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« 3D Mapping, Video Collection
* Delivery (Amazon, etc.)

* Inspections

« Data (Re)Transmission

* Alr Taxis

= Investment 2017: $506M
=>1000’s of flights per day
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Estimated Investment In Drone Hardware
Global

B Government ™ Consumer ™ Enterprise

USD (Billions)

2015 2016E 2017E 2018E 2019E 2020E 2021E

INTELLIGENCI

S0

Source: IHS Jane's Intelligence Review, 2015; Bl Intelligence Estimates, 2016
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Concerned Communities

 FAA/NASA
 Local & State Governments
 Service Vendors

e Users
 Public
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Local & State Governments
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* Regulation of Flight

* Infrastructure for flight management
« Radar
* 5G
« RTK GPS

Emergency Service

Data Acquisition & Analysis
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Service Vendors
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* Low cost
« Efficiency
* E.g.: Airmap

U-space Demonstration-at the WEF... o ~”
’ e o ey P
l 0 ity ¥ .

' oWateh later Share l
-
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Footage cowtesy of FOCA
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E,__ Users (Flying UAS’s)
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 Low Cost
* Privacy
* Reliability
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General Public

* Positive Aspects:
* Lower cost of goods
* Lower cost of delivery
* Improve delivery time

* Negative Aspects:
* Noise
 Pollution
* Privacy

THE
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« Service Suppliers must share flight plans
 Arbitrary flight plans =» negative public
« Safety levels & prediction difficult

 Arbitrary paths NP-space hard
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* Lane-based airways
« UAS configuration space becomes 1D
 Allows strategic deconfliction

Our Proposal

 Airway roundabouts for intersections
* NO crossing; just merging or diverging

« Computationally tractable
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Utah Urban Air Mobility Idea
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i Urban Air Taxi Airspace
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UDOT UAM (cont'd)

(Slide from Jared Esselman; UDQOT)
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UDOT UAM (cont'd)

SCHOOL or
COMPUTING

Proposal:

Airways above
roadways.
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FlightPlan(2/2/2018)

[Minimum Separation(m):

Max Flight Time (h):

‘Max Velocity (m/s):

;Requested Airspace W (m):
!Requested Airspace H (m):
}Latitude:
‘;Longitude:
|Altitude (m):

Expected Arrival:
February 2, 2018 | ...||1:30pm
Expected Departure:

February 2, 2018 [... 2:30pm
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'PLT Which Path To Take? = use lanes
- What about Wind? }
SCHOOL o What about Rain?
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Reinforcement Learning
For Optimal Policies
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FlightPlan(2/2/2018)

|Minimum Separation(m): [10
‘Max Flight Time (h): 2
‘Max Velocity (m/s): 10

launch: (0.0%,0.0°,0.0)

(0.0°,0.0

Requested Airspace W (m): [100
Requested Airspace H (m): 0
Latitude:
Longitude:
|Altitude (m): 44,
Expected Arrival
February 2, 2018 [...][1:30pm |~
Expected Departure:

February 2, 2018 ‘
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Dynamic UAV Flight Path Planning
In Urban Environments

DDDAS-GEOINT: Geospatial Intelligence System
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Knowledge &

Databases

Presentation
& Query
Interface

(Maps,
Assertions,
Processing uQ)

Resource Allocation
Agent Coordination
Sensor Placement
Feature Selection
Uncertainty Reduction

Surveillance & {
Reconnaissancew*
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DDDAS-GEOINT: Geospatial Intelligence System

Argumentation Logic Knowledge &
Databases — : ' Presentation
& Query
Interface

(Maps,
Assertions,

Resource Allocation
Agent Coordination
Sensor Placement
Feature Selection
Uncertainty Reduction

Surveillance & - R |
> \:{fonnaissance =
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User Web ~~ Real-time Web

Interface Data Feeds

‘ ArcGIS I /‘_A

= e Probabilistic Logic
™ Breccia e .

= Multi-agent = [=

Map & Image
Analysis Ve __Server

! Uncertainty
Monitoring Physics Models | l Quantification

Resources ) (Urban Terrain, , &
& Mission Planning | Wind) | : Argumentation

~_ e

Research Thrust 2 Research Thrust 1
Dynamic Data Uncertainty
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Tk Applications Models

e.g., Wind/Obscurant Simulations

nterrace

'Breccia'
Multi-agent
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Advanced Algorithms

e.g., Probabilistic Logic

' Real-time Web

ProbabilisticLogic

Uncertainty
Quantification
&
Argumentation

S

Research Thrust 1
Uncertainty
THE
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e.g., Path Planning

" Breccia
Multi-age!

Miap & Image
Analysis

Monitoring Physics Model:

Resources (Urban Terrain
& Mission Planning Wind)
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Eﬂ__ Software Infrastructure

e.g., BRECCIA Multi-agent Server

User Web ~~  Real-time Web \
Interface Data Feeds .

— Probabilistic Logic
Breccia s
Multi-agent

3 7Serverr

Uncertainty

Physics Models | Quantification

(Urban Terrain, &
Wind) ! Argumentation

" Research Thrust 1
Uncertainty
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E:_ BRECCIA: Summary
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* Provides middleware for:

 real-time coupling of computation and
knowledge

 across heterogeneous platforms
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E:_ BRECCIA: Summary
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* Provides uncertainty analysis for
* mission planning
* involving combination of:
* human statements

e simulation results
* Sensor measurements
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E:_ BRECCIA: Summary
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* Agents driven by uncertainty reduction:
* identification of major uncertainty sources
* uncertainty quantification
* propose measures for uncertainty reduction

* Next Version: URBAN (urban UAS flight
planning)
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F URBAN: Uncertainty Reduction-
e Based Agent Network
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» A mult-agent system specifically designed for geospatial-
temporal analysis across massive distributed datasets.

» Leverages the GeoWave project developed at the National
Geospatial-Intelligence Agency (NGA)
( ) and the open source
frameworks Apache Hadoop (for distributed processing) and
Accumulo (for key/value database storage).

» Conceptually, a layer atop GeoWave that provides
probabilistic logical reasoning over space and time.

3 1 UI\H{\EERSITY
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http://locationtech.github.io/geowave/
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URBAN (cont’d)

Dissemination of knowledge in the form of
probabilistic sentences and maps published to
GeoServer ( )

Addresses tasking, processing, exploitation, and
dissemination of data (TPED) with an agile
sensor network and the unifying concept of
uncertainty reduction.

Ul\}IH\EERSITY
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http://geoserver.org/
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&  URBAN Implementation
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«  The BRECCIA Agent represents the BRECCIA Agent
core abstraction for all agents in the BDI Engine
Uncertainty Reduct. Goal
system.

P.L. Logic Module
GeoWave Connector
Specialized Functions

« Agents are distributed across T
specialized machines such as UAVSs,
mobile laptops, or high performance
computers. :Mission Planner

RRT* Planner

« The inherited components of each

BRECCIA agent enable an overall ‘Weather Monitor

system that is dynamic and data-

driven. :UAV Manager
= :User

Example Instantiations of the BRECCIA Agent

33 Ul\}IH\EERSITY
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Uncertainty Reduct. Goal
P.L. Logic Module

e Implementation
SCHOOL o Specialized Functions
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F l__ ‘ URBAN BRECCIA Agent

T -
e

 The Belief-Desire-Intention (BDI) engine serves a dual purpose

« As a software architecture it facilitates the discussion and design
of agents

« As a software cognitive model it enables goal-driven behavior

« Jason ( ) provides the language
Interpreter and BDI engine to BRECCIA agents.

3 4 UI\EIH\EERSITY
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http://jason.sourceforge.net/wp/

BRECCIA Agent

N

caURBAN Implementation

£ 3 P.L. Logic Module
"w " The Jason Reasoning Cycle. From Programming Multi-Agent Systems in AgentSpeak GeoWave Connector
SCHOOL. :_lUsing Jason (pg. 68), by Rafael H. Bordini et al., 2007, England: John Wiley and Sons Ltd. Specialized Functions
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BRECCIA Agent
" s URBAN Implementation e m—

P.L. Logic Module
KH — GeoWave Connector
SCHOOL. o Specialized Functions
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e How does Jason enable data-driven behavior?

« Plans are executed due to events which may be achievement requests or a
change in belief.

 Example: Consider the case where a UAV is executing a path and
periodically querying the geospatial database for path obstruction. To cause
the agent to re-plan in the event of an obstruction, the code is as follows:

+path_obstructed(PathName) -> !replan(PathName)

/ N

React to the belief that path is obstructed... ...by replanning

« The language defined by Jason is inherently data-driven.

3 6 UI\H{\EERSITY
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Uncertainty Reduct. Goal

i P.L. Logic Module
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e GeoWave Connector

« (GeoWave enables agents to simultaneously access a distributed geospatial-temporal
database.

« Agents publish geospatial knowledge, written to the database, via GeoServer. This
enables remote sharing of this type of knowledge.

* In Jason, internal actions coded into the GeoWave connector provide direct access to
the databases.

« Example from weather agent:
+Ishare_storm_info(Location, Agent) ->
geowaveConnector::get wms_url(Location, WmsUrl) ;
.send(Agent, tell, storm_info(WmsUrl).

« Data-driven response from UAV agent:
+storm_info(WmsUrl) -> Icheck path_obstruction(WmsUrl)

3 7 Ul\ﬁ{\sERSITY
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F L URBAN Implementation
B

Distributed approach enables web-based user access:
¢

&« C | ® localhost:9001

BRECCIA

T

AL
IEFI.IIF .

( d BPE((!A

BRECCIA Agent

BDI Engine
Uncertainty Reduct. Goal

P.L. Logic Module
Specialized Functions

Prototype BRECCIA Client interface and Chat Window Featuring Map of Salt Lake City from

Local GeoServer Instance
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e Specialized Functions

« Current implementations of specialized functions include
« Connecting to MATLAB instances (Agents who know how to use MATLAB)

* RRT* path planner (Agents who know how to plan over space with vehicle
constraints)

* Wind Simulator (Agent that runs a wind vortex simulator)

* Ongoing work of specialized functions

« GDELT database query (Agents that can query the massive GDELT global event
database ( )

» OpenWeather APl Agent (Agents that can query distributed weather information)
« UAV simulator (Agents that can run real-time UAV simulators)
« UAV controller (Agents that can control quadcopters in real-time)

39 UI\EIH\EERSITY
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http://www.gdeltproject.org/

Back to Airways

i e s
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e Airway Corridors
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(a) Airspace Volumes

X
X

(b) Action Directions
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"- Problem: Strategic

O -

Deconfliction

* Planning collision free flight paths
* Typically PSPACE-hard

=>» Reduce configuration space to 1D
=» tractable

=» allows capacity analysis

43 Ul\ﬁ{\sERSITY
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* (Commercial) Air Traffic Flow management
« Job scheduling problem (schedule sections)
* Multi-robot motion planning

 Traffic Assignment Problem

* Optimization Problems

4 4 Ul\}IH\EERSITY
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FLT; Alr Corridors: 1D Problem
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UAS,
Enters at
t=3; exits
At t=5.3
45 R

UAS,
Enters at
t=2; exits
At t=7
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Roundabouts
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A Roun

Fig. 5. Airway Roundabout I WANIAEVE
L With Roundabouts
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Issues of Interest

* Relationship between:
« Airspace structure and capacity
 Demand and reliability

* Experiments (simulation)

THE
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Given network graph

Simulation Experiments

Demand: uniform distribution of vertex pairs

Ground speed: 5 m/s

Space Headway: 25m

Yields 500 time slots to schedule
Can't violate headway requirement

THE
UNIVERSITY
OF{JTAH
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Air Traffic Network
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* Reliability: variability in scheduled
release versus desired

 Lateness: amount of time after
desired release time

 Earliness: amount of time before
desired release time

50 UI\W‘ERSITY
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Demand/Scheduling Simulation

\\ t 1( )\ )L Ol Collision Fre‘re"::?e-g.a::d Approach

COMPU TING Inst. Num. UASs: 65

o155 4185

1459250 #4108 327
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e Demand vs Successful Flights
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¢  Utllization vs Requests
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Mean Lateness vs Earliness
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Minutes

—— Mean Lateness —— Mean Earliness |
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The results in previous slides used:

* To set flight parameters

» To design lanes (fast vs slow, to
reduce congestion, etc.)

e To assure low variance In lateness
¢ etc.
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e for Optimal Policies
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Bellman Equations:

U(s) = R(s) +ymazaca(s) Z P(s' | s,a)U(s")

Optimal Policy:

T*($) = argmaz,ca(s) Z P(s' | s,a)U(s)

56 UNIVERSITY
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Reinforcement Learning

e States

 Rewards

* Actions

* Transition Probabilities
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F.m Learning Optimal Action Policy
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60 \
56\ Cell: [4,4,4]; index: 64

2t Cell: [4,4,3]; index: 60

4x4 Grid 43 | 44

39 Cell: [3,2,4]; index: 31
35

30
26
22
18

Cell: [4,1,1]; index: 4
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U(s) = R(s) + YMaxXaea(s) 2. P(s'|s,a)U(s")

where:
U(s) is the utility of state s
a Is an action
A(S) Is the set of actions in state s
R(s) is the reward for state s
y IS a horizon coefficient

59 UI\H{\EERSITY
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State Representation

state space: S = Z3xR3xRtxR
* 3 Integer grid coordinates

* 3 wind vector values (X,y,z2)
* 1 precipitation value

* 1 temperature value

THE
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State Representation:

Reduced

state space: S = G3xWxPxT
*G ={1,2,3,4}. grid indexes
*W ={0,1}: no wind; wind
*P ={0,1}: no rain; rain

*T ={0,1,2}: cold, normal, hot (temp)
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Actions

A={X, -XY,-Y,Z -2}

* move In one of the coordinate directions

6 2 UI\EIH\EERSITY
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Action

X

-X

Y-'

Y

Z

-Z

I
5
3

0.60
0.00
0.10
0.10
0.15
0.05

0.00
0.60
0.10
0.10
0.15
0.05

0.10
0.10
0.60
0.00
0.15
0.05

0.10
0.10
0.00
0.60
1D
0.05

0.05
0.05
0.05
0.05
0.40
0.40

0.15
0.15
0.15
019
0.00
0.80

Table 2. Probabilities Used for Transitions for Actions
given Normal Temperature, No Wind and No
Precipitation.
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£k Reward Function
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s # goal.excluded state

excluded state
goal state
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function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’| s, a),
rewards F(s), discount
€, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in .S, initially zero
d, the maximum change in the utility of any state in an iteration

repeat
U—U"6=0
for each state s in S do

U'ls] — R(s) + v 1}1-@?{.) z P(s'|s,a) U[s] From:
if |U'[s] — Uls]| > 5the1155—|l.,f’[s] — Uld| RUSS.e” &
until § < €(1 —7)/n NorV|g

return U/

Figure 17.4  The value iteration algorithm for calculating utilities of states. The termina-
tion condition is from Equation (17.8).
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Experiments
« Start Location: 1,1,1 (index 1)
« Goal Location: 4,4,4 (index 64)
* Blocked Cell: 4,4,3 (index 60)

- Can’t exit 4x4x4
- Preference for horizontal motion

6 6 Ul\}IH\EERSITY
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State Utllities and Path
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55
42
30
396466 | .53
.33t 391 .45
26 31 .36
1T 2 26

(a) State Utility Trace (b) Flight Path Trace
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Optimal Policies
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Cell Travel Density
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i Policies with Wind in Y
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3\ Current Work: Get Data!
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Current Work: Testing!
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* Developed effective and efficient
optimal policy method

* Converted core BRECCIA system to
work for UAS Traffic Management

« allows communicating, autonomous
agents

* Cloud computing
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UTM Architecture

v2017.10.12

NAS Data

Sources

Flight
Information

Common data from FAA Management

available to UTM

components based on

existing access

mechanisms

impacts

National
Airspace
System

Color Key:

ANSP Function

Operator Function

1 Additional services
and components
that may have

| shared or TBD
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Inter-USS

ndustry Development

Inter-data provider
communication and
coordination

, Directives

! Requests, Decisions
-

= Operations, Deviations

Operation
requests
Real-time
information

Discovery
Registration Data/Services
Authentication/Authorization

THE
UNIVERSITY
OF[JTAH

communication
and coordination

Supplemental Data Service Provider

Terrain
Weather
Surveillance
Performance

Operations
Constraints
Modifications
Notifications
Information

Universal USS

Pre-flight Plan

Contingency
Handling

Communication
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Contingency Handling

B
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COMPUTI y Segmentation
Landing Site Identification
& Selection
Colleague: Ella Atkins, Univ of Michigan
&
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Contingency Handling

Raw Data Data Processing

Building Feature
Analysis

Landing Site
Extraction

Population
Density

Terrain
Analysis

Risk Analysis

Landing Site DB

Risk Score
Geometry

Site Constraints
Location

Used: (0O 0O

Cost Map DB

e Environment
Occupancy Maps

e Grid Cost/Risk
Maps

Colleague: Ella Atkins, Univ of Michigan
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Prog i
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0 -===% Multi-connectivity
— Multiple-access

Ground BS

(a)
Colleague: Tadilo Bogale, NC A&T
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F‘-—? ~ If we knew about trains, maybe ....

4@  we could do drones ....
o —
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Corridor
Occupancy

Movement
Authority

Eurobalise
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Verification of the American Air
2= Traffic Management System

(U\lll ll\(
In Real-Time Maude?

« Guarantee safety?
* Measure reliability & performance?
 Measure and improve capacity?

= Qualitatively analyze safety using timed
model checking?

= Quantitatively analyze capacity & energy?
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Fd Need to Read & Understand.:
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SNl  Verification of the European Rail Traflic Management System

in Real-Time Maude

Ulrich Berger®, Phillip James?®, Andrew Lawrence®, Markus Roggenbach®, Monika
Seisenberger®

“Swansea University, Swansea, UK
bSiemens Rail Automation UK, Chippenham, UK.

Abstract

The European Rail Traffic Management System (ERTMS) is a state-of-the-art train con-
trol system designed as a standard for railways across Europe. It generalises traditional
discrete interlocking systems to a world in which trains hold on-board equipment for
signalling, and trains and interlockings communicate via radio block processors. The
ERTMS aims at improving performance and capacity of rail traffic systems without
compromising their safety.
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Large-scale Simulation
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http://www.cs.utah.edu/~cem/uav/
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Questions?
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Altitude 202 km Lat 40.6121° Lon -112.5301° Elev 1,469 meters




UTAH UAV Fleet
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o o — Require: 4.7, 71, path, v,
SEOOL a rd desi.red release l.ime
r. <— earliest release time
r; < latest release time
path < requested segment ids
vg < speed
seats <— available time slots
ls < 0 {The segment length}
for each segment in path do
SeatSsegment < S€ats on segment at t € [re, 1| + .
seats < seatssegment | Seats {Binary OR}
s <+ segment length
end for
r; <— open seat closest to ry
return 7y
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