CS6380 Project: Large-scale UAS Traffic Management

Tom Henderson et al.

Acknowledgment

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0077

(DDDAS-based Geospatial Intelligence)

SCHOOL OF COMPUTING

Tom Henderson

Colleagues

Robert Simmons

Taylor Welker

David Sacharny

> Xiuyi Fan Nanyang Technological University

JIVERSITY

Amar Mitiche INRS Montreal

Futuristic Vision

(Slide from Jared Esselman; UDOT)

Commercial Use Cases

- 3D Mapping, Video Collection
- Delivery (Amazon, etc.)
- Inspections
- Data (Re)Transmission
- Air Taxis

→Investment 2017: \$506M
→1000's of flights per day

Drone HW Investment (\$B)

SCHOOL OF COMPUTING

Concerned Communities

- FAA/NASA
- Local & State Governments
- Service Vendors
- Users
- Public

FAA/NASA Architecture

CS6380 S2020

Local & State Governments

- Regulation of Flight
- Infrastructure for flight management
 - Radar
 - 5G
 - RTK GPS
 - Emergency Service
 - Data Acquisition & Analysis

Service Vendors

- Low cost
- Efficiency
- E.g.: Airmap

Users (Flying UAS's)

- Low Cost
- Privacy
- Reliability

General Public

Positive Aspects:

- Lower cost of goods
- Lower cost of delivery
- Improve delivery time
- Negative Aspects:
 - Noise
 - Pollution
 - Privacy

What's Wrong Currently

Service Suppliers must share flight plans

- Safety levels & prediction difficult
- Arbitrary paths NP-space hard

Our Proposal

- Lane-based airways
 - UAS configuration space becomes 1D
 - Allows strategic deconfliction
- Airway roundabouts for intersections
 - No crossing; just merging or diverging

Computationally tractable

COMPUTING

Utah Urban Air Mobility Idea

(Slide from Jared Esselman; UDOT)

SCHOOL OF COMPUTING

UDOT UAM (cont'd) (Slide from Jared Esselman; UDOT)

CS6380 S2020

16

Proposal:

Airways above roadways.

UDOT UAM (cont'd)

Creating Airways

UAM: Need to Plan Flights

CS6380 S2020

SCHOOL OF

Which Path To Take? → Use lanes What about Wind? What about Rain? → Use lanes Reinforcement Learning For Optimal Policies

Dynamic UAV Flight Path Planning in Urban Environments

DDDAS-GEOINT: Geospatial Intelligence System Knowledge 8 **Argumentation Logic** Databases **Internet Data Acquisition** Presentation & Query **Active Data Acquisition** Interface Wargaming Models **Uncertainty Quantification** (Maps, **Imagery Orthorectification** Assertions **Physics Models** Processing UQ) HUMINT SW Systems

Resource Allocation Agent Coordination Sensor Placement Feature Selection Uncertainty Reduction

BRECCIA

- Resource Allocation
- Agent Coordination
- Sensor Placement
- Feature Selection
- Uncertainty Reduction

BRECCIA

CS6380 S2020

Applications Models

e.g., Wind/Obscurant Simulations

Advanced Algorithms

e.g., Probabilistic Logic

Application Methods

e.g., Path Planning

Software Infrastructure

SCHOOL OF COMPUTING

e.g., BRECCIA Multi-agent Server

NIVERSITY

CS6380 S2020

BRECCIA: Summary

- Provides middleware for:
 - real-time coupling of computation and knowledge
 - across heterogeneous platforms

BRECCIA: Summary

Provides uncertainty analysis for

- mission planning
- involving combination of:
 - human statements
 - simulation results
 - sensor measurements

BRECCIA: Summary

- Agents driven by uncertainty reduction:
 - identification of major uncertainty sources
 - uncertainty quantification
 - propose measures for uncertainty reduction

 Next Version: URBAN (urban UAS flight planning)

URBAN: <u>Uncertainty Reduction</u> <u>Based Agent Network</u>

- A mult-agent system specifically designed for geospatialtemporal analysis across massive distributed datasets.
- Leverages the GeoWave project developed at the National Geospatial-Intelligence Agency (NGA) (<u>http://locationtech.github.io/geowave/</u>) and the open source frameworks Apache Hadoop (for distributed processing) and Accumulo (for key/value database storage).
- Conceptually, a layer atop GeoWave that provides probabilistic logical reasoning over space and time.

URBAN (cont'd)

- Dissemination of knowledge in the form of probabilistic sentences and maps published to GeoServer (<u>http://geoserver.org/</u>)
- Addresses tasking, processing, exploitation, and dissemination of data (TPED) with an *agile sensor network* and the unifying concept of *uncertainty reduction*.

URBAN Implementation

COMPUTING

- The BRECCIA Agent represents the • core abstraction for all agents in the system.
- Agents are **distributed** across • specialized machines such as UAVs, mobile laptops, or high performance computers.
- The inherited components of each • **BRECCIA** agent enable an overall system that is dynamic and datadriven.

Example Instantiations of the BRECCIA Agent

Hadoop

Accumulo

GeoServer

DB

URBAN Implementation

- The Belief-Desire-Intention (BDI) engine serves a dual purpose
 - As a software architecture it facilitates the discussion and design of agents
 - As a software cognitive model it enables goal-driven behavior
- Jason (<u>http://Jason.sourceforge.net/wp/</u>) provides the language interpreter and BDI engine to BRECCIA agents.

URBAN Implementation

The Jason Reasoning Cycle. From Programming Multi-Agent Systems in AgentSpeak SCHOOL OF Using Jason (pg. 68), by Rafael H. Bordini et al., 2007, England: John Wiley and Sons Ltd. BRECCIA Agent BDI Engine Uncertainty Reduct. Goal P.L. Logic Module GeoWave Connector Specialized Functions

URBAN Implementation

SCHOOL OF COMPUTING

BRECCIA Agent BDI Engine Uncertainty Reduct. Goal P.L. Logic Module GeoWave Connector Specialized Functions

- How does Jason enable data-driven behavior?
 - Plans are executed due to events which may be achievement requests or a change in belief.
 - Example: Consider the case where a UAV is executing a path and periodically querying the geospatial database for path obstruction. To cause the agent to re-plan in the event of an obstruction, the code is as follows:

+path_obstructed(PathName) -> !replan(PathName)

React to the belief that path is obstructed...

...by replanning

• The language defined by Jason is inherently data-driven.

URBAN Implementation

SCHOOL OF COMPUTING

GeoWave Connector

- GeoWave enables agents to simultaneously access a distributed geospatial-temporal database.
- Agents publish geospatial knowledge, written to the database, via GeoServer. This enables remote sharing of this type of knowledge.
- In Jason, internal actions coded into the GeoWave connector provide direct access to the databases.
- Example from weather agent:

+!share_storm_info(Location, Agent) ->

geowaveConnector::get_wms_url(Location, WmsUrl);

.send(Agent, tell, storm_info(WmsUrl).

 Data-driven response from UAV agent: +storm_info(WmsUrl) -> !check_path_obstruction(WmsUrl)

URBAN Implementation

BDI Engine Uncertainty Reduct. Goal P.L. Logic Module GeoWave Connector Specialized Functions

BRECCIA Agent

SCHOOL OF COMPUTING

• Distributed approach enables web-based user access:

BRECCIA Chat Roon	1 - Google Chrome V 👌 😣
BRECCIA Chat Room ×	Devid
$\leftarrow \rightarrow \mathbb{C}$ (i) localhost:9001	🖈 🔶 🙆 🔛 :
Apps	
	9 H B CHI S TO B S COMMENDER AND
	mission_planner(raven_air_control_ok[p(0.9)]),
	weather_monitor(wind_under_17[p(0.9]]),
	mission_planner(cnf(collection_done,[raven_infra_red,target_loiter_ok])),
Туре Неге	Send

Prototype BRECCIA Client interface and Chat Window Featuring Map of Salt Lake City from Local GeoServer Instance

URBAN Implementation

SCHOOL OF COMPUTING

- Specialized Functions
 - Current implementations of specialized functions include
 - Connecting to MATLAB instances (Agents who know how to use MATLAB)
 - RRT* path planner (Agents who know how to plan over space with vehicle constraints)
 - Wind Simulator (Agent that runs a wind vortex simulator)
 - Ongoing work of specialized functions
 - GDELT database query (Agents that can query the massive GDELT global event database (<u>http://www.gdeltproject.org/</u>)
 - OpenWeather API Agent (Agents that can query distributed weather information)
 - UAV simulator (Agents that can run real-time UAV simulators)
 - UAV controller (Agents that can control quadcopters in real-time)

Back to Airways

UUTM UW/Demo

(a) Airspace Volumes

(b) Action Directions

Problem: Strategic Deconfliction

Planning collision free flight paths
Typically PSPACE-hard

Reduce configuration space to 1D
 tractable
 allows capacity analysis

Related Problems

- (Commercial) Air Traffic Flow management
- Job scheduling problem (schedule sections)
- Multi-robot motion planning
- Traffic Assignment Problem
- Optimization Problems

Air Corridors: 1D Problem

UAS₁ Enters at t=2; exits At t=7

Roundabouts

OF [JTAH

46

Issues of Interest

• Relationship between:

- Airspace structure and capacity
- Demand and reliability

Experiments (simulation)

Simulation Experiments

- Given network graph
- Demand: uniform distribution of vertex pairs
- Ground speed: 5 m/s
- Space Headway: 25m
- Yields 500 time slots to schedule
- Can't violate headway requirement

Air Traffic Network

Reliability: variability in scheduled release versus desired

 Lateness: amount of time after desired release time

 Earliness: amount of time before desired release time

Simulation Example

Demand vs Successful Flights

SCHOOL COMPUT

THE

UNIVERSITY

OF JTAH

Critical point

Utilization vs Requests

COMPUT

Mean Lateness vs Earliness

S2020

Measures of Effectiveness

The results in previous slides used:

- To set flight parameters
- To design lanes (fast vs slow, to reduce congestion, etc.)
- To assure low variance in lateness
- etc.

Reinforcement Learning for Optimal Policies

Bellman Equations:

$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum P(s' \mid s, a) U(s')$

Optimal Policy:

$$\pi^*(s) = \operatorname{argmax}_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U(s')$$

Reinforcement Learning

- States
- Rewards
- Actions
- Transition Probabilities

Learning Optimal Action Policy

SCHOOL OF COMPUTING

4x4 Grid

Bellman Equations

$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum P(s'|s, a) U(s')$

where: U(s) is the utility of state s a is an action A(s) is the set of actions in state s R(s) is the reward for state s γ is a horizon coefficient

State Representation

state space: S = Z³xR³xR⁺xR
* 3 integer grid coordinates
* 3 wind vector values (x,y,z)
* 1 precipitation value
* 1 temperature value

State Representation: Reduced

state space: $S = G^3 \times W \times P \times T$ * G = {1,2,3,4}: grid indexes * W = {0,1}: no wind; wind * P = {0,1}: no rain; rain * T = {0,1,2}: cold, normal, hot (temp)

Actions

$A = \{X, -X, Y, -Y, Z, -Z\}$

* move in one of the coordinate directions

Probabilistic State Transition

Action	X	-X	Y	-Y	Z	-Z
1	0.60	0.00	0.10	0.10	0.05	0.15
2	0.00	0.60	0.10	0.10	0.05	0.15
3	0.10	0.10	0.60	0.00	0.05	0.15
4	0.10	0.10	0.00	0.60	0.05	0.15
5	0.15	0.15	0.15	0.15	0.40	0.00
6	0.05	0.05	0.05	0.05	0.40	0.80

Table 2. Probabilities Used for Transitions for Actions given Normal Temperature, No Wind and No Precipitation.

Reward Function

$$R(s) = \begin{cases} -0.04 & s \neq \text{goal,excluded state} \\ -1 & \text{excluded state} \\ +1 & \text{goal state} \end{cases}$$

COMPLITING

Value Iteration Algorithm

function VALUE-ITERATION(mdp, ϵ) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a), rewards R(s), discount γ ϵ , the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero δ , the maximum change in the utility of any state in an iteration repeat $U \leftarrow U'; \delta \leftarrow 0$ for each state s in S do

 $U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s']$ if $|U'[s] - U[s]| > \delta$ then $\delta \leftarrow |U'[s] - U[s]|$ until $\delta < \epsilon(1 - \gamma)/\gamma$ return U From: Russell & Norvig

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (17.8).

Experiments

- Start Location: 1,1,1 (index 1)
- Goal Location: 4,4,4 (index 64)
- Blocked Cell: 4,4,3 (index 60)

→ Can't exit 4x4x4
→ Preference for horizontal motion

State Utilities and Path

(b) Flight Path Trace

CS6380 S2020

SCHC COMI

Convergence for Utilities

Optimal Policies

Table 3. Optimal Policies for the states.

X: RIGHT

Optimal Policies

(a) Action Numbers

(b) Directions

3

5

5

5

Cell Travel Density

71

Policies with Wind in Y

G No action Х in Y axis!

(b) Directions Strong Wind in Y Direction

Current Work: Get Data!

SCHOOL OF COMPUTIN

Transitions: UDOT UTM: Real-time Data Acquisition

Current Work: Testing! Deseret UAS

Conclusions

 Developed effective and efficient optimal policy method

- Converted core BRECCIA system to work for UAS Traffic Management
 - allows communicating, autonomous agents
 - Cloud computing

Future Work

SCHOOL OF

Contingency Handling

Colleague: Ella Atkins, Univ of Michigan

Contingency Handling

CS6380 S2020

COMPUTING

5G Communications

Colleague: Tadilo Bogale, NC A&T

CS6380 S2020

If we knew about trains, maybe we could do drones

SCHOOL OF COMPUTING **RTK GPS** MA GSM-R IXL

Eurobalise

RBC

TO

Radar

Corridor

Occupancy

Movement

Authority

CS6380 S2020

Verification of the American Air Traffic Management System In Real-Time Maude?

- Guarantee safety?
- Measure reliability & performance?
- Measure and improve capacity?

Qualitatively analyze safety using timed model checking?

Quantitatively analyze capacity & energy?

SCH

COMPL

Need to Read & Understand:

Verification of the European Rail Traffic Management System in Real-Time Maude

Ulrich Berger^a, Phillip James^a, Andrew Lawrence^b, Markus Roggenbach^a, Monika Seisenberger^a

> ^aSwansea University, Swansea, UK ^bSiemens Rail Automation UK, Chippenham, UK.

Abstract

The European Rail Traffic Management System (ERTMS) is a state-of-the-art train control system designed as a standard for railways across Europe. It generalises traditional discrete interlocking systems to a world in which trains hold on-board equipment for signalling, and trains and interlockings communicate via radio block processors. The ERTMS aims at improving performance and capacity of rail traffic systems without compromising their safety.

Large-scale Simulation

• <u>http://www.cs.utah.edu/~cem/uav/</u>

Questions?

Creating Airways

F

UTAH UAV Fleet

Require: $r_d, r_e, r_l, path, v_q$ $r_d \leftarrow$ desired release time $r_e \leftarrow$ earliest release time $r_l \leftarrow$ latest release time $path \leftarrow$ requested segment ids $v_q \leftarrow \text{speed}$ $seats \leftarrow$ available time slots $l_s \leftarrow 0$ {The segment length} for each segment in path do seats_{segment} \leftarrow seats on segment at $t \in [r_e, r_l] + \frac{t_s}{v_e}$ $seats \leftarrow seats_{segment} \mid seats \{ Binary OR \}$ $l_s \leftarrow$ segment length end for $r_t \leftarrow \text{open seat closest to } r_d$ return r_t

