
CS6380 April 13-15 2020

FAA-NASA vs. LSD Strategic Deconfliction



Problem Statement (A8)



Readings

• An Efficient Strategic Deconfliction Algorithm for Lane-Based Large-
Scale UAV Flight Planning, Thomas C. Henderson, David Sacharny and 
Michael Cline, UUCS-19-005, September, 2019. (Henderson2019.pdf)

• UAS Traffic Management (UTM) Project Strategic Deconfliction:
System Requirements Final Report, J. Rios, July, 2018. (Rios2018a.pdf)

These can be found at: ~tch, notes, RES, UAM



Lanes



Roundabout



Space Time Lane Diagram

Existing Flight

Headway Times

Proposed Flight
Time Interval



Space Time Lane Diagram



STLD Labels



STLD Configurations

𝒑𝟑

𝒕𝒔 is time
to cross lane



Lane Strategic Deconfliction (LSD)



LSD Computational Complexity

𝑛 𝑛 + 1

2
∗
𝑓2

𝑛2



STLD Label Enumeration



FAA-NASA Strategic Deconfliction

• Starts with set of flights requests (launch,land vertexes,time interval)

• .speed: Random speeds for flights, constant through all segments

• .start_time: launch time

• .traj: Trajectories: 3-element polyline (up, over, down)
• 3x6 array (xi1,yi1,zi1,xi2,yi2,zi2)

• .flight_path: 3x4 array (entry_time, exit_time, speed, lane #)

• .d_count: deconfliction count (number of segments tested)

• .end_time: landing time for flight

• .grid_els: grid element indexes for flight (fly over cells)



Deconfliction Algorithm

• Produces list of flights with common grid 
elements

• Finds set of flights with segments that are within 
headway distance (called pinch points)
• Mx5 array: (f1,f2,s1,s2,min_d)

• Algorithm continues until new flight does not fail 
headway distance at any time during flight
• Checks every pinch segment pair as to

whether two flights are that at times which 
produce a conflict



Deconfliction Algorithm

pt1 = [13,29,0]
pt2 = [66,62,0]
x_min = 0
y_min = 0
x_max = 80
y_max = 80
x_grid = 10
M = 80
N = 80

pt1 = [72,48,0]
pt2 = [13,37,0]
x_min = 0
y_min = 0
x_max = 80
y_max = 80
x_grid = 10
M = 80
N = 80

13
14
20
21
28
29
35
36
43
50
51

grid
elements

13
20
21
28
29
36
44
52
60

grid
elements

1

3

2

4

5

7

6

8

9

11

10

12

13

14

20 28

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80



Deconfliction Algorithm

1

3

2

4

5

7

6

8

9

11

10

12

13

14

20 28

These two segments may be at different heights, 
even though they share common grid elements.

The function UAM_quad(P0,P1,Q0,Q1,del_x) returns the
closest points (within del_x) of the two segments, as well
as their distance.  E.g., suppose segment 1 is at z1 = 10.5, 
and z2 = 11; then:

>> [md,p1,p2] = UAM_quad(P0,P1,Q0,Q1,0.001)
md = 0.5001
p1 = 31.3380   40.4180   10.5000
p2 = 31.3490   40.4210   11.0000



Your Goals

• Basic Goal:
• Get FNSD-LSD comparison running

• Develop reasonable measures for comparison

• Develop statistical framework to make measurements

• Produce statistics

• Advanced Goal:
• Develop improved FNSD method

• Demonstrate gathering of measurements on a variety of scenarios



FNSD vs LSD Code

function [airways,lane_flights,flights,flights_FN] = UAM_FNSD_LSD_scenario( min_start, max_start, 
min_speed, max_speed, num_flights, del_t, h_t)

% UAM_FNSD_LSD_scenario - compare FAA-NASA SD with Lane SD

% On input:

%     min_start (float): earliest start time

%     max_start (float): latest start time

%     min_speed (float): minimum speed (0.1 corresponds to 3mph)

%     max_speed (float): maximum speed (0.31 corresponds to 10 mph)

%     num_flights (int): number of flights to schedule

%     del_t (float): time step for simulated motion

%     h_t (float): minimum headway time



% On output:

%     airways (airway data structure): airways info

%       .vertexes (nx2 array): x,y locations of road intersections

%       .edges (ex2 array): edges on roads (i.e., between intersections)

%       .r_len (float): minimum lane length in roundabout

%       .launch_vertexes (1xk vector): indexes of launch vertexes (ground)

%       .land_vertexes (1xm vector): indexes of land vertexes (ground)

%       .vertexes3D (px3 array): 3D lane vertexes

%       .lanes (qx10 array): x1,y1,z1,x2,y2,z2,v1_g,v2_g,v1_3D,v2_3D

%       .lane_lengths (qx1 vector): lengths of lanes

%     lane_flights (lane flight data structure): lane-based flight data

%       .flights (kx5 vector): time in,time out,speed,lane,ID

%     flights (flight struct) per flight info

%       (k).start_time (float): start time of flight    % (k).end_time (float): end time of flight     
% (k).lanes    % (k).speed)

%     flights_FN (flight struct): FAA-NASA flight data

%       (k).start_time (float): start time of flight      %  (k).end_time (float): end time of flight

%       (k).lanes     % (k).speed)



• LOWER_ALTITUDE = 10;

• UPPER_ALTITUDE = 12;

• M = 100;

• N = 100;

•

• grid_x = 10;

•

• h_x = max_speed*h_t;

•

• airways = UAM_create_airway_demo;

• num_ground_vertexes = length(airways.vertexes(:,1));



lane_flights = [];   flights = [];

for f = 1:num_flights

% launch_index = randi(num_ground_vertexes);   land_index = randi(num_ground_vertexes);  

launch_index = 1;  land_index = 25;

speed = min_speed+rand*(max_speed-min_speed);

lanes = UAM_flight_path(airways,launch_index,land_index);

[flight_path,d_count,lane_flights] = UAM_reserve_flight(airways,...

lane_flights,min_start,max_start,speed,lanes,f,h_t);

if ~isempty(flight_path)

flights(f).lanes = lanes;                    flights(f).flight_path = flight_path;

flights(f).d_count = d_count; flights(f).start_time = flight_path(1,1);

flights(f).end_time = flight_path(end,2);

else

flights(f).lanes = lanes;                   flights(f).flight_path = flight_path;

flights(f).d_count = d_count;        flights(f).start_time = -1;

flights(f).end_time = -1;

end

end

lane_flights: flights by lane flights: individual flight data

Create flights



for f = 1:num_flights

if flights(f).start_time>=0

flights_FN(f).speed = flights(f).flight_path(1,3);

flights_FN(f).start_time = flights(f).start_time;

launch_lane = flights(f).flight_path(1,4);

land_lane = flights(f).flight_path(end,4);

launch_pt = lanes(launch_lane,1:3);

land_pt = lanes(land_lane,4:6);

altitude = LOWER_ALTITUDE + rand*(UPPER_ALTITUDE-
LOWER_ALTITUDE);

pt1 = launch_pt;     pt4 = land_pt;     pt2 = [pt1(1:2),altitude];

pt3 = [pt4(1:2),altitude];     traj = [pt1,pt2; pt2,pt3; pt3,pt4];

flights_FN(f).traj = traj;

Create 3-polyline
trajectory



len1 = norm(traj(1,4:6)-traj(1,1:3));

len2 = norm(traj(2,4:6)-traj(2,1:3));

len3 = norm(traj(3,4:6)-traj(3,1:3));

total_len = len1 + len2 + len3;

flight_path = zeros(3,4);

flight_path(1,1) = flights_FN(f).start_time;

flight_path(1,2) = flight_path(1,1) + len1/flights_FN(f).speed;

flight_path(1,3) = flights_FN(f).speed;

flight_path(1,4) = 1;

flight_path(2,1) = flight_path(1,2);

flight_path(2,2) = flight_path(2,1) + len2/flights_FN(f).speed;

flight_path(2,3) = flights_FN(f).speed;

flight_path(2,4) = 2;

flight_path(3,1) = flight_path(2,2);

flight_path(3,2) = flight_path(3,1) + len3/flights_FN(f).speed;

flight_path(3,3) = flights_FN(f).speed;

flight_path(3,4) = 3;

flights_FN(f).flight_path = flight_path;

flights_FN(f).d_count = 0;

flights_FN(f).end_time = flights(f).start_time...

+ total_len/flights_FN(f).speed;

flights_FN(f).grid_els = UAM_grid_els(traj(1,1:3),traj(end,4:6),...

x_min,y_min,x_max,y_max,grid_x,M,N);A

A

Set flight path & grid elements


