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FAA-NASA vs. LSD Strategic Deconfliction



Problem Statement (A8)



Readings

• An Efficient Strategic Deconfliction Algorithm for Lane-Based Large-
Scale UAV Flight Planning, Thomas C. Henderson, David Sacharny and 
Michael Cline, UUCS-19-005, September, 2019. (Henderson2019.pdf)

• UAS Traffic Management (UTM) Project Strategic Deconfliction:
System Requirements Final Report, J. Rios, July, 2018. (Rios2018a.pdf)

These can be found at: ~tch, notes, RES, UAM
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STLD Labels



STLD Configurations
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Lane Strategic Deconfliction (LSD)



LSD Computational Complexity
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STLD Label Enumeration



FAA-NASA Strategic Deconfliction

• Starts with set of flights requests (launch,land vertexes,time interval)

• .speed: Random speeds for flights, constant through all segments

• .start_time: launch time

• .traj: Trajectories: 3-element polyline (up, over, down)
• 3x6 array (xi1,yi1,zi1,xi2,yi2,zi2)

• .flight_path: 3x4 array (entry_time, exit_time, speed, lane #)

• .d_count: deconfliction count (number of segments tested)

• .end_time: landing time for flight

• .grid_els: grid element indexes for flight (fly over cells)



Deconfliction Algorithm

• Produces list of flights with common grid 
elements

• Finds set of flights with segments that are within 
headway distance (called pinch points)
• Mx5 array: (f1,f2,s1,s2,min_d)

• Algorithm continues until new flight does not fail 
headway distance at any time during flight
• Checks every pinch segment pair as to

whether two flights are that at times which 
produce a conflict



Deconfliction Algorithm
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Deconfliction Algorithm
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These two segments may be at different heights, 
even though they share common grid elements.

The function UAM_quad(P0,P1,Q0,Q1,del_x) returns the
closest points (within del_x) of the two segments, as well
as their distance.  E.g., suppose segment 1 is at z1 = 10.5, 
and z2 = 11; then:

>> [md,p1,p2] = UAM_quad(P0,P1,Q0,Q1,0.001)
md = 0.5001
p1 = 31.3380   40.4180   10.5000
p2 = 31.3490   40.4210   11.0000



Your Goals

• Basic Goal:
• Get FNSD-LSD comparison running

• Develop reasonable measures for comparison

• Develop statistical framework to make measurements

• Produce statistics

• Advanced Goal:
• Develop improved FNSD method

• Demonstrate gathering of measurements on a variety of scenarios



FNSD vs LSD Code

function [airways,lane_flights,flights,flights_FN] = UAM_FNSD_LSD_scenario( min_start, max_start, 
min_speed, max_speed, num_flights, del_t, h_t)

% UAM_FNSD_LSD_scenario - compare FAA-NASA SD with Lane SD

% On input:

%     min_start (float): earliest start time

%     max_start (float): latest start time

%     min_speed (float): minimum speed (0.1 corresponds to 3mph)

%     max_speed (float): maximum speed (0.31 corresponds to 10 mph)

%     num_flights (int): number of flights to schedule

%     del_t (float): time step for simulated motion

%     h_t (float): minimum headway time



% On output:

%     airways (airway data structure): airways info

%       .vertexes (nx2 array): x,y locations of road intersections

%       .edges (ex2 array): edges on roads (i.e., between intersections)

%       .r_len (float): minimum lane length in roundabout

%       .launch_vertexes (1xk vector): indexes of launch vertexes (ground)

%       .land_vertexes (1xm vector): indexes of land vertexes (ground)

%       .vertexes3D (px3 array): 3D lane vertexes

%       .lanes (qx10 array): x1,y1,z1,x2,y2,z2,v1_g,v2_g,v1_3D,v2_3D

%       .lane_lengths (qx1 vector): lengths of lanes

%     lane_flights (lane flight data structure): lane-based flight data

%       .flights (kx5 vector): time in,time out,speed,lane,ID

%     flights (flight struct) per flight info

%       (k).start_time (float): start time of flight    % (k).end_time (float): end time of flight     
% (k).lanes    % (k).speed)

%     flights_FN (flight struct): FAA-NASA flight data

%       (k).start_time (float): start time of flight      %  (k).end_time (float): end time of flight

%       (k).lanes     % (k).speed)



• LOWER_ALTITUDE = 10;

• UPPER_ALTITUDE = 12;

• M = 100;

• N = 100;

•

• grid_x = 10;

•

• h_x = max_speed*h_t;

•

• airways = UAM_create_airway_demo;

• num_ground_vertexes = length(airways.vertexes(:,1));



lane_flights = [];   flights = [];

for f = 1:num_flights

% launch_index = randi(num_ground_vertexes);   land_index = randi(num_ground_vertexes);  

launch_index = 1;  land_index = 25;

speed = min_speed+rand*(max_speed-min_speed);

lanes = UAM_flight_path(airways,launch_index,land_index);

[flight_path,d_count,lane_flights] = UAM_reserve_flight(airways,...

lane_flights,min_start,max_start,speed,lanes,f,h_t);

if ~isempty(flight_path)

flights(f).lanes = lanes;                    flights(f).flight_path = flight_path;

flights(f).d_count = d_count; flights(f).start_time = flight_path(1,1);

flights(f).end_time = flight_path(end,2);

else

flights(f).lanes = lanes;                   flights(f).flight_path = flight_path;

flights(f).d_count = d_count;        flights(f).start_time = -1;

flights(f).end_time = -1;

end

end

lane_flights: flights by lane flights: individual flight data

Create flights



for f = 1:num_flights

if flights(f).start_time>=0

flights_FN(f).speed = flights(f).flight_path(1,3);

flights_FN(f).start_time = flights(f).start_time;

launch_lane = flights(f).flight_path(1,4);

land_lane = flights(f).flight_path(end,4);

launch_pt = lanes(launch_lane,1:3);

land_pt = lanes(land_lane,4:6);

altitude = LOWER_ALTITUDE + rand*(UPPER_ALTITUDE-
LOWER_ALTITUDE);

pt1 = launch_pt;     pt4 = land_pt;     pt2 = [pt1(1:2),altitude];

pt3 = [pt4(1:2),altitude];     traj = [pt1,pt2; pt2,pt3; pt3,pt4];

flights_FN(f).traj = traj;

Create 3-polyline
trajectory



len1 = norm(traj(1,4:6)-traj(1,1:3));

len2 = norm(traj(2,4:6)-traj(2,1:3));

len3 = norm(traj(3,4:6)-traj(3,1:3));

total_len = len1 + len2 + len3;

flight_path = zeros(3,4);

flight_path(1,1) = flights_FN(f).start_time;

flight_path(1,2) = flight_path(1,1) + len1/flights_FN(f).speed;

flight_path(1,3) = flights_FN(f).speed;

flight_path(1,4) = 1;

flight_path(2,1) = flight_path(1,2);

flight_path(2,2) = flight_path(2,1) + len2/flights_FN(f).speed;

flight_path(2,3) = flights_FN(f).speed;

flight_path(2,4) = 2;

flight_path(3,1) = flight_path(2,2);

flight_path(3,2) = flight_path(3,1) + len3/flights_FN(f).speed;

flight_path(3,3) = flights_FN(f).speed;

flight_path(3,4) = 3;

flights_FN(f).flight_path = flight_path;

flights_FN(f).d_count = 0;

flights_FN(f).end_time = flights(f).start_time...

+ total_len/flights_FN(f).speed;

flights_FN(f).grid_els = UAM_grid_els(traj(1,1:3),traj(end,4:6),...

x_min,y_min,x_max,y_max,grid_x,M,N);A

A

Set flight path & grid elements


