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Futuristic Vision
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Commercial Use Cases

• 3D Mapping, Video Collection

• Delivery (Amazon, etc.)

• Inspections

• Data (Re)Transmission

• Air Taxis

➔Investment 2017: $506M

➔1000’s of flights per day

CS6380 S20205



Drone HW Investment ($B)
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Concerned Communities

• FAA/NASA

• Local & State Governments

• Service Vendors

• Users

• Public
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FAA/NASA Architecture
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Local & State Governments

• Regulation of Flight

• Infrastructure for flight management

• Radar

• 5G

• RTK GPS

• Emergency Service

• Data Acquisition & Analysis
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Service Vendors

• Low cost

• Efficiency

• E.g.: Airmap
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Users (Flying UAS’s)

• Low Cost

• Privacy

• Reliability
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General Public

• Positive Aspects:

• Lower cost of goods

• Lower cost of delivery

• Improve delivery time

• Negative Aspects:

• Noise

• Pollution

• Privacy
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What’s Wrong Currently

• Service Suppliers must share flight plans

• Arbitrary flight plans ➔ negative public

• Safety levels & prediction difficult

• Arbitrary paths NP-space hard
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Our Proposal

• Lane-based airways

• UAS configuration space becomes 1D

• Allows strategic deconfliction

• Airway roundabouts for intersections

• No crossing; just merging or diverging

• Computationally tractable
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Utah Urban Air Mobility Idea
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UDOT UAM (cont’d)
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UDOT UAM (cont’d)
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Proposal:

Airways above

roadways.



Creating Airways
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UAM: Need to Plan Flights
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Which Path To Take?

What about Wind?
What about Rain?

➔ Use lanes

Reinforcement Learning

For Optimal Policies



Dynamic UAV Flight Path Planning

in Urban Environments
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BRECCIA



BRECCIA
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Applications Models
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e.g., Wind/Obscurant Simulations



Advanced Algorithms
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e.g., Probabilistic Logic

No Weak

Methods



Application Methods
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e.g., Path Planning



Software Infrastructure
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e.g., BRECCIA Multi-agent Server



BRECCIA: Summary

• Provides middleware for:

• real-time coupling of computation and 

knowledge

• across heterogeneous platforms
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BRECCIA: Summary

• Provides uncertainty analysis for 

• mission planning

• involving combination of:

• human statements

• simulation results

• sensor measurements
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BRECCIA: Summary

• Agents driven by uncertainty reduction:

• identification of major uncertainty sources

• uncertainty quantification

• propose measures for uncertainty reduction

• Next Version: URBAN (urban UAS flight 

planning)
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URBAN: Uncertainty Reduction-

Based Agent Network

• A mult-agent system specifically designed for geospatial-

temporal analysis across massive distributed datasets.

• Leverages the GeoWave project developed at the National 

Geospatial-Intelligence Agency (NGA) 

(http://locationtech.github.io/geowave/) and the open source 

frameworks Apache Hadoop (for distributed processing) and 

Accumulo (for key/value database storage).

• Conceptually, a layer atop GeoWave that provides 

probabilistic logical reasoning over space and time.
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URBAN (cont’d)

• Dissemination of knowledge in the form of 

probabilistic sentences and maps published to 

GeoServer (http://geoserver.org/)

• Addresses tasking, processing, exploitation, and 

dissemination of data (TPED) with an agile 

sensor network and the unifying concept of 

uncertainty reduction.
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URBAN Implementation
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:Mission Planner
RRT* Planner

:UAV Manager

:Weather Monitor

Example Instantiations of the BRECCIA Agent

:User

DB

GeoServer

Accumulo

Hadoop

• The BRECCIA Agent represents the 

core abstraction for all agents in the 

system.

• Agents are distributed across 

specialized machines such as UAVs, 

mobile laptops, or high performance 

computers.

• The inherited components of each 

BRECCIA agent enable an overall 

system that is dynamic and data-

driven.

BRECCIA Agent

P.L. Logic Module

GeoWave Connector

Specialized Functions

Uncertainty Reduct. Goal

BDI Engine



URBAN

Implementation

34

• The Belief-Desire-Intention (BDI) engine serves a dual purpose 

• As a software architecture it facilitates the discussion and design 

of agents

• As a software cognitive model it enables goal-driven behavior

• Jason (http://Jason.sourceforge.net/wp/) provides the language 

interpreter and BDI engine to BRECCIA agents. 

BRECCIA Agent

P.L. Logic Module

GeoWave Connector

Specialized Functions

Uncertainty Reduct. Goal

BDI Engine
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URBAN Implementation

35

BRECCIA Agent

P.L. Logic Module

GeoWave Connector

Specialized Functions

Uncertainty Reduct. Goal

BDI Engine
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The Jason Reasoning Cycle. From Programming Multi-Agent Systems in AgentSpeak

Using Jason (pg. 68), by Rafael H. Bordini et al., 2007, England: John Wiley and Sons Ltd.



URBAN Implementation
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• How does Jason enable data-driven behavior?

• Plans are executed due to events which may be achievement requests or a 

change in belief.

• Example: Consider the case where a UAV is executing a path and 

periodically querying the geospatial database for path obstruction. To cause 

the agent to re-plan in the event of an obstruction, the code is as follows: 

+path_obstructed(PathName) -> !replan(PathName) 

• The language defined by Jason is inherently data-driven.

BRECCIA Agent

P.L. Logic Module

GeoWave Connector

Specialized Functions

Uncertainty Reduct. Goal

BDI Engine

React to the belief that path is obstructed… …by replanning
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URBAN Implementation
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• GeoWave Connector
• GeoWave enables agents to simultaneously access a distributed geospatial-temporal 

database.

• Agents publish geospatial knowledge, written to the database, via GeoServer. This 

enables remote sharing of this type of knowledge.

• In Jason, internal actions coded into the GeoWave connector provide direct access to 

the databases.

• Example from weather agent:

+!share_storm_info(Location, Agent) -> 

geowaveConnector::get_wms_url(Location, WmsUrl) ;

.send(Agent, tell, storm_info(WmsUrl).

• Data-driven response from UAV agent:

+storm_info(WmsUrl) -> !check_path_obstruction(WmsUrl)

BRECCIA Agent

P.L. Logic Module

GeoWave Connector

Specialized Functions

Uncertainty Reduct. Goal

BDI Engine
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URBAN Implementation
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• Distributed approach enables web-based user access:

BRECCIA Agent

P.L. Logic Module

GeoWave Connector

Specialized Functions

Uncertainty Reduct. Goal

BDI Engine

Prototype BRECCIA Client interface and Chat Window Featuring Map of Salt Lake City from 

Local GeoServer Instance
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URBAN Implementation
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• Specialized Functions

• Current implementations of specialized functions include

• Connecting to MATLAB instances (Agents who know how to use MATLAB)

• RRT* path planner (Agents who know how to plan over space with vehicle 

constraints)

• Wind Simulator (Agent that runs a wind vortex simulator)

• Ongoing work of specialized functions

• GDELT database query (Agents that can query the massive GDELT global event 

database (http://www.gdeltproject.org/)

• OpenWeather API Agent (Agents that can query distributed weather information)

• UAV simulator (Agents that can run real-time UAV simulators)

• UAV controller (Agents that can control quadcopters in real-time)

BRECCIA Agent

P.L. Logic Module

Specialized Functions

Uncertainty Reduct. Goal

BDI Engine

GeoWave Connector
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Back to Airways
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Airway Corridors

E.g., over

Salt Lake City
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X

Z

-Z

-Y

Y

(a) Airspace Volumes (b) Action Directions

-X

Airspace Volumes
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Problem: Strategic 

Deconfliction

• Planning collision free flight paths

• Typically PSPACE-hard

➔Reduce configuration space to 1D

➔ tractable

➔ allows capacity analysis
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Related Problems

• (Commercial) Air Traffic Flow management

• Job scheduling problem (schedule sections)

• Multi-robot motion planning

• Traffic Assignment Problem

• Optimization Problems
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Air Corridors: 1D Problem
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time

space

𝑼𝑨𝑺𝟏

𝑈𝐴𝑆1
Enters at

t=2; exits

At t=7

𝑼𝑨𝑺𝟐

𝑈𝐴𝑆2
Enters at

t=3; exits

At t=5.3



Roundabouts
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A Roundabout

A Set of Airways

With Roundabouts



Issues of Interest

• Relationship between:

• Airspace structure and capacity

• Demand and reliability

• Experiments (simulation)
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Simulation Experiments

• Given network graph

• Demand: uniform distribution of vertex pairs

• Ground speed: 5 m/s

• Space Headway: 25m

• Yields 500 time slots to schedule

• Can’t violate headway requirement
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Air Traffic Network
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Measures

• Reliability: variability in scheduled 

release versus desired

• Lateness: amount of time after 

desired release time

• Earliness: amount of time before 

desired release time 
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Simulation Example
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Critical point

Demand vs Successful Flights
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Utilization vs Requests
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Mean Lateness vs Earliness

CS6380 S202054



Measures of Effectiveness

The results in previous slides used:

• To set flight parameters

• To design lanes (fast vs slow, to 

reduce congestion, etc.)

• To assure low variance in lateness

• etc.
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Reinforcement Learning

for Optimal Policies
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Bellman Equations:

Optimal Policy:



Reinforcement Learning

• States

• Rewards

• Actions

• Transition Probabilities
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Learning Optimal Action Policy
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4x4 Grid



Bellman Equations

𝑈 𝑠 = 𝑅 𝑠 + 𝛾𝑚𝑎𝑥𝑎𝜖𝐴(𝑠) σ𝑃 𝑠′ 𝑠, 𝑎 𝑈(𝑠′)
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where:

U(s) is the utility of state s

a is an action

A(s) is the set of actions in state s

R(s) is the reward for state s

𝛾 is a horizon coefficient



State Representation

state space: 𝑆 = 𝑍3𝗑𝑅3𝗑𝑅+𝗑𝑅

* 3 integer grid coordinates

* 3 wind vector values (x,y,z)

* 1 precipitation value

* 1 temperature value
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State Representation:

Reduced

state space: 𝑆 = 𝐺3𝗑𝑊𝗑𝑃𝗑𝑇

* G = {1,2,3,4}: grid indexes

* W = {0,1}: no wind; wind

* P = {0,1}: no rain; rain

* T = {0,1,2}: cold, normal, hot (temp)
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Actions

A = {X, -X, Y, -Y, Z, -Z}

* move in one of the coordinate directions
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Probabilistic State Transition
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Reward Function
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Value Iteration Algorithm
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From:

Russell &

Norvig



Experiments

• Start Location: 1,1,1 (index 1)

• Goal Location: 4,4,4 (index 64)

• Blocked Cell: 4,4,3 (index 60)

→ Can’t exit 4x4x4

→ Preference for horizontal motion
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State Utilities and Path
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Convergence for Utilities
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[3,4,4]

[2,1,1]

[3,2,4]

Grid cell



Optimal Policies
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Z: UP

Y: BACK

X: RIGHT



Optimal Policies
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Cell Travel Density
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Policies with Wind in Y
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Strong Wind in Y DirectionNo Wind

No action

in Y axis!



Current Work: Get Data!
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Current Work: Testing!

Deseret UAS
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Conclusions

• Developed effective and efficient 

optimal policy method

• Converted core BRECCIA system to 

work for UAS Traffic Management

• allows communicating, autonomous 

agents

• Cloud computing
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Future Work
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Contingency Handling
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Colleague: Ella Atkins, Univ of Michigan



Contingency Handling
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Colleague: Ella Atkins, Univ of Michigan



5G Communications
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Colleague: Tadilo Bogale, NC A&T
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RTK GPS Movement

Authority

Radar

Corridor

Occupancy

If we knew about trains, maybe ….
we could do drones ….



Verification of the American Air 

Traffic Management System

• Guarantee safety?

• Measure reliability & performance?

• Measure and improve capacity?
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In Real-Time Maude?

➔ Qualitatively analyze safety using timed 

model checking?

➔ Quantitatively analyze capacity & energy?



Need to Read & Understand:
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• http://www.cs.utah.edu/~cem/uav/

Large-scale Simulation
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Questions?
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Creating Airways

CS6380 S202085



UTAH UAV Fleet
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