a) in terms of the action values, Q7 (s, a’), of
possible successors to the state—action pair (s, a). As a hint, the backup diagram cor-
responding to this equation is given in Figure 3.4b. Show the sequence of equations
analogous to (3.10), but for action values.

Exercise 3.9 The Bellman equation (3.10) must hold for each state for the value
function V™ shown in Figure 3.5b. As an example, show numerically that this equa-
tion holds for the center state, valued at +0.7, with respect to its four neighboring
states. valued at +2.3, +0.4, —0.4, and +0.7. (These numbers are accurate only to

one decimal place.)

) 28
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Figure 3.6 A golf example: the state-value function for using the putter (above) and the
optimal action-value function for using the driver (below).

Exercise 3.10 In the gridworld example, rewards are positive for goals, negative
for running into the edge of the world, and zero the rest of the time. Are the signs of
these rewards important, or only the intervals between them? Prove, using (3.2), that
adding a constant C to all the rewards adds a constant, K, to the values of all states,
and thus does not affect the relative values of any states under any policies. What is
K in terms of C and y?
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Exercise 3.11 Now consider adding a constant C to all the rewards in an episodic out the expe
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task, such as maze running. Would this have any effect, or would it leave the task
ask above? Why or why not? Give an example.
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out the expected value explicitly in terms of 27, and R, defined respectively by
(3.6) and (3.7), such that no expected value notation appears in the equation.

3.8 Optimal Value Functions

Solving a reinforcement learning task means, roughly, finding a policy that achieves
a lot of reward over the long run. For finite MDPs, we can precisely define an optimal
policy in the following way. Value functions define a partial ordering over policies.
A policy 7 is defined to be better than or equal to a policy 7’ if its expected return
is greater than or equal to that of 7z’ for all states. In other words, 7 > 7’ if and only
if V7 (s) > V7 (s) forall s € S. There is always at least one policy that is better than
or equal to all other policies. This is an optimal policy. Although there may be more
than one, we denote all the optimal policies by 7*. They share the same state-value
function, called the optimal state-value function, denoted V*, and defined as

V*(s) =max V7 (s), (3.11)
T

foralls € S.
Optimal policies also share the same optimal action-value function, denoted Q*,
and defined as

12)

|8}

Q*(s,a) =max Q7 (s, a), |
T

for all s € § and a € A(s). For the state—action pair (s, a), this function gives the
expected return for taking action a in state s and thereafter following an optimal
policy. Thus, we can write Q* in terms of V* as follows:

0%(s,a) = E{l',AI + Yy V*(sie1) ‘ S;=3S,0a; :u}. (3.13)

Example 3.10: Optimal Value Functions for Golf The lower part of Figure 3.6
shows the contours of a possible optimal action-value function Q*(s, driver). These
are the values of each state if we first play a stroke with the driver and afterward select
either the driver or the putter, whichever is better. The driver enables us to hit the ball
farther, but with less accuracy. We can reach the hole in one shot using the driver only
if we are already very close; thus the —1 contour for Q*(s, driver) covers only a
small portion of the green. If we have two strokes, however, then we can reach the
hole from much farther away, as shown by the —2 contour. In this case we don’t
have to drive all the way to within the small —1 contour, but only to anywhere on
the green; from there we can use the putter. The optimal action-value function gives
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the values after committing to a particular first action, in this case, to the driver, but
afterward using whichever actions are best. The —3 contour is still farther out and
includes the starting tee. From the tee. the best sequence of actions is two drives and

one putt, sinking the ball in three strokes. =

Because V* is the value function for a policy, it must satisfy the self-consistency
condition given by the Bellman equation for state values (3.10). Because it is the
optimal value function, however, V*’s consistency condition can be written in a
special form without reference to any specific policy. This is the Bellman equation for
V*_or the Bellman optimality equation. Intuitively, the Bellman optimality equation
expresses the fact that the value of a state under an optimal policy must equal the

expected return for the best action from that state:

V*(s) = max QT (s.a)
acA(s)

= max E,-[-{R, | 5¢ = s, ar :u‘
a

o0
= max 1%{ E ykr,AA Ll \x, =g, G :a}

a

k=0
o0
- mﬁlx E {r,A_l +vy Z )//‘r,“ 12 \ §p= 851} :a}
k=0
= max E{}',H + yV*(si41) . s =8,0r = (1} (3.14)
a
= max Z P [.7?‘\'\‘ - yV*(x')] : (3.15)

a
5’

The last two equations are two forms of the Bellman optimality equation for V*. The

Bellman optimality equation for Q* is

Q*(s,a) = E{r,,rl + y max Q’“(x,;l.a’) l 5p = 8,0y :a}
a

= pa a e x ¢/ !
= E Py {(RM +y ml‘;x Q*(s',a )} .
¢

The backup diagrams in Figure 3.7 show graphically the spans of future states and
equations for v* and Q*. These are

actions considered in the Bellman optimality
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Figure 3.7 Backup diagrams for (a) V* and (b) O*

the same as the backup diagrams for V™ and Q™ except that arcs have been added
at the agent’s choice points to represent that the maximum over that choice is taken
rather than the expected value given some policy. Figure 3.7a graphically represents
the Bellman optimality equation (3.15).

For finite MDPs, the Bellman optimality equation (3.15) has a unique solution
independent of the policy. The Bellman optimality equation is actually a system of
equations, one for each state, so if there are N states, then there are N equations in
N unknowns. If the dynamics of the environment are known (,R‘g’»‘, and 7’:“) then in
principle one can solve this system of equations for V* using any one of a variety of
methods for solving systems of nonlinear equations. One can solve a related set of
equations for Q*.

Once one has V*, it is relatively easy to determine an optimal policy. For each
state s, there will be one or more actions at which the maximum is attained in
the Bellman optimality equation. Any policy that assigns nonzero probability only
to these actions is an optimal policy. You can think of this as a one-step search.
If you have the optimal value function, V*, then the actions that appear best af-
ter a one-step search will be optimal actions. Another way of saying this is that
any policy that is greedy with respect to the optimal value function V* is an opti-
mal policy. The term greedy is used in computer science to describe any search or
decision procedure that selects alternatives based only on local or immediate con-
siderations, without considering the possibility that such a selection may prevent
future access to even better alternatives. Consequently, it describes policies that se-
lect actions based only on their short-term consequences. The beauty of V* is that
if one uses it to evaluate the short-term consequences of actions—specifically, the
one-step consequences—then a greedy policy is actually optimal in the long-term
sense in which we are interested because V* already takes into account the re-
ward consequences of all possible future behavior. By means of V*, the optimal
expected long-term return is turned into a quantity that is locally and immediately
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available for each state. Hence, a one-step-ahead search yields the long-term optimal
actions.

Having Q* makes choosing optimal actions still easier. With Q~, the agent does
not even have to do a one-step-ahead search: for any state s, it can simply find any
action that maximizes Q*(s, a). The action-value function effectively caches the
results of all one-step-ahead searches. It provides the optimal expected long-term
return as a value that is locally and immediately available for each state—action pair.
Hence, at the cost of representing a function of state—action pairs, instead of just of
states, the optimal action-value function allows optimal actions to be selected without
having to know anything about possible successor states and their values, that is,
without having to know anything about the environment’s dynamics.

Example 3.11: Bellman Optimality Equations for the Recycling Robot  Using
(3.15), we can explicitly give the Bellman optimality equation for the recycling robot
example. To make things more compact, we abbreviate the states high and low, and
the actions search, wait, and recharge respectively by h, 1, s, w, and re. Since
there are only two states, the Bellman optimality equation consists of two equations.
The equation for V*(h) can be written as follows:
DS it PEIRE, + ¥ V)] + PR + ¥ VDL
PEIRE, +y V)] + PR [Ry + vy VD))
. alRS+y V)] + (1 — )[R+ y V()]
=y < ILRY + y V*(®)] + O[RY + y V*(1)] }

RS+ y[aV*h) + (1 —a) VD], }

:ma,\'{ v
RY +yV*(h)

Following the same procedure for V*(1) yields the equation

BR® —3(1 —B)+yl(l —BV*(h) + BV*D)],
V*(1) =max { R¥+ yV*Q),
yV*(h)

For any choice of R®, R¥, «, B, and y, with 0 <y < 1, 0<a, B <1, there is
exactly one pair of numbers, V*(h) and V*(1), that simultaneously satisfy these two

nonlinear equations. |

Example 3.12: Solving the Gridworld Suppose we solve the Bellman optimality
equation for V* for the simple grid task introduced in Example 3.8 and shown again
in Figure 3.8a. Recall that state A is followed by a reward of +10 and transition to
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Figure 3.8 Optimal solutions to the gridworld example.

state A’, while state B is followed by a reward of +5 and transition to state B’. Fig-
ure 3.8b shows the optimal value function, and Figure 3.8c shows the corresponding
optimal policies. Where there are multiple arrows in a cell, any of the corresponding
actions is optimal. ]

Explicitly solving the Bellman optimality equation provides one route to finding
an optimal policy, and thus to solving the reinforcement learning problem. However,
this solution is rarely directly useful. It is akin to an exhaustive search, looking ahead
at all possibilities, computing their probabilities of occurrence and their desirabilities
in terms of expected rewards. This solution relies on at least three assumptions that
are rarely true in practice: (1) we accurately know the dynamics of the environment;
(2) we have enough computational resources to complete the computation of the
solution; and (3) the Markov property. For the kinds of tasks in which we are
interested, one is generally not able to implement this solution exactly because
various combinations of these assumptions are violated. For example, although the
first and third assumptions present no problems for the game of backgammon, the
second is a major impediment. Since the game has about 102 states, it would take
millions of years on today’s fastest computers to solve the Bellman equation for V*,
and the same is true for finding Q*. In reinforcement learning one typically has to
settle for approximate solutions.

Many different decision-making methods can be viewed as ways of approximately
solving the Bellman optimality equation. For example, heuristic search methods can
be viewed as expanding the right-hand side of (3.15) several times, up to some depth,
forming a “tree” of possibilities, and then using a heuristic evaluation function to
approximate V* at the “leaf”” nodes. (Heuristic search methods such as A* are almost
always based on the episodic case.) The methods of dynamic programming can be
related even more closely to the Bellman optimality equation. Many reinforcement
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learning methods can be clearly understood as approximately solving the Bellman

the expected transitions. We consider a variety of such methods in the following
chapters.

Exercise 3.14 Draw or describe the optimal state-value function for the golf exam-
i ple
| Exercise 3.15 Draw or describe the contours of the optimal action-value function

‘ for putting, Q*(s, putter), for the golf example.

Exercise 3.16 Give the Bellman equation for Q* for the recycling robot.

Exercise 3.17 Figure 3.8 gives the optimal value of the best state of the gridworld
as 24.4, to one decimal place. Use your knowledge of the optimal policy and (3.2) to
express this value symbolically, and then to compute it to three decimal places.

3.9 Optimality and Approximation

We have defined optimal value functions and optimal policies. Clearly, an agent that
learns an optimal policy has done very well, but in practice this rarely happens. For
the kinds of tasks in which we are interested, optimal policies can be generated only
with extreme computational cost. A well-defined notion of optimality organizes the
approach to learning we describe in this book and provides a way to understand the
theoretical properties of various learning algorithms, but it is an ideal that agents
can only approximate to varying degrees. As we discussed above, even if we have
a complete and accurate model of the environment’s dynamics, it is usually not
possible to simply compute an optimal policy by solving the Bellman optimality
equation. For example, board games such as chess are a tiny fraction of human
experience, yet large, custom-designed computers still cannot compute the optimal
moves. A critical aspect of the problem facing the agent is always the computational
power available to it, in particular, the amount of computation it can perform in a
single time step.
The memory available is also an important constraint. A large amount of memory
is often required to build up approximations of value functions, policies, and models.
| In tasks with small, finite state sets, it is possible to form these approximations using
arrays or tables with one entry for each state (or state—action pair). This we call the
tabular case, and the corresponding methods we call tabular methods. In many cases
of practical interest, however, there are far more states than could possibly be entries

optimality equation, using actual experienced transitions in place of knowledge of
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3.10 Summary

in a table. In these cases the functions must be approximated, using some sort of
more compact parameterized function representation.

Our framing of the reinforcement learning problem forces us to settle for approx-
imations. However, it also presents us with some unique opportunities for achieving
useful approximations. For example, in approximating optimal behavior, there may
be many states that the agent faces with such a low probability that selecting subop-
timal actions for them has little impact on the amount of reward the agent receives.
Tesauro’s backgammon player, for example, plays with exceptional skill even though
it might make very bad decisions on board configurations that never occur in games
against experts. In fact, it is possible that TD-Gammon makes bad decisions for a
large fraction of the game’s state set. The on-line nature of reinforcement learning
makes it possible to approximate optimal policies in ways that put more effort into
learning to make good decisions for frequently encountered states, at the expense
of less effort for infrequently encountered states. This is one key property that dis-

tinguishes reinforcement learning from other approaches to approximately solving
MDPs.

310 Summary

Let us summarize the elements of the reinforcement learning problem that we have
presented in this chapter. Reinforcement learning is about learning from interaction
how to behave in order to achieve a goal. The reinforcement learning agent and
its environment interact over a sequence of discrete time steps. The specification
of their interface defines a particular task: the actions are the choices made by the
agent; the stafes are the basis for making the choices; and the rewards are the basis
for evaluating the choices. Everything inside the agent is completely known and
controllable by the agent; everything outside is incompletely controllable but may or
may not be completely known. A policy is a stochastic rule by which the agent selects
actions as a function of states. The agent’s objective is to maximize the amount of
reward it receives over time.

The return is the function of future rewards that the agent seeks to maximize. It
has several different definitions depending upon the nature of the task and whether
one wishes to discount delayed reward. The undiscounted formulation is appropri-
ate for episodic tasks, in which the agent—environment interaction breaks naturally
into episodes; the discounted formulation is appropriate for continuing tasks, in

which the interaction does not naturally break into episodes but continues without
limit.
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An environment satisfies the Markov property if its state signal compactly summa-
rizes the past without degrading the ability to predict the future. This is rarely exactly
true, but often nearly so; the state signal should be chosen or constructed so that the
Markov property holds as nearly as possible. In this book we assume that this has
already been done and focus on the decision-making problem: how to decide what
to do as a function of whatever state signal is available. If the Markov property does
hold, then the environment defines a Markov decision process (MDP). A finite MDP
is an MDP with finite state and action sets. Most of the current theory of reinforce-
ment learning is restricted to finite MDPs, but the methods and ideas apply more
generally.

A policy’s value functions assign to each state, or state—action pair, the expected
return from that state, or state—action pair, given that the agent uses the policy. The
optimal value functions assign to each state, or state—action pair, the largest expected
return achievable by any policy. A policy whose value functions are optimal is an
optimal policy. Whereas the optimal value functions for states and state—action pairs
are unique for a given MDP, there can be many optimal policies. Any policy that
is greedy with respect to the optimal value functions must be an optimal policy.
The Bellman optimality equations are special consistency conditions that the optimal
value functions must satisfy and that can, in principle, be solved for the optimal value
functions, from which an optimal policy can be determined with relative ease.

A reinforcement learning problem can be posed in a variety of different ways
depending on assumptions about the level of knowledge initially available to the
agent. In problems of complete knowledge, the agent has a complete and accurate
model of the environment’s dynamics. If the environment is an MDP, then such a
model consists of the one-step transition probabilities and expected rewards for all
states and their allowable actions. In problems of incomplete knowledge, a complete
and perfect model of the environment is not available.

Even if the agent has a complete and accurate environment model, the agent is
typically unable to perform enough computation per time step to fully use it. The
memory available is also an important constraint. Memory may be required to build
up accurate approximations of value functions, policies, and models. In most cases
of practical interest there are far more states than could possibly be entries in a table,
and approximations must be made.

A well-defined notion of optimality organizes the approach to learning we describe
in this book and provides a way to understand the theoretical properties of various
learning algorithms, but it is an ideal that reinforcement learning agents can only ap-
proximate to varying degrees. In reinforcement learning we are very much concerned
with cases in which optimal solutions cannot be found but must be approximated in

some way.
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