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FIGURE 4.14
p; and p; of the process D, D,, . . . for the M/M/1 queue with p = 0.9.

estimating variances. However, we shall see in Chap. 9 that it is often possible to
group simulation output data into new “observations” to which the formulas based
on IID observations can be applied. Thus, the formulas in this and the next two
sections based on IID observations are indirectly applicable to analyzing simula-
tion output data.

4.5
CONFIDENCE INTERVALS AND HYPOTHESIS
TESTS FOR THE MEAN

Let X;, X,, . . ., X, be IID random variables with finite mean w and finite variance
o”. (Also assume that o> > 0, so that the X.’s are not degenerate random variables.)
In this section we discuss how to construct a confidence interval for w and also the
complementary problem of testing the hypothesis that u = p,,.

We begin with a statement of the most important result in probability theory, the

classical central limit theorem. Let Z, be the random variable [X(n) — ul/Va?/n,
and let F,(z) be the distribution function of Z, for a sample size of n; thatis, F,(z) =
P(Z, = 7). [Note that u and o?/n are the mean and variance of X(n), respectively.]
Then the central limit theorem is as follows [see Chung (1974, p. 169) for a proof].

THEOREM 4.1. F,(2)>®(z) as n — oo, where ®(z), the distribution function of a
normal random variable with . = 0 and o> = 1 (henceforth called a standard normal
random variable; see Sec. 6.2.2), is given by
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The theorem says, in effect, that if n is “sufficiently large,” the random variable Z,
will be approximately distributed as a standard normal random variable, regardless
of the underlying distribution of the X;’s. It can also be shown for large n that the
sample mean X(n) is approximately distributed as a normal random variable with
mean g and variance o”/n.

The difficulty with using the above results in practice is that the variance o is
generally unknown. However, since the sample variance S*(n) converges to o as n
gets large, it can be shown that Theorem 4.1 remains true if we replace o by S%(n)
in the expression for Z,. With this change the theorem says that if # is sufficiently
large, the random variable £, = [X(n) — u]/V/S%(n)/n is approximately distributed
as a standard normal random variable. It follows for large n that

. X —
( Leap = \/W = Zl—a/Z)

= S2 _ 5’2
P[X(n) o it V_? Sp =Xt 2 ’(1”)}

g (4.10)

where the symbol =~ means “approximately equal” and z,_,/, (for 0 < a < 1) is
the upper 1 — a/2 critical point for a standard normal random variable (see
Fig. 4.15 and the last line of Table T.1 of the Appendix at the back of the book).
Therefore, if n is sufficiently large, an approximate 100(1 — «) percent confidence

interval for u is given by
2 S?
X(n) = z_on }—%Q (4.11)

For a given set of data X,, X,,..., X,, the lower confidence-interval endpoint
I(n, @) = X(n) — Zj—ap V' S*(n)/n and the upper confidence-interval endpoint

u(n, @) = X(n) + z,_, 2V $*(n)/n are just numbers (actually, specific realizations
of random variables) and the confidence interval [I(n, «), u(n, a)] either contains u
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FIGURE 4.15
Density function for the standard normal distribution.
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or does not contain w. Thus, there is nothing probabilistic about the single confi-
dence interval [[(n, &), u(n, a)] after the data have been obtained and the interval’s
endpoints have been given numerical values. The correct interpretation to give to
the confidence interval (4.11) is as follows [see (4.10)]: If one constructs a very
large number of independent 100(1 — «) percent confidence intervals, each based
on n observations, where n is sufficiently large, the proportion of these confidence
intervals that contain (cover) w should be 1 — a. We call this proportion the cover-
age for the confidence interval.

The difficulty in using (4.11) to construct a confidence interval for w is in
knowing what “n sufficiently large” means. It turns out that the more skewed (i.e.,
nonsymmetric) the underlying distribution of the X;’s, the larger the value of n
needed for the distribution of #, to be closely approximated by ®(z). (See the
discussion later in this section.) If n is chosen too small, the actual coverage of a
desired 100(1 — a) percent confidence interval will generally be less than 1 — a.
This is why the confidence interval given by (4.11) is stated to be only approximate.

In light of the above discussion, we now develop an alternative confidence-
interval expression. If the X;’s are normal random variables, the random variable
= [X(n) — w]/V.S*(n)/n has at distribution with n — 1 degrees of freedom (df)
[see, for example, Hogg and Craig (1995, pp. 181-182)], and an exact (for any
n = 2) 100(1 — «) percent confidence interval for u is given by

LI YA
X(n) * n—l,l—a/Z\,_:ln_) (4.12)

where?t, | ,_,is theupperl —a /2 critical point for the ¢ distribution with n — 1 df.
These critical points are given in Table T.1 of the Appendix at the back of the book.
Plots of the density functions for the ¢ distribution with 4 df and for the standard nor-
mal distribution are given in Fig. 4.16. Note that the 7 distribution is less peaked and
has longer tails than the normal distribution, so, for any finite n, 7, ; ,—4/2 = Z1-q/2-
We call (4.12) the 7 confidence interval.

The quantity that we add to and subtract from X(n) in (4.12) to construct the
confidence interval is called the half-length of the confidence interval. It is a mea-
sure of how precisely we know p. It can be shown that if we increase the sample
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FIGURE 4.16
Density functions for the # distribution with 4 df and for the standard
normal distribution.
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size from n to 4n in (4.12), then the half-length is decreased by a factor of approxi-
mately 2 (see Prob. 4.20).

In practice, the distribution of the X;’s will rarely be normal, and the confidence
interval given by (4.12) will also be approximate in terms of coverage. Since
f—11-a/2 = Z1-q2 the confidence interval given by (4.12) will be larger than
the one given by (4.11) and will generally have coverage closer to the desired level
1 — a. For this reason, we recommend using (4.12) to construct a confidence inter-
val for w. Note that #,_; ,_,/, — Z;_,2 8 n —> o; in particular, 7, ;s differs from
Zg9s Dy less than 3 percent. However, in most of our applications of (4.12) in
Chaps. 9, 10, and 12, n will be small enough for the difference between (4.11) and

(4.12) to be appreciable.

EXAMPLE 4.26. Suppose that the 10 observations 1.20, 1.50, 1.68, 1.89, 0.95, 1.49,
1.58, 1.55, 0.50, and 1.09 are from a normal distribution with unknown mean w and that
our objective is to construct a 90 percent confidence interval for w. From these data we get

X(10) =134 and S%10)= 0.17

which results in the following confidence interval for u:

e 2
X(10) =it 505 %:)O) S /0% =134 * 024

Note that (4.12) was used to construct the confidence interval and that 7, os Was taken
from Table T.1. Therefore, subject to the interpretation stated above, we claim with 90
percent confidence that w is in the interval [1.10, 1.58].

We now discuss how the coverage of the confidence interval given by (4.12) is
affected by the distribution of the X,’s. In Table 4.1 we give estimated coverages for
90 percent confidence intervals based on 500 independent experiments for each of
the sample sizes n = 5, 10, 20, and 40 and each of the distributions normal, expo-
nential, chi square with 1 df (a standard normal random variable squared; see the
discussion of the gamma distribution in Sec. 6.2.2), lognormal (e*, where Y is a
standard normal random variable; see Sec. 6.2.2), and hyperexponential whose dis-
tribution function is given by

F(x) = 0.9F,(x) + 0.1 F,(x)

where F',(x) and F,(x) are the distribution functions of exponential random variables
with means 0.5 and 5.5, respectively. For example, the table entry for the exponential
distribution and n = 10 was obtained as follows. Ten observations were generated

TABLE 4.1
Estimated coverages based on 500 experiments

Distribution Skewness v n=>5 n=10 n=20 n =40
Normal 0.00 0.910 0.902 0.898 0.900
Exponential 2.00 0.854 0.878 0.870 0.890
Chi square 2.83 0.810 0.830 0.848 0.890
Lognormal 6.18 0.758 0.768 0.842 0.852
Hyperexponential 6.43 0.584 0.586 0.682 0.774
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TABLE T.1

Critical points , , for the ¢ distribution with v df, and z,, for the standard normal distribution

y = P(T, = t,,), where T, is a random variable having the # distribution with ¥ df; the last row, where v = %, gives the normal critical points
satisfying y = P(Z = z,), where 7 is a standard normal random variable

S

Y

v 0.6000 0.7000 0.8000 0.9000 0.9333 0.9500 0.9600 0.9667 0.9750 0.9800 0.9833 0.9875 0.9900 0.9917 0.9938 0.9950
1 0.325 0.727 1.376 3.078 4.702 6.314 7.916 9.524 12.706 15.895 19.043 25.452 31.821 38.342 51.334 63.657
2 0.289 0.617 1.061 1.886 2.456 2.920 3.320 3.679 4.303 4.849 5.334 6.205 6.965 7.665 8.897 9.925
3 0.277 0.584 0.978 1.638 2.045 2.353 2.605 2.823 3.182 3.482 3.738 4.177 4.541 4.864 5.408 5.841
4 0.271 0.569 0.941 1.533 1.879 2.132 2.333 2.502 2776 2.999 3.184 3.495 3.747 3.966 4.325 4.604
5 0.267 0.559 0.920 1.476 1.790 2.015 2.191 2:337 2.571 2.757 2.910 3.163 3.365 3.538 3.818 4.032
6 0.265 0.553 0.906 1.440 1.735 1.943 2.104 2.237 2.447 2.612 2.748 2.969 3.143 3.291 3.528 3.707
7 0.263 0.549 0.896 1.415 1.698 1.895 2.046 2.170 2.365 2.517 2.640 2.841 2.998 3.130 3.341 3.499
8 0.262 0.546 0.889 1397 1.670 1.860 2.004 2.122 2.306 2.449 2.565 2.752 2.896 3.018 3.211 355
9 0.26! 0.543 0.883 1.383 1.650 1.833 1.973 2.086 2.262 2.398 2.508 2.685 2.821 2.936 3.116 3.250
10 0.260 0.542 0.879 1.372 1.634 1.812 1.948 2.058 2228 2359 24635 2.634 2.764 2.872 3.043 3.169
11 0.260 0.540 0.876 1.363 1.621 1.796 1.928 2.036 2.201 2.328 2.430 2.593 2.718 2.822 2.985 3.106
12 0.259 0.539 0.873 1.356 1.610 1.782 1912 2.017 2.179 2.303 2.402 2.560 2.681 2.782 2,939 3.055
13 0.259 0.538 0.870 1.350 1.601 1.771 1.899 2.002 2.160 2.282 2.379 2,533 2.650 2.748 2.900 3.012
14 0.258 0.537 0.868 1.345 1.593 1.761 1.887 1.989 2.145 2.264 2.359 2.510 2.624 2.720 2.868 2.977
15 0.258 0.536 0.866 1.341 1.587 1.753 1.878 1.978 2.131 2.249 2.342 2.490 2.602 2.696 2.841 2.947
16 0.258 0.535 0.865 1.337 1.581 1.746 1.869 1.968 2.120 2.235 2.327 2.473 2.583 2.675 2.817 2.921
17 0.257 0.534 0.863 1.333 1.576 1.740 1.862 1.960 2.110 2224 2.315 2.458 2.567 2.657 2.796 2.898
18 0.257 0.534 0.862 1.330 1.572 1.734 1.855 1.953 2.101 2214 2.303 2.445 2.552 2.641 2.778 2.878
19 0.257 0.533 0.861 1.328 1.568 1.729 1.850 1.946 2.093 2.205 2293 2.433 2.539 2.627 2.762 2.861
20 0.257 0.533 0.860 1.325 1.564 1.725 1.844 1.940 2.086 2.197 2.285 2.423 2.528 2614 2.748 2.845
21 0.257 0.532 0.859 1.323 1.561 1.721 1.840 1.935 2.080 2.189 2.2, 2414 2518 2.603 2935 2.831
22 0.256 0.532 0.858 1.321 1.558 1717 1.835 1.930 2.074 2.183 2.269 2.405 2.508 2.593 2.724 2.819
23 0.256 0.532 0.858 1.319 1.556 1.714 1.832 1.926 2.069 2177 2.263 2.398 2.500 2.584 2.713 2.807
24 0.256 0.531 0.857 1.318 1.553 1.711 1.828 1.922 2.064 2.172 2.257 2.391 2.492 2.575 2.704 24797,
25 0.256 0.531 0.856 1.316 1.551 1.708 1.825 1.918 2.060 2.167 2.251 2.385 2.485 2.568 2.695 2787
26 0.256 0.531 0.856 1315 1.549 1.706 1.822 1.915 2.056 2.162 2.246 2.379 2.479 2.561 2.687 2979
21 0.256 0.531 0.855 1.314 1.547 1.703 1.819 1.912 2.052 2.158 2.242 21373 2473 2.554 2.680 2771
28 0.256 0.530 0.855 1313 1.546 1.701 1.817 1.909 2.048 2.154 2.237 2.368 2.467 2.548 2.673 2.763
29 0.256 0.530 0.854 1311 1.544 1.699 1.814 1.906 2.045 2.150 2233 2.364 2.462 2.543 2.667 2.756
30 0.256 0.530 0.854 1.310 1.543 1.697 1.812 1.904 2.042 2.147 2230 2.360 2.457 2.537 2.661 2.750
40 0.255 0.529 0.851 1.303 1.532 1.684 1.796 1.886 2.021 2.123 2.203 2.329 2.423 2.501 2.619 2.704
50 0.255 0.528 0.849 1.299 1.526 1.676 1.787 1.875 2.009 2.109 2.188 2.311 2.403 2.479 2.594 2.678
75 0.254 0.527 0.846 1.293 1.517 1.665 1.775 1.861 1.992 2.090 2.167 2.287 2.377 2.450 2.562 2.643
100 0.254 0.526 0.845 1.290 1.513 1.660 1.769 1.855 1.984 2.081 23157 2.276 2.364 2,436 2.547 2.626
% 0.253 0.524 0.842 1.282 1.501 1.645 1,751 1.834 1,960 2,054 2127 2241 2,320 2,395 2,501 2,570




