
FOUNDATIONS OF RECURRENT NEURAL NETWORKS

BY HAVA (EVE) TOVA SIEGELMANN

A dissertation submitted to the

Graduate School|New Brunswick

Rutgers, The State University of New Jersey

in partial ful�llment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Professor Eduardo D. Sontag

and approved by

New Brunswick, New Jersey

October, 1993

ABSTRACT OF THE DISSERTATION

Foundations of Recurrent Neural Networks

by Hava (Eve) Tova Siegelmann, Ph.D.

Dissertation Director: Professor Eduardo D. Sontag

\Arti�cial neural networks" provide an appealing model of computation. Such networks consist

of an interconnection of a number of parallel agents, or \neurons." Each of these receives certain

signals as inputs, computes some simple function, and produces a signal as output, which is in turn

broadcast to the successive neurons involved in a given computation. Some of the signals originate

from outside the network, and act as inputs to the whole system, while some of the output signals

are communicated back to the environment and are used to encode the end result of computation.

In this dissertation we focus on the \recurrent network" model, in which the underlying graph is

not subject to any constraints.

We investigate the computational power of neural nets, taking a classical computer science

point of view. We characterize the language recognition power of networks in terms of the types of

numbers (constants) utilized as weights. From a mathematical viewpoint, it is natural to consider

integer, rational, and real numbers. From the standpoint of computer science, natural classes of

formal languages are regular, recursive, and \all languages." We establish a precise correspondence

between the mathematical and computing choices. Furthermore, when the computation time of the

network is constrained to be polynomial in the input size, the classes recognized by the respective

networks are: regular, P, and Analog-P, i.e. P/poly. Among other results described in this thesis

are a proper hierarchy of networks using Kolmogorov-complexity characterizations, the imposition

of space constraints, and a proposed \Church's thesis of analog computing."

ii

Table of Contents

Abstract : ii

List of Figures : viii

1. The Recurrent Neural Network Model : 1

1.1. Motivations for Studying This Model : 4

1.1.1. Analog Computation : 4

1.2. The Model : 6

The Finite Structure : 8

The Simplicity of the Model : 8

1.3. Previous work : 8

1.4. Thesis Organization : 10

1.5. Computational Power - Preliminaries : 11

1.5.1. Analog Vs. Digital I/O : 15

1.5.2. Time and Space Constraints : 15

1.5.3. Language Recognition Vs. Function Computing : : : : : : : : : : : : : : : : : 16

1.5.4. Other Models of Computation : 16

Nondeterministic Turing Machine : 16

A Turing Machine That Receives Advice : 16

An Oracle Turing Machine : 18

2. A Neural Language : 19

2.1. General Description Of NEL : 22

2.2. Language Syntax : 25

iii

2.2.1. Data Types : 28

2.2.2. Input and Output : 31

2.3. Compilation Of The Language Into A Network : 32

2.3.1. Input and Output : 33

2.3.2. Flow Control : 33

2.3.3. Data Types and Expressions : 35

2.3.4. Compilation of Statements : 37

2.3.5. Expressions : 41

2.3.6. Statements : 45

2.3.7. Subprograms : 47

2.4. Appendix: Compilation of NEL : 48

2.4.1. Compilation of Data Types : 48

2.4.2. Compilation of Statements : 49

2.4.3. Compilation of Subroutine Calls : 51

3. The Computational Power of Recurrent Networks: Overview : : : : : : : : : : 52

3.1. Computational Power : 52

3.2. Basic De�nitions : 53

3.3. Main Results : 55

4. Networks with Integer Weights : 57

4.1. Finite Automata - Preliminaries : 57

4.2. Integer Networks and Regular Languages : 58

5. Networks with Rational Weights : 61

5.1. Rational Networks Simulate Turing Machines in Linear Time : : : : : : : : : : : : : 62

5.2. Simulation of Turing Machines in Real Time : 64

5.3. General Construction Of The Simulation : 65

iv

5.3.1. P -Stack Machines : 66

5.4. Network with Two Levels: Construction : 68

5.4.1. Universal Network : 74

5.5. Removing the Sigmoid From the Main Level : 75

Network Description : 78

5.6. One Level Network Simulates TM : 79

6. Networks with Real Weights : 83

6.1. Real Networks And Boolean Circuits : 84

Circuit Families : 84

Statement Of Result : 85

6.2. Circuit Families Are Simulated By Networks : 85

6.2.1. The Circuit Encoding : 86

Cantor Like Set Encoding : 87

6.2.2. A Circuit Retrieval : 88

6.2.3. Circuit Simulation By A Network : 90

6.2.4. Proof: Circuit Families Are Simulated By Networks : : : : : : : : : : : : : : 91

6.3. Networks Are Simulated By Circuit Families : 92

6.3.1. Linear Precision Su�ces : 93

6.3.2. The Network Simulation by a Circuit : 95

6.4. Real Networks Versus Threshold Circuits : 97

Statement Of Result : 97

6.4.1. Families Of Threshold Circuits Are Simulated By Networks : : : : : : : : : : 98

The Circuit Encoding : 98

6.4.2. Networks Are Simulated By Families Of Threshold Circuits : : : : : : : : : : 100

6.5. Corollaries : 102

Nondeterministic Neural Networks : 103

6.6. Appendix : 105

v

7. Kolmogorov Weights: Between P and P=poly : 108

7.1. Statement of Results : 108

7.2. Equivalence of TMs with Tally Oracles and NNs : 110

7.2.1. Proof: 1 � 2 : 112

7.2.2. Proof: 2 � 1 : 115

7.3. Hierarchy of TMs That Consult Tally Oracles : 116

8. Equivalence of Di�erent Dynamical Systems : 118

8.1. Generalized Networks: De�nition : 119

8.2. Generalized Networks with Bounded Precision : 120

8.3. Equivalence of Neural and Generalized Networks : 122

9. Space Constraints : 125

9.1. Space Classes : 125

9.2. Fixed Precision : 129

10.Networks With General � and Finite Automata : : : : : : : : : : : : : : : : : : : 132

10.1. Simulation : 132

10.2. Main Result : 133

10.3. Proof of the Above Lemma : 136

11.Parallel Time Classes : 139

11.1. Extended Nets with Rational Weights : 140

11.2. Extended Nets with Real Weights : 145

12.The Complexity of Language Recognition by Neural Networks : : : : : : : : : 146

12.0.1. The Model in This Chapter : 147

12.1. Space Complexity in Linear Networks : 148

12.1.1. Preliminaries : 149

12.1.2. The Space Complexity Theorem : 150

vi

12.2. Bounding The H-complexity : 152

12.3. Di�erent Activation Functions: Using The H-Complexity As a Bound : : : : : : : : 154

13.Conclusions and Final Remarks : 156

References : 159

Vita : 165

vii

List of Figures

1.1. Feedforward and Recurrent Networks : 2

1.2. Di�erent Functions � : 3

1.3. Recurrent Network : 7

1.4. The Turing Machine Model : 14

2.1. Underlying Connection Graph of the Above Network : : : : : : : : : : : : : : : : : : 21

6.1. Circuit c

1

: 87

6.2. Values of the circuit encoding : 88

6.3. Circuit c

2

: 99

11.1. Computing 2

�x

: 143

12.1. A Hankel Matrix of the language 1* : 150

12.2. Comparison of DFA, H-Complexity, and Experimental results : : : : : : : : : : : : : 153

12.3. The space complexity relations in a second order network : : : : : : : : : : : : : : : 155

viii

1

Chapter 1

The Recurrent Neural Network Model

\Arti�cial neural networks" provide an appealing model of computation. Such networks consist of

an interconnection of a number of parallel agents, or \neurons." Each of these receives signals as

inputs, computes some simple function, and produces a signal as output, which is in turn broadcast

to the successive neurons involved in a given computation. Some of the signals originate from

outside the network and act as inputs to the whole system, while some of the output signals are

communicated back to the environment and are used to encode the end result of the computation.

It is possible to classify neural networks according to the architecture of the network. The

simplest form of neural network is a feedforward network. Such nets consist of multiple layers,

where the input of each layer is the output of the predecessor layer. The interconnection graph is

acyclic. Note that there is no feedback loop from any layer to its ancestor layer. Therefore, the

time of computation is bounded by the number of layers. Long term memory is not supported.

The second model|the recurrent neural network model|incorporates memory into the com-

putation. There is no concept of \layers" in this model, as feedback loops are supported. Here,

the concept of computation time must be carefully de�ned. Our goal is to develop mathematical

foundations for recurrent networks. Such foundations have been the focus of much research in the

feedforward case (see e.g. [ASM93, Bar92, BH89, BR90, CD89, Cyb89, DS92, DDGS93, Fra89,

Hor91, HSW90, Jud90, LLPS93, MSS91, Maa93, MS93, MP88, Ros62, Son92b, Son92a, SS91b,

Sus92, SW90]) but have yet to be fully developed for the recurrent model. In the sequel, when we

use the term \neural network" we always mean recurrent nets.

The model that we study consists of a synchronous network of processors. Its architecture

is speci�ed by a general directed graph. The input and output are presented as streams. Input

letters are transferred one at a time via M input channels. A similar convention is applied to the

output, which is produced as a stream of letters, where each letter is represented by p values. The

2

Figure 1.1: Feedforward and Recurrent Networks

nodes in the graph are called \neurons." Each neuron updates its activation value by applying a

composition of a one-variable nonlinear function with a polynomial function of the activations of

all neurons x

j

; j = 1; : : : ; N and the external inputs u

k

; k = 1; : : :M . Thus the value of x

i

is

updated by means of a formula of the following type:

x

+

i

= �

0

@

X

(j�j+j�j)�k

a

i;�;�

x

�

u

�

1

A

i = 1::N ; (1.1)

where �; � are multiindices, \j j" denotes their magnitudes (total weights), k <1, and

x

�

= x

�

1

1

: : : x

�

N

N

; u

�

= u

�

1

1

: : :u

�

M

M

:

We use a superscript \+" to indicate the value of x

i

at the next instant of time. The vector x is

referred to as the activation of the network, and the integers N and M are the dimension of the

network and the number of input channels, respectively. The output (or read-out map) is given by

y = Cx

where C 2 IR

p�N

for some integer p. The integer p is called the number of outputs. As controlled

dynamical systems (see [Son90]), networks can be viewed as discrete time systems built by combin-

ing delay lines with memory-free elements, each of which performs a nonlinear transformation on

3

its input. When � is the identity and all polynomials have degree one, they are the classical linear

systems used in engineering. In this work, however, we are primarily interested in nonlinear �'s.

The function � appearing in the equations is assumed to be the same for all i. It is typically a

non-decreasing function, often with a bounded range. In the experimental arti�cial neural network

�eld it is customary to consider the hyperbolic tangent tanh(x). This function approximates the

sign function when the \gain"
 is large in tanh(
x). Under a simple change of variables, one

obtains the logistic function

1

1+e

�x

, also called the \classical sigmoid." Also common in practice is

a piecewise linear function, �(x) := x if jxj < 1 and �(x) = sign(x) otherwise; this is sometimes

called a \semilinear" or \saturated linearity" function. Historically, much of the mathematical

modeling of neurons in theoretical computer science has been based on a discontinuous activation

function, namely, sign(x) = x=jxj (and -1 or 1 for x = 0) or the threshold function H(x) = 1 if

x > 0, H(x) = 0 otherwise. We believe that it is unreasonable to assume that a physical device

may discern sharply between two values which are arbitrarily close; thus we concentrate in this

work on continuous activation functions, and, for mathematical convenience, mostly on the above

function �.

sign

�

�

�

�

tanh

Figure 1.2: Di�erent Functions �

This thesis is concerned with the development of theoretical foundations for recurrent neural

networks. It emphasizes the understanding of the dynamical behaviors that such networks can

implement, and how their computational power is in
uenced by di�erent constraints on weights

and variations on architecture. In Section 1.1 below, we explain some of the motivations for this

work. We continue in Section 1.2, describing the precise model studied. Section 1.3 provides

a summary of previous related work. Section 1.4 describes the organization of this dissertation.

Section 1.5 includes a brief overview of several di�erent classical models studied in the �eld of

computational complexity; this is provided as background for those readers not familiar with that

�eld.

4

1.1 Motivations for Studying This Model

The study of recurrent networks has many di�erent motivations. First of all, they constitute a very

powerful model of computation, as shown in this work. They are also capable of approximating

rather arbitrary dynamical systems, and this is of use in adaptive control and signal processing

applications (see [Son92c], [Mat92], and [PI91]).

Recurrent nets have also been proposed as models of large scale parallel computation, since they

are built of potentially many simple processors or \neurons".

One of the primary motivations for their study is as a �rst approximation of biological neural

systems. Some authors have been motivated by this loose analogy to neural systems |hence the

terminology| and for this reason the parameters a

i

�;�

are sometimes called \weights" or \synaptic

strengths" and � |taken to be of a sigmoidal type| is called the \activation function". The

activation function represents how each neuron x

i

responds to its aggregate stimulus. In this

context, the outputs y(t) can be thought of as measurements recorded by probes that average the

activation values of many neurons.

In speech processing applications and language induction, recurrent net models are used as

identi�cation models, and they are �t to experimental data by means of a gradient descent opti-

mization (the so-called \backpropagation" technique) of some cost criterion (see [CSSM89, Elm90,

GMC

+

92, Pol90, WZ89]).

1.1.1 Analog Computation

The work in this thesis could also be seen as exploring a particular approach to analog computation,

one based on dynamical systems of the type used in neural networks research.

Electrical circuit implementations of recurrent networks, employing resistively connected net-

works of n identical nonlinear ampli�ers, with the resistor characteristics used to re
ect the desired

weights, have been proposed as models of analog computers, in particular in the context of con-

straint satisfaction problems and in content-addressable memory applications (see e.g. [Hop84]).

More generally, in developing the foundations of analog computing, one should be able to model

systems in which certain real numbers |corresponding to values of resistances, capacitances, phys-

ical constants, and so forth| may not be directly measurable, indeed may not even be computable

5

real numbers, but they a�ect the \macroscopic" behavior of the system. For instance, imagine

a spring/mass system. The dynamical behavior of this system is in
uenced by several real val-

ued constants, such as sti�ness and friction coe�cients. On any �nite time interval, one could

replace these constants by rational numbers, and the same qualitative behavior is observed, but

the long-term characteristics of the system depend on the true values. This use of real numbers,

closely associated to phenomena such as chaotic behavior, could be seen as a basic feature of analog

computation.

It is interesting to �nd a class of systems which, on the one hand, is rich enough to exhibit

behavior that is not captured by digital computation, while still being amenable to useful theoretical

analysis, and in particular so that the imposition of resource constraints results in a nontrivial

reduction of computational power. That this can be done in the context of the models currently

used in neural net studies, is especially attractive.

Recurrent networks have a weak property of \robustness" to noise and to implementation error,

in the sense that small enough changes in the network would not a�ect the computation on any

�nite time interval. This robustness includes changes in the precise form of the activation function,

in the weights of the network, and even an error in the update. In classical models of (digital)

computation, this type of robustness can not even be properly de�ned.

Comments on Analog and non-Turing \Computation"

In the recent, very popular {and very controversial{ book [Pen89], Penrose has argued that the

standard model of computing is not appropriate for modeling true biological intelligence. The

author argues that physical processes, evolving at a quantum level, may result in computations

which cannot be incorporated in Church's Thesis. It is interesting to point out that the work that we

report here does allow for such non-Turing power, while keeping track of computational constraints

{and thus embedding a possible answer to Penrose's challenge in more classical computer science.

Note that Parberry, in [Par92], also insists that possible non-Turing theories should take account

of such constraints, though he suggests a very di�erent approach, namely the use of probabilistic

computations within the theory of circuit complexity.

Finally, we remark that human cognition seems to be clearly based on \subsymbolic" or \analog"

6

components and modes of operation. As pointed out by many authors, in particular in the work of

[Mac92], the issue of understanding how macroscopic symbolic behavior arises from such a substrate

is one of the most challenging ones in science. Perhaps our work, with its implicit use of in�nite

precision for internal computations, is not at all relevant to this understanding, because neurons are

often taken to be low-precision devices. On the other hand, it is also possible that the precision issue

should be understood solely in terms of limitations on observers and more generally interactions

with the environment, and in that respect, our model is not de�cient, since input and output data

are binary.

The rest of this thesis will not include any further speculative remarks on analog computa-

tion, and will deal strictly with mathematical results for recurrent nets. However, the \analog

e�cient Church's thesis": e�cient analog computing = polynomial time computation by

recurrent nets will be strongly suggested by our result.

1.2 The Model

For most of the results in this work, we restrict the general model given by Equation 1.1. Our neural

network model is a �nite and synchronized system of very simple processors. The activation of each

processor is updated according to a certain type of piecewise a�ne function of the activations (x

j

)

and inputs (u

j

) at the previous instant, with coe�cients |also called weights| (a

ij

; b

ij

; c

i

). Each

processor's state is updated by an equation of the type

x

i

(t+ 1) = �

0

@

N

X

j=1

a

ij

x

j

(t) +

M

X

j=1

b

ij

u

j

(t) + c

i

1

A

; i = 1; : : : ; N (1.2)

where N is the number of processors and M is the number of external input signals. Note that

we are specializing Equation 1.1 to the \�rst order" case, that is, the polynomials are of degree

one. The �rst-order case is by far the one most commonly encountered in the literature. Unless

otherwise stated, the function � is the simplest possible \sigmoid," namely the saturated-linear

function:

�(x) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if x < 0

x if 0 � x � 1

1 if x > 1 :

(1.3)

7

This function has appeared in many applications of neural nets (e.g. [Bat91, BGV88, Lip87,

ZZZ92]). We use it because theorems are easier to prove when using this particular activation.

For notational simplicity, as mentioned earlier, we often summarize Equation 1.2, writing

\x

+

(t)" instead of \x(t+ 1)" and then dropping arguments t; we also write this in vector form, as

x

+

= �(Ax+ Bu + c) (1.4)

where x is now a vector of size N = number of processors, u is a vector of size M = number of

inputs, c is an N -vector, and A and B are, respectively, real matrices of sizes N �N and N �M .

(Now, \�" denotes application of � to each coordinate of x.) Of course, one can drop the vector

c from this description at the cost of adding a coordinate x

0

� 1 and enlarging the matrix A, but

it is often useful to have c explicitly, and this allows us to take initial states to be x = 0, which

corresponds to the intuitive idea that the system is at rest before the �rst input appears.

As part of the description, one may assume that there is singled out a subset of theN processors,

say x

i

1

; : : : ; x

i

p

; these are the p output processors , and they are used to communicate the outputs of

the network to the environment. (Generally, the output values are reals in the range [0; 1], but later

we constraint them to binary values only.) Thus a net is speci�ed by the data (A;B; c) together

with a subset of its nodes. The output is given by y = Cx where C chooses the p output neurons.

Indicate by the symbol � the time-shift (�x)(t) = x

+

(t) = x(t+ 1); and by �x the application of

� to each coordinate of the vector x. When the constant c is included in the enlarged matrix A,

Figure 1.3 describes our model.

u

-

B

- h

+

-

�

-

�

�1 -

C

-

y

x

r

�

A

6

Figure 1.3: Recurrent Network

Input and output consist of streams, that is, one input letter is transferred at each time (via

M binary lines) and one output letter is produced at a time (and appears in the output via p

binary lines). As opposed to the I/O, the computations inside the network will in general involve

8

continuous real values. In our further development, we focus only on networks in which both the

input and output channels carry only binary data.

The Finite Structure

We wish to emphasize that our networks are built up of �nitely many processors, whose number

does not increase with the length of the input. There is a small number of input channels (just two

in our main results), into which inputs get presented sequentially. We assume that the structure of

the network, including the values of the interconnection weights, does not change in time but rather

remains constant. What changes in time are the activation values, or outputs of each processor,

which are used in the next iteration. (A synchronous update model is used.) In this sense our

model is very \uniform" in contrast with certain models used in the past, including those used in

[Hon88], or in the cellular automata literature, which allow the number of units to increase over

time and often even the structure to change depending on the length of inputs being presented.

The Simplicity of the Model

We prove in Chapter 8 that if each neuron is allowed to combine activations of the other neurons and

external inputs by means of multiplications, besides just linear operations, that is, if one considers

instead what are often called high order neural nets, as in Equation 1.1, the computational power

does not increase. Even further, and perhaps more surprising, no increase in computational power

(up to polynomial time) can be achieved by letting the activation function be not necessarily the

simple saturated linear one in Equation 1.3, but any function which satis�es certain reasonable

assumptions (e.g., the classical sigmoid function

1

1+e

�x

). Also, no increase results even if the

activation functions are not necessarily identical in the di�erent processors. Because of these

later results, we concentrate on the simple model (Equation 1.2) when developing the general

theory. (This is analogous to the formalism of digital computation in terms of Turing machines.

Even though richer models|RAM machine, etc.|can be shown to be equivalent, proofs are often

simpli�ed by staying with the basic Turing model.)

9

1.3 Previous work

Most of the previous work on recurrent neural networks has focussed on networks of in�nite size.

As each neuron is itself a processor, such models of in�nite power are less interesting for the

investigation of computational power, compared to our model which has only a �nite number of

neurons.

There has been previous work concerned with computability by �nite networks, however. The

classical result of McCulloch and Pitts ([MP43]) in 1943 (and Kleene [Kle56]) showed how to

implement logic gates by threshold networks, and therefore how to simulate �nite automata by

such nets.

Another related result was due to Pollack[Pol87]. Pollack argued that a certain recurrent net

model, which he called a \neuring machine," is universal. The model in [Pol87] consisted of a �nite

number of neurons of two di�erent kinds, having identity and threshold responses, respectively.

The machine was high-order , that is, the activations were combined (as in Equation 1.1) using

multiplications as opposed to just linear combinations (as in Equation 1.2). Pollack left as an open

question establishing if high-order connections are really necessary in order to achieve universality,

though he conjectured that they are. Pollack's conjecture was assumed as correct in the neural

network literature ([SCLG91, GMC

+

92]). High order networks (i.e. [CSSM89, Elm90, GMC

+

92,

Pol90, WZ89]) have been used in applications. One motivation often cited for the use of high-

order nets was Pollack's conjecture that their computational power is superior to that of linearly

interconnected nets. In Chapter 5, we see that no such superiority of computational power exists,

at least when formalized in terms of polynomial-time computation.

Work that deals with in�nite structure is reported by Hartley and Szu ([HS87]) and by Franklin

and Garzon ([FG90] and [GF89]), some of which deals with cellular automata. There one assumes

an unbounded number of neurons, as opposed to a �nite number �xed in advance. See also the work

by Hong [Hon88], which deals with nonuniform networks with real weights. In the paper [Wol91],

Wolpert studies a class of machines with just linear activation functions, and shows that this class

is at least as powerful as any Turing Machine (and clearly has super-Turing capabilities as well).

It is essential in that model, again, that the number of \neurons" be allowed to be in�nite |as a

matter of fact, in [Wol91] the number of such units is even uncountable| as the construction relies

10

on using di�erent neurons to encode di�erent possible tape con�gurations in Turing Machines.

The work closest to our model when real numbers are utilized as weights is that on real-number-

based computation started by Blum, Shub and Smale (see e.g. [BSS89]); we believe that our setup is

simpler, and is much more appropriate if one is interested in studying neural networks or distributed

processor environments. Also related to our work is the standard computational model of register

machines.

1.4 Thesis Organization

This thesis consists of four parts. The �rst part, consisting of Chapter 2, introduces a high level

language, which we call NEL, for NEural Language. We show how to compile NEL programs into

recurrent networks while preserving computational time constraints at run time. The development

of NEL and the compilation result are of potential applied importance, but we do not pursue

applications in this thesis. Instead, we use this language in the sequel theoretically as a proof

technique.

The second and most important part of the dissertation deals with the computational power

of the model described above. This part extends from Chapters 3 through 7. A formal model of

language recognition in recurrent networks is introduced in Chapter 3. In Chapter 4 we prove that

networks with integer weights are (like networks with threshold devices) computationally equivalent

to �nite automata. This result is pretty straightforward, but is needed for completeness. Chapter

5 describes the computational power of networks with rational weights. Speci�cally, it shows their

equivalence to the Turing machine model. (Previous versions of it have appeared in [SS91a] and

[SS92].) In Chapter 6, we completely describe the computational power of networks that utilize real

weights. (These �ndings have appeared in [SS93] and will appear in [SSar].) We establish a precise

correspondence between this model and a non-uniform circuit model. We study the gap between

networks utilizing rational and real weights in Chapter 7, where we reveal an in�nite hierarchy in

between them. We characterize the weights there in an information-theoretic manner using the

notion of Kolmogorov complexity. (This has appeared in [BGSS93].)

The third part of the thesis deals with more general notion of networks. We start in Chapter 8,

by proving formally that no increase in computational power|up to polynomial time|is achieved

11

by considering more complex networks, that is, allowing high-order connections, more complex

activation functions, or heterogeneous neurons. As a corollary, we infer the robustness of our

model ([SSar]). In Chapter 9 we investigate the power of rational networks under di�erent space

constraints, where \space" is de�ned in terms of the precision allowed in the neurons ([BGSS93]).

In Chapter 10 we prove that recurrent networks of �rst-order neurons, with an activation function

whose only known property is having �nite and di�erent limits when x ! 1 and x ! �1, can

simulate �nite automata. This section concludes with the study of a model in which individual

neurons can compute bitwise operations and rational functions. With this addition, networks

become equivalent to \second class parallel models" as described in Chapter 11 ([BGSS93]).

In the fourth and �nal part (Chapter 12), we make some experimental remarks regarding high-

order networks. Given a language, we are interested in �nding the minimum size of a network

required to recognize it. Estimates are obtained using the theory of power series in noncommuting

variables. (Part of this chapter has appeared in [SSG92].)

A �nal chapter summarizes our conclusions and lists several open problems and suggestions for

further work.

1.5 Computational Power - Preliminaries

In the science of computing, machines are classi�ed according to the tasks or functions that they

are capable of executing. A thorough theory of computation has been developed, in terms of the

classi�cation of the di�erent tasks into classes of tasks. Two tasks are in the same class if they

have roughly the same di�culty. Each class of equi-di�cult tasks is associated with a model of a

machine that can handle exactly this class.

We start our discussion with an automaton, or sequential machine. This is a device which

evolves in time, reacting to external stimuli and in turn a�ecting its environment through its own

actions. In computer science and logic, Automata Theory deals with various formalizations of this

concept. In this formal sense, neural networks constitute a (very) particular type of automata.

It is therefore natural to analyze the information processing and computational power of neural

networks through their comparison with the more abstract general models of automata classically

studied in computer science. This permits a characterization of neural capabilities in unambiguous

12

mathematical terms.

The components of actual automata may take many physical forms, such as gears in mechan-

ical devices, relays in electromechanical ones, integrated circuits in modern digital computers, or

neurons. The behavior of such an object will depend on the applicable physical principles. From

the point of view of automata theory, however, all that is relevant is the identi�cation of a set of

internal states which characterize the status of the device at a given moment in time, together with

the speci�cation of rules of operation which predict the next state on the basis of the current state

and the inputs from the environment. Rules for producing output signals may be incorporated into

the model as well.

Although the mathematical formalization of automata took place prior to the advent of digital

computers, it is useful to think of computers as a paradigm for automata, in order to explain the

basic principles. In this paradigm, the state of an automaton, at a given time t, corresponds to

the speci�cation of the complete contents of all RAM memory locations as well as of all other

variables that can a�ect the operation of the computer, such as registers and instruction decoders.

The symbol x(t) will be used to indicate the state at the time t. At each instant (clock cycle),

the state is updated, leading to x(t+ 1). This update depends on the previous state, as instructed

by the program being executed, as well as on external inputs like keyboard strokes and pointing-

device clicks. The notation u(t) will be used to summarize the contents of these inputs. (It

is mathematically convenient to consider \no input" as a particular type of input.) Thus one

postulates an update equation of the type

x(t+ 1) = f(x(t); u(t)) (1.5)

for some mapping f . Also at each instant, certain outputs are produced: update of video display,

characters sent to printer, and so forth; y(t) symbolizes the total output at time t. (Again, it is

convenient to think of \no output" as a particular type of output.) A mapping

y(t) = h(x(t)) (1.6)

provides the output at time t associated to the internal state at that instant.

Abstractly, an automaton is de�ned by the above data. As a mathematical object, an automaton

is simply a quintuple

M = (X;U; Y; f; h)

13

consisting of sets X , U , and Y (called respectively the state, input, and output spaces), as well as

two functions

f : X � U ! X ; h : X ! Y

(called the next-state and the output maps, respectively). A �nite automaton is one for which each

of the sets X , U , and Y is �nite.

The Finiteness Assumption

It would appear on �rst thought that it is su�cient in practice to restrict studies to �nite automata.

After all, only a �nite amount of memory is available in any computer. However, even for digital

computation, �niteness imposes theoretical constraints which are undesirable when one is interested

in the understanding of ultimate computational capabilities. As a trivial illustration, assume that

one wishes to design a program which reads an input string of 0's and 1's and, after this string ends,

displays the same string in its output. A �nite automaton cannot accomplish this task, obviously,

since the task requires an unbounded amount of memory (unless one knows in advance that the

strings to be memorized and repeated will be of no more than a certain predetermined length,

in which case enough memory, represented by a certain number of states, can be preallocated

for storage). On the other hand, one could certainly write a computer program, in any modern

programming language, to perform this task. The program will instruct the computer to write the

string into a �le as it is being received, to be later retrieved when a special end-of-string symbol

u(t) = $ is encountered. This program will execute correctly as long as enough external storage

(e.g., in the form of disk drives) is potentially available.

A mathematical model more general than �nite automata allows for \external" storage in addi-

tion to the information represented by the current \internal" state of the system. This is the Turing

Machine model, introduced by the English mathematician Alan Turing in 1936, and it forms the

basis of most of modern computer science. In a Turing machine, a �nite automaton is used as

a \control" or main computing unit, but this unit has access to a potentially in�nite read/write

storage device. The entire system, consisting of the control unit and the storage device, together

with the rules that specify access to the storage, can be seen as a particular type of in�nite automa-

ton, albeit one with a very special structure. It is widely accepted today by the computer science

14

community that no possible computing device can be more powerful, except for relative speedups

due to more complex instruction sets or parallel computation, than a Turing machine.

Formally, a Turing Machine consists of a �nite control and a binary tape, in�nite to the right.

The tape is accessed by a read-write head. At the beginning of the computation the binary input

sequence is written on the left most part of the tape, followed by in�nite sequence of blanks (empty

symbols).

Figure 1.4: The Turing Machine Model

The machine at every step reads the tape symbol (� 2 f0; 1;#g) under the head, checks the

state of the control (s 2 f1; 2; : : : jSjg), and executes three operations:

1. Writing a new binary symbol under the head (� 2 f0; 1g),

2. Moving the head one step to either right or left (never to the left of the beginning of the tape)

(m 2 fL;Rg),

3. Changing the state of the control (s

0

2 f1; 2; : : : jSjg).

The transition of the machine, thus, can be summarized by a function f(�; s) = (�;m; s

0

). When

the control reaches a special state, called the \halting state," the machine stops. Its output is

15

de�ned as the binary sequence on the tape. Thus, the I/O map, or the function, computed by a

Turing Machine is de�ned by the binary sequences on its tape before and after the computation.

There are many variants of this basic model that yield the same power. For example, the tape

may be in�nite in both directions, or the machine may have several tapes, where only one of them

is the input/output tape and the rest assist during the computation.

It is possible to think of other \models of computations" that are stronger than a Turing

machine, in the sense that they can compute functions (or equivalently, execute tasks) that a

digital computer cannot. For example, consider this issue: given a C program and an input to

it, decide whether the program will enter an in�nite loop and thus will never terminate. If there

were a program that could answer such a question, it would be much easier to debug programs.

Unfortunately, it has been proven theoretically that no computer in the accepted (Turing) sense

can execute such a program. This task is known as the \halting problem". Theoretically, it is

formalized as follows: given a Turing Machine and an input sequence, will the machine ever reach

the halting state when starting with that input sequence? As we said, no Turing Machine, or no

digital computer, can decide such a thing. Other more sophisticated models may be able to solve

it. (Most of them currently exist only in research papers.) We will later introduce some of them.

1.5.1 Analog Vs. Digital I/O

In the above two examples, the �nite automaton and the Turing Machine, the input to the machine

was digital (or discrete), i.e., a sequence of binary numbers, that is, a word in f0; 1g

�

. The out-

put was also digital. Other models of analog (continuous) input|like the real numbers �; e|are

possible, and also possible are models of analog output.

However, with a few exceptions such as [BSS89], the �eld of theory of computation has focused

by and large on digital models only. Our model computes functions with digital I/O. However,

di�erently from the classical models, we allow for internal states of the machine that are analog

(that is, the machine includes real constants that participate in the computation). As I/O is digital

in our model, we are able to compare our results with previously existing computer science models

of computation. However, analog inputs could be applied to our model as well, and analog output

values could be allowed.

16

1.5.2 Time and Space Constraints

Given an input of length n (i.e., an element of f0; 1g

n

), it is reasonable to ask what a machine can

compute in time linear or polynomial in n. This allows a quanti�cation of time resources. Space

constraints are also meaningful in general. However, since in our model of neural networks we are

interested mainly in a �nite and �xed number of neurons, we focus mostly on constraining the time

resource.

Let T : IN! IN be a function on natural numbers. We say that a machine M computes in time

T if for any input sequence ! 2 f0; 1g

�

, M halts in not more than T (j!j) steps, where j � � � j denotes

the length (number of binary digits) of !. The class P consists of all functions computable by any

Turing Machine in time polynomial in the length of the input, that is, machines that compute in

time cn

k

, for some real c and integer k.

1.5.3 Language Recognition Vs. Function Computing

Generally, a digital model receives a binary sequence as input and computes a binary sequence as

an output. A special case is that where the output is a single binary value rather than a sequence,

that is, the model computes a function of the type L : f0; 1g

�

7! f0; 1g : We call such a function \a

language" and identify L with the set of those binary input sequences that are mapped into 1. We

say in this case that the model accepts or recognizes the language L.

1.5.4 Other Models of Computation

A few other models of computation will be compared with neural networks. Here we brie
y review

a few of them. More details will be provided when they are introduced.

Nondeterministic Turing Machine

This popular model describes a Turing Machine which, at any point in the computation, can make

one of two choices for the next step. The choices could be about what to write on the tape, how

to move the head, or to which state of the �nite control to go to. An input sequence ! is said to

be accepted by a nondeterministic TM if there is some choice sequence that will make the machine

to output 1 on the input !. Similarly to the class P, the class NP is de�ned as the class of those

17

functions that can be computed by some nondeterministic TM in polynomial time. A well-known

open research question is whether the classes P and NP coincide (see e.g. [GJ79]).

A Turing Machine That Receives Advice

This is a Turing Machine model that, in addition to its input, receives also another sequence that

assists in the computation. For all possible inputs of the same length n, the machine receives the

same advice sequence, but di�erent advice is provided for input sequences of di�erent lengths. This

gives rise to possible non-uniformity (i.e., non-computability in the classical sense).

Usually, the length of the advice is bounded as a function of the input. Formally,

De�nition 1.5.1 Given a class of sets C and a class of bounding functions F , the class C=F is

formed by the sets A such that

8n 9w (jwj � h(n)) 8x (jxj = n)

x 2 A () < x;w >2 B

where B 2 C and h 2 F . 2

The notation \< x;w >" is used to indicate that the strings x and w are concatenated, separated

by a marker.

A special case is that of a Turing Machine that receives a polynomially long advice and computes

in polynomial time. The class obtained in this fashion is called P=poly. This model is equivalent

to that of non-uniform families of polynomial size circuits, as will be further explained in Chapter

6. See e.g. [KL82] for background on TMs that take advice.

When exponential advice is allowed, any binary language is computable. (This will correspond

to a non-uniform family of circuits of exponential size). It is easy to see why every binary language

can be recognized in that form: just prepare a table of length 2

n

whose entries are all the binary

sequences of size n, in the lexicographic order. In each entry (sequence) write the bit 1 if the

sequence is in the language, and 0 if it is not. Concatenate all 2

n

bits into a sequence and use it as

the advice for inputs of length n. This sequence encodes all the required information for accepting

or rejecting any input sequence of size n.

18

Remark 1.5.2 The notion of \advice" should not be confused with that of nondeterminism. In

the latter, each input has its own \private" advice, and the issue is the existence of at least one

\good, private" advice. For example the class NP is de�ned as follows. A language A is in NP if

there is a language B in P so that

8x x 2 A () 9w

x

(jw

x

j � cjxj

k

) < x;w

x

>2 B

where c; k are constants.

An Oracle Turing Machine

This model describes a Turing Machine M that has one additional special tape|called the oracle

tape|and two special states: \ask" and \answered." A language L

o

called the oracle language is

associated with the oracle tape. When M enters the \ask" state, in a unit time the sequence x

that was on the oracle tape is erased and only one binary letter is written upon it: 1 if x 2 L

o

and

0 is x 62 L

o

. In the same time unit, the machine M is automatically changed into the \answered"

state.

Note that the answer to a membership query for L

o

takes a unit time even for languages which

are not computable by any Turing Machine. For background on oracle TMs, see e.g. [BDG90].

19

Chapter 2

A Neural Language

In this chapter, we introduce a high-level language which will allow us to easily prove theorems

about simulations by neural networks. This chapter can be skipped if one is interested mainly in

the results rather than the proof techniques. To understand why the availability of such a language

is useful, consider being faced with the following type of problem:

Given a task T , prove that there is a network N that solves T .

We consider this as an existence problem rather than a constructive one. A possible solution is to

explicitly provide such a network and to verify that it indeed executes the task T .

Example 2.0.3 (Parity check) Given a binary input sequence I (of length � 2), compute the

binary output sequence b so that b

t

is 1 if and only if the number of 1's appearing in the pre�x

I

1

� � �I

t�2

is odd.

A possible network that achieves this is given by the following update equations (where y

3

is

the output, and all neurons are initialized to 0):

y

+

1

= �(y

1

+ y

2

� I)

y

+

2

= �(I � y

1

� y

2

)

y

+

3

= �(y

1

+ y

2

) :

Even for this easy task, it is easier to both design and verify a Pascal-like program. A program

that computes the same task is given by:

Program Parity (I; b);

20

Var b: Boolean;

Begin

b =false ;

While (not end of input) do

If (I = 1) then b = not(b) ;

Output(b)

End

A somewhat more complicated task, in which output is not constrained to binary values, is given

by the following example:

Example 2.0.4 Given an input sequence I over f0; 1; 2; 3g, compute the output b that is de�ned

recursively by (assuming b

0

= 1):

b

t

=

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

min(17b

t�1

; 1) if I = 0

min(

1

7

b

t�1

+

1

4

; 1) if I = 1

1

9

b

t�1

if I = 2

max(

1

11

b

t�1

�

2

139

; 0) if I = 3 :

A network that computes this function is given by the following update equations:

y

+

1

= �(I)

y

+

2

= �(1� y

1

)

y

+

3

= �(2� I)

y

+

4

= �(y

1

+ y

3

� 1)

y

+

5

= �(I � 1)

y

+

6

= �(3� I)

y

+

7

= �(y

5

+ y

6

� 1)

y

+

8

= �(I � 2)

y

+

9

= �(y

8

)

21

(In these equations the variables y

2

; y

4

; y

7

and y

9

assume binary values, with \1" corresponding to

the possible cases I = 0; 1; 2; 3 respectively.)

y

+

10

= �(17(y

10

+ y

11

+ y

12

+ y

13

) + 17y

2

� 17)

y

+

11

= �(

1

7

(y

10

+ y

11

+ y

12

+ y

13

) +

1

4

+ 2y

4

� 2)

y

+

12

= �(

1

9

(y

10

+ y

11

+ y

12

+ y

13

) + y

7

� 1)

y

+

13

= �(

1

11

(y

10

+ y

11

+ y

12

+ y

13

)�

2

139

+ y

9

� 1)

y

+

14

= �(y

10

+ y

11

+ y

12

+ y

13

)

(The variables y

10

; y

11

; y

12

and y

13

provide the necessary output values for the cases I = 0; 1; 2; 3

respectively, while y

14

combines them into the �nal output of the net.) The underlying architecture,

again disregarding the numerical values of the weights, is given in Figure 2.1.

Figure 2.1: Underlying Connection Graph of the Above Network

For this task, a program would be much simpler to design:

Program Long (I; b);

Var b: Real;

Begin

b = 1 While (not end of input) do

Case I of

22

(0; b = min(17b; 1))

(1; b = min(

1

7

b+

1

4

; 1))

(2; b =

1

9

b)

(3; b = max(

1

11

b�

2

139

; 0))

End

In general, tasks may be composed of a large number of interrelated subtasks. The entire task may

thus be highly complex, and designing an appropriate network from scratch becomes infeasible.

We formally de�ne a high level language, called NEural Langage, that combines features of both

Pascal and Lisp. We then prove that any program written in NEL can be executed by a network

(and vice versa). Furthermore, we show how to compile a program to a network in such a manner

that the running time of the program and the computation time of the associated network are

linearly related. We use the language as a proof technique, since, in general, writing programs in a

high level language is far easier than designing a network. One could compare this to the di�erence

between writing a program in a high level language and coding in a machine language.

The rest of this chapter is organized into three sections: We start in Section 2.1 with a general,

overview description of the language. In Section 2.2, we provide a fully detailed syntactic description

of the language: We start with providing the general form of the language and then continuing with

data types, expressions, statements, subprograms, and I/O primitives. We end in Section 2.3 with

description of how a NEL program can always be compiled into a network. In this last section we

also prove the linear relationship between running times of tasks in the two models. To keep this

chapter comprehensible, most formalism and details are provided in the appendix to this chapter

rather than in the body.

2.1 General Description Of NEL

NEL is a procedural, parallel language. It allows for the subprograms procedure and function. A

sequence of commands may either be executed sequentially (Begin, End) or in parallel (Parbegin,

Parend).

23

� There is a wide range of possible data types for constants and variables in NEL. These

include:

1. Basic types:

(a) Finite sets: Boolean, character, and scalar type.

(b) Numerical: integer, real, and counter (i.e., an unbounded natural number or 0).

2. Compound types:

(a) List - with the operations de�ned on lists in LISP.

(b) Stacks - along with the operations Top, Pop, Push.

(c) Sets - along with operations as union, intersection, and set-di�erence.

(d) Records - de�ned like in the Pascal language.

For each data type, there are a few associated prede�ned functions. The language is strongly

typed in the sense that applying a function that is de�ned on a particular data type to a

di�erent data type may yield an error. Predicates are functions that range into Boolean

values. Among the predicates of NEL are Isempty(stack), In(element, set), Equals(set

1

, set

2

),

Iszero(counter), and more.

� Expressions are de�ned on the di�erent data types. Examples of expressions are:

1.

P

7

i=1

c

i

x

i

for constants c and either real or integer values of the variables x

i

.

2. (B

1

And B

2

) Or (x >

1

2

) for Boolean values B

1

; B

2

and an integer value x.

3. Function calls, including prede�ned predicates like Isnull(list), Isempty(stack), and pre-

de�ned functions like Union(s

1

; s

2

).

� Statements of NEL include (among others):

1. Atomic statements, such as assignments, procedure calls, and I/O statements.

2. Compound statements, such as sequential compound statements (Begin, End) or par-

allel compound statements (Parbegin, Parend). Parallelism is constrained to the main

program only and is not allowed in subroutines.

3. Flow control statements, which include:

24

(a) Conditional statements such as If-then, If-then-else, case, and cond.

(b) Repetition statements such as while and repeat.

� Inputs and Outputs (I/O) appear on special channels and have numerical values.

Next, we provide a few examples of how to compile fragments of NEL programs into subnetworks:

Example 2.1.1 Let M and N assume values in [0; 1] and B is a Boolean expression. The condi-

tional statement

If (B) then x =M

else x = N

is simulated by x

+

= �(�(M +B � 1) + �(N � B)) : 2

Example 2.1.2 Let c be a counter and x

1

; x

2

be real variables. (The operator Dec(c) decrements

the counter, and Dec(0) = 0.) Consider the sequence:

x

1

= x

2

= 1

read(c)

Repeat

Dec(c)

x

1

=

1

2

x

1

x

2

=

1

7

x

2

Until (Iszero(c))

1. A counter variable may assume any natural value or 0. In the network compilation, to each

variable c of the counter type, there is associated an activation variable z whose value is

z = 1� 2

�c

:

25

The counter operations are implemented as follows:

Dec (c) is implemented as z

+

= �(2z � 1) ;

Inc (c) is implemented as z

+

= �(

1

2

z +

1

2

) ;

Iszero (c) is implemented as z

+

= �(1� 2z) :

2. Real variables are implemented as real values in the range [0; 1].

The following network simulates the above program, assuming initial values x

0

1

= x

0

2

= 1; c

0

=

1� 2

�c

:

Computing x

1

: x

0

1

+

= �(

1

2

x

0

1

)

Computing x

2

: x

0

2

+

= �(

1

7

x

0

2

)

Counter : c

0

+

= �(2c

0

� 1)

s

+

= �(3� 4c

0

� s

0

)

s

0

+

= �(3� 4c

0

)

Output : (x

0

1

; x

0

2

; s) :

Here s takes the role of a binary validation neuron which is set to 1 once, implying that the output

information is ready (when the counter has the value 1, or 0 if this was its initial value). 2

Full details of how to compile any element of NEL (i.e., data-types, expressions, statements and

subroutines) appear in Section 2.3.

2.2 Language Syntax

A language is a tool used in order to de�ne the syntax of programs. A program takes given values

of input data, manipulates them using prede�ned constants, stores intermediate data in variables,

and produces output data. A program consists of a concatenation of lexical tokens, including

identi�ers (names), reserved words (such as begin, case), numbers, characters (`s'), arithmetic

symbols (+;�), and relational symbols (=; >). These tokens are concatenated in a meaningful

way, following the strict syntax of the language.

26

We de�ne a language whose programs can be compiled into a network having an architecture

as described in Chapter 1. We de�ne the syntax of the language in a grammar similar to the

Backus-Naur Form (BNF), which was developed to describe the Algol programming language. The

grammar is a set of production rules, consisting of two kinds of items:

� Non-terminals, which are syntactic categories. They are enclosed by curly brackets.

� Tokens of the language. A special case are the reserved words. These appear in boldface.

A sequence of tokens is a syntactically valid program if and only if it can be derived by the set of

productions, starting from the non-terminal \fprogramg". The notations that we use to describe

the NEL language include:

� \::=", to indicate each production.

� \j", to denote \or" when several options of production exist for the same non-terminal.

� \[x]", one or more repetition of x. We use \[x,]" as an abbreviation of xj[x;]x , and \[x;]" as

an abbreviation of xj[x;]x

The general description of the language is as follows (with some comments included):

fprogramg ::= fprogram headingg;

fblockg.

fprogram headingg ::= Program identi�er ([fchannel identi�erg,])

f* Explanation of I/O channels is provided is Subsection 2.2.2 *g

fblockg ::= fconstant de�nitionsg

ftype de�nitionsg

fvariable declarationsg

fprocedure and function declarationsg

fcompound statementg

27

fconstant de�nitionsg ::= femptyg j Cons [fconstant de�nitiong;]

fconstant de�nitiong ::= fidenti�erg = number

f* Constants can be real numbers only *g

ftype de�nitionsg ::= femptyg j fType [ftype de�nitiong;]

ftype de�nitiong ::= ftype-identi�erg = ftypeg

f* We describe in Subsection 2.2.1 all possible types *g

fvariable declarationsg ::= femptyg j Var [ftyped variable listg;]

ftyped variable listg ::= [fidenti�erg,] : ftype-identi�erg

fprocedure and function declarationsg ::= empty j

[fprocedure declarationg j ffunction declarationg]

fprocedure declarationg ::= fprocedure headingg; fblockg;

fprocedure headingg ::= procedure identi�er ([fformal parametersg,])

fformal parametersg ::= var ftyped variable listg j

value ftyped variable listg

ffunction declarationg ::= ffunction headingg; fblockg;

ffunction headingg ::= Function identi�er ([fformal parametersg,]): ftype-identi�erg

ftype-identi�erg ::= fidenti�erg

fcompound statementg ::= Begin [fstatementg;] End j

Parbegin [fstatementg;] Parend

f* Statements are discussed in Subsection 2.3.6 *g

Here we include a discussion about data types and I/O. Appendix 2.3.4 includes details about

expressions, statements, and subprograms.

28

2.2.1 Data Types

Each variable|as well as each constant, parameter, I/O datum, and function|has an associated

data type. The type speci�es the set of values that may be assumed and the operations permissible

on those values.

The language NEL supports the following data types:

1. Finite Ordered Types

Variables of such types take values in �nite sets that have up to some �xed number of elements

\Fix." (The upper bound is �xed, but di�erent for each program. \Fix" is de�ned as one of

the constants of a program.) The elements of the sets are indexed as f0; 1; : : :g. The function

Ord(element) returns the index of the element. The relational operators <;>;=;�;�; 6= are

de�ned between any two elements of a �nite ordered set. In any of these sets, x is considered

smaller than y if Ord (x)< Ord (y). The following are the possible ordered types:

(a) Values taken by Boolean variables consist of the elements ffalse, trueg. The operations

de�ned on Boolean variables are the unary operator Not(:), and the binary operators

And(

W

) and Or(

V

). The order function is de�ned as: Ord(False) = 0, and Ord(True)

= 1.

(b) Scalar type is a user de�ned type. It is introduced either by an explicit de�nition of

the form

type t = (c

1

; c

2

; : : : ; c

n

) ;

or by providing the lower and upper bounds of a range of any prede�ned scalar type or

integer. The number of elements in each Scalar type is bounded by the constant Fix of

the program. An example of a scalar type declarations is:

type Weekday = (Monday, Tuesday, Wednesday, Thursday, Friday)

type Midweek = Tuesday .. Thursday.

The operations de�ned on a scalar type are: Succ(c

i

) = c

i+1

, Pred(c

i

) = c

i�1

, Ord(c

i

)

= i, and relational operators. The operation Succ is not de�ned for the last element,

and Pred is not de�ned for the �rst one. The names of the scalar elements in the various

29

types are all distinct, and in particular they di�er from Boolean and char elements.

Furthermore, they should not be numerical.

(c) Char is a �nite ordered set of characters, with the operations Chr(i)= c

i

, Ord(c

i

)= i,

and relational operators. The function Chr(i) is unde�ned for a number i outside of the

range.

2. Numerical Values

(a) Integer is the subset of the set of integers, consisting of those integers in a bounded

range [minInt, maxInt]. (These variables are de�ned in each program as constants.) In

case of over
ow, an integer variable is saturated to one of the extreme possible values.

The arithmetic operations de�ned on integers are +;� between two integer variables,

and �, multiplication of an integers with an integer constant. (Multiplications among

two integer variables are not allowed.) Integers are an ordered set in the sense that the

relational operators <;>;=;�;�; 6= are de�ned on them.

(b) The Counter type consists of the set of all nonnegative integers with the operators

Inc(c

i

) = c

i+1

, Dec(c

i

) = c

i�1

, and the predicate Iszero. The operator Dec is not

de�ned on the element 0.

(c) The Real type consists of all real numbers in an interval [minReal, maxReal] (that

is de�ned by the constants of the program). The arithmetic operations are like those

de�ned on integers. The relational operators discussed above are not de�ned here.

The only comparison operator de�ned is the unary operator �(�; �; x), where �; � are

constants so that (minReal < � < � < maxReal), and x is a real variable:

�(�; �; x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

false if x < �

unde�ned if � � x � �

true if x > � :

3. Compound Homogeneous Data Types

These are user-de�ned types which include other data types. These types are homogeneous

in the sense that they may include elements from one type only.

(a) List of T is a chain of elements of the type T , where T is one of the �nite ordered types.

The operations de�ned on a list are:

30

� Car (flistg) returns the �rst element in a list (e.g. Car (a; b; c) = a).

� Cdr (flistg) returns the list without its �rst elements (e.g. Cdr (a; b; c) = (b,c)).

� Cons(felementg, flistg) (where element and list are from the same type T) returns

the new list whose car is the element and its cdr is the list (e.g. Cons(a, (b c)) is

(a b c)).

� The predicate Isnull (flistg) implies if the list is empty.

Using these elementary operations, all the list manipulation operations de�ned in the

language LISP ([Ste84], Chapter 15) are well de�ned here as well. This includes the

operations Nth (c list), which returns the cth element in the list (c is of type counter);

Length (list), Append (list1, list2) that concatenates two lists, Reverse (list), and

more. (These last operations are not atomic.) Note that as the lists are \
at" in the

sense that lists of lists are not de�ned in NEL, all of the above operations do not require

recursion but rather a simple loop.

(b) Stack of T is a list of T (T is a �nite ordered set), in which the last element to enter, is

the �rst one to leave and the only one that can be operated on. The operations de�ned

on a stack are:

� Top(fstackg) returns the top element of the stack.

� Pop(fstackg) returns the stack without its top element.

� Push(felementg, fstackg) returns a stack having as its top the given element, fol-

lowed by the previous stack.

� Isempty(fstackg) speci�es if the stack is empty.

(c) Set of T (T is a �nite ordered set) is an unordered collection of elements of type T .

� In(felementg, fsetg) is a predicate that implies if an element is in a set.

� Equals(fset

1

g, fset

2

g) implies if the sets are equal.

� Includes(fset

1

g, fset

2

g) implies if set

1

is included in set

2

.

� Union, Intersection, Set-di�erence receive two sets and return another set after

the operation.

4. Record is a heterogeneous type, consisting of �xed �elds of other previously de�ned types.

More details about records can be found in any Pascal manual, e.g. [Che80].

31

ftypeg ::= fordered typegj Counter j Real j

fcompound typeg j frecord typeg

fordered typeg ::= f�nite typeg j Integer

f�nite typeg ::= Boolean j Char j fscalar typeg

fscalar typeg ::= fordered type identi�erg j fvalueg .. fvalueg j

fidenti�er listg

fvalueg ::= finteger valueg j fscalar valueg (e.g. 3, Monday...)

fcompound typeg ::= List of f�nite typeg j

Stack of f�nite typeg j

Set of f�nite typeg

frecord typeg ::= Record f�eld listg End

f�eld listg := [frecord sectiong,] j

fvariant partg j

[frecord sectiong,] fvariant partg

frecord sectiong ::= [f�eld identi�erg,] : ftypeg j femptyg

fvariant partg ::= Case fidenti�erg: fordered type identi�erg of fvariantg

fvariantg ::= [fcase label listg : [f�eld listg,] j femptyg

fcase label listg ::= [fordered valueg,]

2.2.2 Input and Output

Input is read from synchronous streams of �nite-types (given by their Ord) or numerical values,

appearing on input channels. An important Boolean predicate de�ned on each input channel is

Eoc which signi�es the end of the stream that appears on that channel. When the program

starts running, all input channels are opened automatically. Output channels are de�ned similarly,

however, each of them is opened via an explicit command in the program.

NEL de�nes reactive programs (see e.g. Henziger, Manna and Pnueli [HMP92]), those having

an on-going interaction with their environments (as opposed to transformational systems which

32

interact in a limited way with humans only). In this sense, NEL de�nes real-time software. To

fully implement NEL, both time concepts and safety properties should be developed. (See more

on crucial issues in real-time software in Motus [Mot93].) As we are interested in NEL from a

theoretical, rather than implementable, view, we do not fully address these issues.

Full details about the syntax of expressions, statements, and subprograms can be found in

Appendix 2.3.4.

2.3 Compilation Of The Language Into A Network

We next describe a compiler which compiles programs written in the language NEL into a neural

network of the type described in Chapter 1. The model of compilation we use is batch-oriented.

The entire source program has been written and the program will be fully compiled before the

programmer can execute the program. The language itself is de�ned so that:

� The scope and binding of each identi�er reference is determined before execution begins.

� The type of an object is determined before execution time (not like APL).

� The language does not allow the program text to be modi�ed at run time (like APL, not like

LISP).

The program is measured by its length, both statically and dynamically. The static length of the

program is the number of tokens listed in the source code. The dynamic length is the number of

atomic commands executed for a given input. We call the �rst one the length of the program, and

the second is called the execution measure.

Theorem 1 There is a compiler C that translates each program in the language NEL into a net-

work. The constants (weights) that appear in the network are the same as those of the program,

plus several rational small numbers. Furthermore, the running time of the network is O(execution

measure).

We exclude the discussion about the scanner and the semantic pass. These are implemented in

standard ways. We rather concentrate on the syntactic part of the compiler.

33

It is easy to see that for each network, there is a program written in NEL that simulates it. The

length of such a program is linear in the number of units of the network, and its constants are the

constants of the network. Combining these statements, we can say that programs written in NEL

and networks are linearly related.

2.3.1 Input and Output

Given a program P written in NEL with k input channels and l output channels, the network

N simulating P has 2k input lines and 2l output processors. All the input into the network is

numerical. Hence, if characters or scalars had to be read in the program, their Ord function is the

input to the net.

The input lines are organized in pairs of

(Input.data

i

, Input.validation

i

).

The \input.data

i

" line carries the information of channel i. It defaults to \no information" when

no data appears on it. (In numerical value, the input equals 0). The input is synchronous in the

sense that at each step, the next input datum appears on the line. The \Input.validation" line

is a binary line. It is set to 1 when data is being transferred on the data line, and is 0 when no

information appears there.

The output processors (lines) adhere to a similar convention: for each output channel i, there

are two special processors

(Output.data

i

, Output.validation

i

).

An output operation into channel i sets the Output.data

i

processor to 1 for one step. Otherwise, it

is 0. The processor Output.data carries the information that has to be written in the ith channel.

It has the \no information" value when no speci�ed value is written into the open channel.

2.3.2 Flow Control

The network operates generally in the following manner: There are N neurons. At each tick of

the clock, all neurons are updated with new values. Thus, a network step consists of a parallel

execution of N assignments.

34

When simulating the program on a network, some of the neurons represent variables, and others

represent the
ow control and other parts of the program. Consider a neuron that represents a

speci�c variable. This variable has to change its activation value only when the program counter

points at a command which changes the activation. At other times, the variable is not supposed

to change.

To control such a
ow over the network, each command in the program is associated with a

special neuron, called the \statement counter" neuron. These neurons take Boolean (i.e. binary)

values only. When a statement counter neuron is True, the statement is executed. All statement

counters together constitute the program counter. Note that this counter has a distributed rep-

resentation, and that several statement counters may assume the value True simultaneously. The

statement counters themselves may have a distributed representation as substatement counters.

The number of substatement counters depends on the number of layers required to execute the

statement at hand, as will be described below.

Given a statement s

k

, the neurons that are involved in its simulation are both those that

simulate the statement and those that simulate the distributed representation of the statement

counter. For example, assume a statement s

k

is executed in l

k

layer net. Then the statement has

the l

k

associated counters:

c

(1)

k

; c

(2)

k

; : : : c

(l

k

)

k

which are updated via

c

(j)+

k

= �(c

(j�1)

k

) j > 1 :

For j = 1, We consider two possibilities:

1. Assume the statement s

k

appears in a sequential block (Begin, End) and the next statement

is s

k+1

. The update of the associated c

(1)

k+1

is given by

c

(1)+

k+1

= �(c

(l

k

)

k

) :

2. Assume the statement s

k

appears in a parallel block together with p other statements, and

the next statement after the Parend command is s

m

. In this case, a
ag indicating is the

statement s

k

has been executed, is required. This will be handled by the neuron c

par

k

that

35

updates by

c

par +

k

= �(c

(l

k

)

k

+ c

par

k

� c

(1)

m

) :

The �rst counter associated to s

m

is updated using this
ag, as follows:

c

(1)+

m

= �(c

par

k

+

p

X

j=1

c

par

j

� p) :

Below we see that each statement, including repetitions, can be decomposed into constant-time

statements and the statement goto. Thus, this explanation of compilation holds for any statement.

Examples of how to compile atomic statements and their counters into networks are provided below.

2.3.3 Data Types and Expressions

Each variable of any data type (except for a record) is represented via one neuron in the network.

� Boolean values are represented via the numbers f0; 1g. The logical operations are:

Operation Network's emulation

Not(x) �(1� x)

Or(x

1

; x

2

) �(x

1

+ x

2

)

And(x

1

; x

2

) �(x

1

+ x

2

� 1)

(2.1)

Relational operations are de�ned in a straightforward manner: x > y is �(x � y), x � y is

�(x� y + 1), and x 6= y is �(�(x� y) + �(y � x)).

� Scalars: there may be up to Fix di�erent elements in each scalar type. Assume a scalar type

with n elements f0; 1; : : : (n� 1)g. The ith element is represented as

scalar (i; n) ,!

2i+ 1

2n

: (2.2)

Order operations are implemented as follows:

Operation Network`s emulation

Pred(x) �(x�

1

n

)

Succ(x) �(x+

1

n

)

Ord(x) �(xn�

1

2

)

(2.3)

36

Using this representation, it follows from the fact that n is always bounded by the con-

stant Fix, that the relational operators of scalar type always involve numbers separated by a

distance of at least

1

2Fix

.

Given real numbers a and b, the only way to compare them in one step is by applying the

�-comparisons �(0; �; a� b) and �(0; �; b� a). These are only meaningful if a lower bound

is given on the value ja�bj. Thus, the compare operation is applicable in particular for every

�nite set type.

� List of T is encoded via a number between 0 and 1. Assume T is general scalar type with

cardinality n. The list l = a

1

a

2

� � �a

k

is represented by

l = a

1

a

2

� � �a

k

,!

k

X

i=1

2a

i

+ 1

(2n)

i

: (2.4)

(A special case for Boolean n = 2: (

P

k

i=1

2a

i

+1

4

i

) :)

Using (2.2), we can write this also as

k

X

i=1

scalar (a

i

; n)

(2n)

i�1

:

This is a number in the range [0; 1). If Ord(Car(l)) = i (i = 0; : : : ; (n� 1)), the value of the

encoding ranges in

[

2i+ 1

2n

;

2i+ 2

2n

] :

The second value in the list further restricts the available range. If Ord(Car(l)) = i and

Ord(Cadr(l)) = j, the value of the encoding ranges in

[

2i+ 1

2n

+

2j + 1

4n

2

;

2i+ 1

2n

+

2j + 2

4n

2

] :

In summary, not every value in [0; 1] appears. The set of possible values is not continuous

and has \holes". Such a set of values \with holes" is a Cantor set. Its self-similar structure

means that bit (base 2n) shifts preserve the \holes."

The advantage of this approach is that there is never a need to distinguish among two very

close numbers in order to read the car of the list.

37

If a list l is represented via the number x, then:

Operation Network`s emulation

Car(l) �(

1

2n

+

1

n

(�(2nx� 2) + �(2nx� 4) + � � �+ �(2nx� (2n� 2))))

Cdr(l) �((2nx� (�(2nx� 2) + �(2nx� 4) + � � �+ �(2nx� (2n� 2)))))

Cons(e; l) �(

x

2n

+ e)

Isnull(x) �(2nx)

(2.5)

� Stacks are represented similarly to lists, and operations on stacks are implemented analogously

to operations on lists.

� A set is represented as a sorted list with no repetitions. If a �nite type has cardinality n (up

to Fix), n is an upper bound on the length of the list. Thus, all set operations require O(Fix)

list operations.

� Records are represented by several variables (neurons), which are thought of as one unit.

The representations of the types char, integer, counter, and real appear in Appendix 2.4.

2.3.4 Compilation of Statements

Atomic Statements:

� An assignment expression is compiled in a straightforward way. Each such statement s

k

has

associated substatement counters c

(1)

k

and c

(2)

k

, and in case it appears in a parallel block, it

also has an associated
ag counter c

par

k

. A substitution x = y is thus executed as follows:

x

+

1

= �(x� c

(1)

k

)

x

2

+ = �(y + c

(1)

k

� 1)

x

+

= �(x

1

+ x

2

)

c

(2)+

k

= �(c

(1)

k

) :

38

In case s

k

appears in a sequential block, the next statement counter is updated by

c

(1)+

k+1

= �(c

(2)

k

)

and if it appears inside a parallel block, its
ag neuron is updated by

c

par +

k

= �(c

(l

k

)

k

+ c

par

k

� c

(1)

m

)

and the next statement counter is updated by

c

(1)+

m

= �(c

par

k

+

p

X

j=1

c

par

j

� p) :

� Assuming that the numerical values of inputs are in the interval [0; 1], already encoded

as discussed earlier, the reading of an input is implemented as x = �(Input.data +

Input.validation+c

k

� 2). The Input.validation signal takes the role of the negation of the

Eoc function. Output operations consist simply of copying the value of an output neuron.

� A Goto statement is implemented simply by a change in the neurons simulating the statement

counters of the program.

� Procedure calls are implemented by storing the return address (neuron) in a prede�ned ad-

dress and changing the statement counter. The calling program of the subroutine copies the

actual parameters into the formal ones (even in the case of var parameters). For each var pa-

rameter, a copy statement from the actual to the formal parameter is evoked when updating

it. (This will be further described below.)

Compound Statements:

� A Parallel block is translated into parallel execution of the individual statements. In the

following NEL program, we associate statement counters with the associated statements,

writing them to the left of the statements. Consider the block:

c

k

: Parbegin

c

1;k

: statement

1

.

.

.

39

c

n;k

: statement

n

Parend

c

k+1

:

When c

k

is set to 1, all substatement counters are set simultaneously to 1. The parallel

block may end only when statement

1

to statement

n

�nish their executions. Generally, the

associated statement counters are updated as follows:

Parallel 8i :

c

+

i;k

= �(c

k

)

statement

i

c

+

i;k

= 0

c

+

k

= �(c

k�1

+ c

1;k

+ � � �+ c

n;k

)

c

+

k+1

= �(c

k

� c

1;k

� � � � � c

n;k

) ;

The statement \Goto" is not allowed to jump from one parallel block to another. Furthermore,

since in parallel execution there is no communication between statements, a variable cannot

appear in more than one of the assignment statements that are executed in parallel.

The execution of serial blocks appear in Appendix 2.4.

Flow Control Statements:

� If Statement: The statement

If (B) then stat1

else stat2

is implemented as

Parbegin

If (B) then stat

1

;

If (:(B)) then stat

2

Parend

40

The statement counter of stat

1

includes the element \Or B", and that of stat

2

includes \Or

:(B)"

� Case and Cond statements: Case - parallel execution of the associated

If statements, and Cond is a serial execution of them.

Execution of other
ow control statements as well as subroutine calls can be found in Appendix

2.4.

41

Appendix: Syntax of NEL

Here, we provide the syntax of expressions, statements, and subprograms.

2.3.5 Expressions

1. Atomic Expressions:

� A constant is an expression.

� A variable is an expression.

� A function call is an expression.

2. Order Expressions:

� The function Ord of any element of a �nite-type returns an integer value.

� Pred and Succ of an element e of a �nite ordered type T returns another element of

the same type.

� Chr operates on an integer argument and returns a character.

3. Arithmetic Expressions:

� Expressions consisting of �nite a�ne combinations (

P

i

c

i

x

i

+ d) are de�ned on either

integers or reals. Here the x

i

are variables and the c

i

and d are constants. If all types

are integers, then the expression is of integer type (include truncating when needed);

otherwise, it is a real expression.

� Inc and Dec are de�ned on counters and return counters.

4. Comparison Expressions: All these expressions return Boolean values.

� Relational operators : <;>;=;�;�; 6= between expressions of ordered type.

� Relational operations on sets: In(element, set), Equals(set1,set2), Includes(set1,set2).

� Predicates: Iszero(counter), Isnull(list), Isempty(stack).

� Comparisons over the reals are described above, �(�; �; x) may either produce Boolean

values or is unde�ned.

42

5. Logical expressions:

W

;

V

;: are de�ned on Boolean values, and return Boolean values.

6. Compound-type expressions: Given a list of T , a stack of T , or a set of T :

� Car (l) and Top(s) return elements of type T .

� Cdr (l) and Pop(s) inherit the type of their arguments.

� Cons(e, l) and Push(e; s) inherit the type of their second arguments.

� Union(s

1

; s

2

), Intersection(s

1

; s

2

), Set-di�erence(s

1

; s

2

) inherit the type of their ar-

guments. (The arguments s

1

; s

2

have the same type.)

Here, we provide a detailed syntax of expressions:

fexprg ::= fordered exprg j fcounter exprg

freal exprg j fcompound exprg

fordered exprg ::= f�nite exprg j finteger exprg

f�nite exprg ::= f Boolean exprg j fscalar exprg j fchar exprg

fcompound exprg ::= flist exprg j fstack exprg j fset exprg

fBoolean exprg ::= fordered exprg frelational operatorg fordered exprg j

fBoolean termg j fBoolean termg

W

fBoolean termg

fBoolean term g ::= fBoolean factorg j fBoolean factorg

V

fBoolean factorg

fBoolean factorg ::= fBoolean varg j fBoolean valueg j

fBoolean function callg j fBoolean exprg j

Succ(fBoolean exprg) j Pred(fBoolean exprg)

�(freal constantg,freal constantg,freal expressiong) j

:(fBoolean exprg) j fpredicateg

fpredicateg ::= Iszero (fcounter exprg) j

Isnull (flist exprg) j

Isempty (fstack exprg) j

In(f�nite exprg, fset exprg) j

Equals(fset exprg, fset exprg) j

Includes(fset exprg, fset exprg) j

43

Eoc fchannel identi�erg

frelational operatorg ::= <;>;=;�;�; 6=

ffunction callg ::= fidenti�erg j fidenti�erg ([fexpressiong,])

fscalar exprg ::= fscalar varg j fscalar valueg j

fSucc(fscalar exprg) j Pred(fscalar exprg)

Car(flist exprg) j Top (fstack exprg)

fchar exprg ::= fchar varg j fchar valueg j

Chr(finteger exprg) j fSucc(fchar exprg) j Pred(fchar exprg)

finteger exprg ::= finteger termg + finteger termg

finteger termg ::= finteger varg j finteger valueg j

fconstantg * finteger varg j Ordf�nite exprg

fcounter exprg ::= fcounter varg j fcounter valueg j

Dec(fcounter exprg) j Inc(fcounter exprg)

freal exprg ::= freal termg + freal termg

freal termg ::= freal varg j freal valueg j fconstantg * freal varg

flist exprg ::= flist varg j flist valueg j

Cons(f�nite exprg, flist exprg)j Cdr(flist exprg)

fstack exprg ::= fstack varg j fstack valueg j

Push(f�nite exprg, fstack exprg)j Pop (fstack exprg)

fset exprg ::= fset varg j fset valueg j

Union(fset exprg, fset exprg) j

Intersection(fset exprg, fset exprg) j

Set-di�erence(fset exprg, fset exprg)

f* value - input value or constant (if numerical) *g

44

An alternative, when type matching is not imposed, is given below:

fexprg ::= ftermg j fexprg faddopg ftermg

faddopg ::= + j � j Or

ftermg ::= ffactorg j ftermg fmultopg ffactorg

fmultopg ::= � j = j And

ffactorg ::= f constantg j fvariableg j

ffunction callg j fpredef function callg j

fexprg j Notfexprgj

fexprg frelopg fexprg j

�(fconstantg,fconstantg,fexpressiong)

fvariableg ::= fidenti�erg

ffunction callg ::= fidenti�erg j fidenti�erg [fexprg,]

frelopg ::= < j j > j = j � j � j 6=

fpredef function callg ::= Succ(fexprg) j Pred(fexprg) j

Car(fexprg) j Cdr(fexprg) j Cons(fexprg, fexprg)j

Union(fexprg, fexprg) j Intersection(fexprg, fexprg) j

Set-di�erence(fexprg, fexprg) j

Top (fexprg) j Pop (fexprg) j Push (fexpr, fexprg) j

Chr(fexprg) j Ord(fexprg)j

Dec(fexprg) j Inc(fexprg) j

Iszero (fexprg) j

Isnull (fexprg) j

Isempty (fexprg) j

In(fexprg, fexprg) j

Equals(fexprg, fexprg) j

Includes(fexprg, fexprg) j

Eoc fidenti�erg

45

2.3.6 Statements

fstatementg ::= flabelg: funlabeled statementg j funlabeled statementg

funlabeled statementg ::= fatomic stg j

fcompound stg j

fconditional stg j

frepetition stg j

frecord stg

1. Atomic statements:

(a) Assignment: fvariableg = fexpressiong. The types should match.

(b) Procedure call: fidenti�erg j fidenti�erg ([fexpressiong,])

(c) I/O statement:

i. Read(channel identi�er, fvariableg) reads one input datum from the sequence of

data elements appearing on the input channel speci�ed in this command. The input

is interpreted to be in the type of the variable it is read into. It is also possible to

read without storing the datum: Read(channel identi�er).

ii. Write(channel identi�er, fvariableg) copies the value of the variable to the output.

iii. Go-to statement: Goto flabelg, where flabelg is a counter expression. That is,

labels are natural numbers or 0, and the number of labels is unbounded.

2. Compound statements (blocks):

(a) The sequence of statements appearing between Parbegin and Parend is executed in

parallel. These statements can only be applied in the top level of the main program.

(b) The sequence of statements between Begin and End is executed serially.

3. Control Structure Statements. Conditional statements:

(a) If fBoolean expressiong then fstatementg

46

(b) If fBoolean expressiong then fstatementg else fstatementg.

(c) A case statement is de�ned as:

Case fordered exprg of [fcase label listg: statement] end

fcase label listg ::= [fordered valueg,] (e.g. integer 3, scalar `Monday')

Informally, the case statement tests the value of an identi�er i, and compares it to the

di�erent values v. For example, consider this program fragment:

Case i of

((v

1

s

1

) (v

2

s

2

) � � � (v

k

s

k

))

The value of i must be equal to exactly one of the v's in the list; the associated sentence

is executed.

(d) Cond ([fBoolean expressiong f statementg,])

For example:

Cond

((b

1

s

1

) (b

2

s

2

) � � � (b

k

s

k

))

The Cond statement is a \compound if" statement. The �rst statement associated with

a True Boolean expression is executed. (All Boolean conditions may be false. Then

nothing is executed.)

4. Control Structure Statements. Repetition statements:

(a) While fBoolean expressiong do fstatementg

(b) Repeat fstatementg until fBoolean expressiong

(c) For loop has the following syntax:

ffor loopg ::= For fcounter identi�erg = ffor-listg do fstatementg,

ffor-listg ::= fvalueg to fvalueg j

fvalueg downto fvalueg

fvalueg ::= fcounter expressiong

47

(d) Dolist(flist exprg fstatementg).

This loop repeats length(list) times. At each repetition i, the statement |that has one

free variable| is applied to the ith element of the list.

5. With frecord variable listg do fstatementg

2.3.7 Subprograms

Two types of subprograms are de�ned to facilitate top-down design using step-wise re�nement

[Che80]: function and procedure. Functions return one value of prede�ned type, while procedures

return no value. We have previously seen the syntax of declaring functions and procedures, and

the syntax used when invoking them. Here, we re�ne our discussion of subprograms. A function f

is declared by a statement like

Function f (p

1

: t

1

; p

2

: t

2

; : : : ; p

n

: t

n

) : T

and a procedure is declared by

Procedure p (p

1

: t

1

; p

2

: t

2

; : : : ; p

n

: t

n

)

The formal parameters are listed along with their types. There are four types of formal parameters:

var, value, function, and procedure. Subprograms are invoked by statements such as k(e

1

; e

2

; : : : e

n

)

with a list of n expressions of the type t

i

, respectively. For value parameters, the expressions are

evaluated and then assigned into the formal parameters. In var parameters, the actual parameters

are names of variables, and the subprogram considers these formal parameters to be equivalent to

the actual parameters in which it was invoked. The actual parameters of function or procedure

variables are function or procedure identi�ers, respectively. Note that the NEL language is strongly

typed, and the actual parameters should match the type of the formal ones.

Static declaration of subprograms may be viewed as a tree: The root is the program; a subpro-

gram p

1

is a child of p

2

if it is de�ned in it. A program may invoke another one which is either

its child, sibling, or sibling of its ancestor. Cyclic invoking is not allowed nor is recursion. The

conventions regarding the scope of parameters is as in Pascal (e.g. [Che80] Chapter 7.)

48

2.4 Appendix: Compilation of NEL

2.4.1 Compilation of Data Types

� Chars are treated similarly to Scalars. We use the encoding Chr(i) =

2i+1

2n

; where n is the

cardinality of the character type.

� Integers are represented as binary numbers with up to q bits. Arithmetic operations (i.e.,

addition of two variables and multiplication of a variable with a constant) are executed by

the update:

x

+

j

= �(

X

i

a

i

x

i

+ c

j

)

where x

i

are variables and a; b are either integer or rational constants. The precision q is

program dependent, and is chosen such that the network operations involving � are sensitive

enough to be able to discern via the relational operations between two such integers (also to

truncate) in a constant time duration.

� A counter with the value n is represented as (1� 2

�n

), that is

counter(n) ,! : 11 : : :1

| {z }

n

(2.6)

The operations on counters are implemented as follows:

Operation Network`s emulation

Inc(x) �(

1

2

(x+ 1))

Dec(x) �(2x� 1)

Iszero(x) �(1� 2x) :

(2.7)

� Real values are continuous in the range [0; 1]. Arithmetic operations are as in the integer

case:

x

+

j

= �(

X

i

a

i

x

i

+ c

j

)

49

but with the possibility of incorporating real values. The relational operator �(�; �; x) is

emulated by

�(

x� �

� � �

) : (2.8)

2.4.2 Compilation of Statements

� Serial blocks are implemented in terms of parallel blocks:

Begin

statement

1

.

.

.

statement

n

End

where we have to use pointer variables for the di�erent statements: c

1

; : : : c

n

. We assume a

control line that has the value 1 once. The operations are then

c

1

= control

Parbegin

If (stat

1

is done) then c

2

= c

1

, c

1

= 0;

If (stat

2

is done) then c

3

= c

2

, c

2

= 0;

.

.

.

If (c

1

) then statement1 ;

If (c

2

) then statement2 ;

.

.

.

Parend

� A while loop

While (B) do

statement

50

is compiled into the parallel execution:

l : Begin

If (B) then statement

else Goto(l + 1)

Goto(l)

End

l + 1:

� A Repeat loop

Repeat

statement

Until (B)

is compiled into

l : Begin

statement

If (B) then Goto(l + 1)

Goto(l)

End

l + 1:

� For Loop: This loop utilizes a counter to decide the halting condition

For i = 1 : : :n do

statement

The statement compiles into the following execution:

i = 1;

While (i � n) do

51

Begin

statement;

i = i+ 1

End

This is in turn compiled into a network as before.

� Dolist can be written as a regular For loop using the operations Car and Cdr.

� With record operations: records are simulated by a set of neurons, one per each �eld. The

simulation is, then, simple.

2.4.3 Compilation of Subroutine Calls

We assume a control line named Fcall that activates the subprogram call. The subprogram is

complied into the following commands:

Begin

If (Fcall) then x

i

= v

i

(i = 1; 2; : : :) f* for value parameters, copying the value *g

If (Ending) then x

i

= 0

.

.

.

Function's Block

Ending = condition

End

52

Chapter 3

The Computational Power of Recurrent Networks: Overview

Many authors have reported successful applications when using neural networks for various compu-

tational tasks, including classi�cation and optimization problems. Special purpose analog chips are

being built to implement these solutions directly in hardware; see for instance [AA87], [EDK

+

89].

However, very little work has been done in the direction of exploring the ultimate capabilities of

such devices from a theoretical standpoint. Part of the problem is that, much interesting work

notwithstanding, analog computation is hard to model, as di�cult questions about precision of

data and readout of results are immediately encountered |see for instance [VSD86], and the many

references there.

We take the point of view that arti�cial neural nets provide an opportunity to reexamine some

of the foundations of analog computation from the new perspective a�orded by an extremely simple

yet surprisingly rich model, in a context where techniques from dynamical systems theory interact

naturally with more standard notions from theoretical computer science. Starting from such a

model, we derive results on deterministic versus nondeterministic computation, and we relate our

study to standard concepts in complexity theory.

With the constraint of an unchanging structure, it is easy to see that classical McCulloch-

Pitts|that is, binary|neurons would have no more power than �nite automata, which is not an

interesting situation from a theoretical complexity point of view. Therefore, and also because this

is what is done in practical applications of neural nets, and because it provides a closer analogy to

biological systems, we take our neurons to have a graded, analog, response.

53

3.1 Computational Power

Assume a machine M receives as input �nite binary strings, that is, words in f0; 1g

�

and outputs

a single character response after a certain amount of processing. Assume without loss of generality

that the response is binary. All those strings to which M responds with 1 de�ne the language

accepted by the machine.

A well-developed �eld in computer science deals with the characterization of languages into

classes de�ned in terms of the complexity of the machines needed to recognize them (see for ex-

ample [HU79]). These classes include for example the regular languages (those accepted by �nite

automata), recursive languages (those accepted by Turing machines), and many others. That is, a

speci�c type of machine architecture is associated with the class of languages that it is capable of

recognizing.

To understand the computational power of recurrent networks, we study in this work how

they perform as recognizers. The �ndings are pretty surprising. Not only did we �nd a precise

correspondence between the recurrent network model and di�erent classical models, but we found

that the only parameter that determines the class of languages recognized by our model is the type

of numbers utilized as weights by the network. Thus, the main known computational classes can be

re-described as the classes of languages recognized by recurrent networks with some speci�c types

of weights. The hierarchy of classes of languages is then in a one-to-one correspondence with real

numbers, according to their descriptional classi�cation.

The proof in the rational and real cases make use of the language NEL introduced in Chapter

2. The integer case could be done using a restricted subset of NEL, but we will give a direct proof,

as this case is very easy to deal with.

3.2 Basic De�nitions

As we discussed in Chapter 1, we consider synchronous networks which can be represented as

dynamical systems whose state at each instant is a real vector x(t) 2 IR

N

. The ith coordinate

of this vector represents the activation value of the ith processor at time t. In matrix form, the

equations are as in (1.4), for suitable matrices A;B and vector c.

54

Given a system of equations such as (1.4), an initial state x(1), and an in�nite input sequence

u = u(1); u(2); : : : ;

we can de�ne iteratively the state x(t) at time t, for each integer t � 1, as the value obtained

by recursively solving the equations. This gives rise, in turn, to a sequence of output values, by

restricting attention to the output processors; we refer to this sequence as the \output produced

by the input u" starting from the given initial state.

To de�ne what we mean by a net recognizing a language

L � f0; 1g

+

;

we must �rst de�ne a formal network, a network which adheres to a rigid encoding of its input and

output. We de�ne formal nets with two binary input lines. The �rst of these is a data line, and it

is used to carry a binary input signal; when no signal is present, it defaults to zero. The second is

the validation line, and it indicates when the data line is active; it takes the value \1" while the

input is present there and \0" thereafter. We use \D" and \V " to denote the contents of these two

lines, respectively, so

u(t) = (D(t); V (t)) 2 f0; 1g

2

for each t. We always take the initial state x(1) to be zero and to be an equilibrium state, that is,

�(A0 +B0 + c) = 0 :

We assume that there are two output processors, which also take the role of data and validation

lines and are denoted O

d

(t); O

v

(t) respectively.

(The convention of using two input lines allows us to have all external signals be binary; of

course many other conventions are possible and would give rise to the same results, for instance,

one could use a three-valued input, say with values f�1; 0; 1g, where \0" indicates that no signal

is present, and �1 are the two possible binary input values.)

We now encode each word

� = �

1

� � ��

k

2 f0; 1g

+

as follows. Let

u

�

(t) = (V

�

(t); D

�

(t)) ; t = 1; : : : ;

55

where

V

�

(t) =

8

>

<

>

:

1 if t = 1; : : : ; k

0 otherwise ;

and

D

�

(t) =

8

>

<

>

:

�

k

if t = 1; : : : ; k

0 otherwise :

Given a formal net N , with two inputs as above, we say that a word � is classi�ed in time � , if the

following property holds: the output sequence

y(t) = (O

d

(t); O

v

(t))

produced by u

�

when starting from x(1) = 0 has the form

O

d

= 0 � � �0

| {z }

��1

�

�

000 � � � ; O

v

= 0 � � �0

| {z }

��1

1000 � � � ;

where �

�

= 0 or 1.

Let T : IN ! IN be a function on natural numbers. We say that the language L � f0; 1g

+

is

recognized in time T by the formal net N provided that each word � 2 f0; 1g

+

is classi�ed in time

� � T (j�j), and �

�

equals 1 when � 2 L and is = 0 otherwise.

3.3 Main Results

We investigate the computational power of recurrent networks. We prove that the power of a

network depends on the type of numbers utilized as its weights. The natural mathematical choices

of numbers are: integers, rationals, and reals. The natural choices of classes of formal languages

are: regular, recursive, and \all languages." We establish the correspondence between these three

choices, respectively. Furthermore, when the computation time of the network is constrained to

be polynomial in the input size, the classes recognized by the networks are regular (Chapter 4),

P (Chapter 5), and non-uniform P, i.e. P/poly (Chapter 6). The results are summarized in the

following table.

56

Weights Capability Polytime

integer regular regular

rational recursive (usual) P

real arbitrary analog P

We discuss (in Chapter 7) a hierarchy of numbers between rationals and reals in terms of

information theory. We prove that networks that utilize as weights numbers carrying di�erent

amount of information result in di�erent computational power. Thus, we establish an in�nite

hierarchy of networks classi�ed by their allowed weights, between the rationals and the general real

case.

57

Chapter 4

Networks with Integer Weights

We establish a correspondence between networks in which weights are restricted to take integer

values and the simplest class of machines, namely, �nite automata. The classical 1943 result of

McCulloch and Pitts ([MP43]) (see also Kleene's work [Kle56]) shows how to implement logic gates

by threshold networks, and therefore how to simulate �nite automata by such nets. For us, however,

neurons allow for analog values ([0; 1]) rather than the discrete 0-1 McCulloch and Pitts neurons.

Thus, potentially our networks are more powerful. We show that when we restrict our networks to

allow for integer weights only, the neurons may assume only binary activations, and the networks

become computationally equivalent to those studied by McCulloch and Pitts. The material of the

chapter is fairly straightforward, and essentially well-known, but it is needed for completeness.

4.1 Finite Automata - Preliminaries

Recall that a �nite automaton (FA) is a machine that consists of �nite set of states. It moves from

state to state after each input symbol is received. Formally, a FA is de�ned as a 5-tuple ([HU79])

M = (Q;�; �; q

0

; F) where Q is a �nite set of states, � is a �nite set of input symbols, q

0

2 Q is

the initial state, F � Q is the set of accepting states, and � : Q�� 7! Q is the transition function.

That is, �(q; a) is a state, for any state q and input symbol a, interpreted as the \next-state". We

assume that �(q; a) = q for all q 2 F .

We extend the transition function � to be de�ned over a state and a string (rather than a single

symbol) by means of the formula (inductively on the length of !) �(q; !a) = �(�(q; !); a), for a

symbol a 2 � and a string of 0 or more symbols ! 2 �

�

. We also de�ne for completeness �(q; �) = q

for the empty string �. A string x is said to be accepted by a �nite automaton M if �(q

0

; x) 2 F .

The language L(M) � �

�

accepted by M is the set of all accepted strings. A language is regular

58

if it is accepted by some �nite automaton. Note that the decision of acceptance or rejection of a

string is made immediately after it is read.

In our model of computation, i.e. neural networks, decisions are indicated by a special output

signal. To establish the desired equivalence we need to de�ne an o�ine �nite automaton. This is

an automaton that may continue computing after reading in the input string, thus providing the

decision not immediately after reading the input but after some delay. A decision is reached when

the computation arrives to either an accepting or a rejecting state.

Formally, we denote an o�ine �nite automaton as a 5-tuple (Q;�; �

f

; q

0

; F

f

). The transition

function �

f

maps Q � (�

S

$) into Q, where `$' is a special symbol ($ 62 �) denoting that the

complete input string has been read into the machine. Here, F

f

� Q is the set of accepting states,

and the transition function satis�es that �

f

(q; a) = q for all a 2 (�

S

$) and q 2 F

f

: The objects

Q;�; q

0

are de�ned as in the �nite automaton case. We extend the transition function �

f

as above

to be de�ned on a state and a string of the type x$

�

, where x 2 �

�

and $

�

is a string of 0 or more

appearances of the `$' sign. We de�ne a function

~

�

f

which maps Q� �

�

(without the $ sign) into

2

Q

(the set of subsets of Q) by

~

�

f

(q; x) = f�

f

(q; x$

�

)g

for any x 2 �

�

. A string x 2 �

�

is said to be accepted by an o�ine �nite automaton M if

~

�

f

(q

0

; x)

T

F

f

6= �.

Lemma 4.1.1 The class L

f

of languages accepted by o�ine �nite automata is exactly the class of

regular ones.

Proof. Any �nite automaton can be seen as an o�ine automaton by letting �

f

(q; $) = q for all

q 2 Q. Thus, the regular languages are included in L

f

. To prove the other inclusion, we show next

that given an o�ine �nite automatonM = (Q;�; �

f

; q

0

; F

f

) accepting a language l, there is a �nite

automaton M

0

that accepts the same language.

De�ne F = fq 2 Q j

~

�

f

(q; $

�

)

T

F

f

6= �g, and let � be the map �

f

restricted to Q � �. Then,

the machine M = (Q;�; �; q

0

; F

f

) accepts l.

4.2 Integer Networks and Regular Languages

59

Theorem 2 The languages accepted by integer networks are exactly the regular ones.

Proof. We establish a correspondence between integer networks and o�ine �nite automata.

)

Given a formal integer network N

i

that consists of N neurons and accepts the language l, we de�ne

an o�ine automaton M = (Q; f0; 1g; �

f

; q

0

; F

f

) as follows:

1. We identify the input (V (t); D(t)) toN

i

with the values f0; 1; $g using the following encoding:

�[(1; 0)] = 0, �[(1; 1)] = 1 and �[(0; 0)] = $ (the case (0; 1) is invalid).

2. Let Q = f0; 1g

N

and q

0

= 0

N

. (Note that as the network starts from an initial state 0

N

and

utilizes only integer weights, its neurons may assume binary values only.) That is, we identify

each state of M with the activations of all the neurons.

3. Assume w.l.o.g. that O

v

(t); O

d

(t) are the �rst and second neurons in the state encoding,

respectively. We denote by q[i] the ith coordinate of state q. Then, F

f

= fq 2 Qj q[1] =

1; q[2] = 1g.

4. The transition function �

f

is de�ned by the update equation q

+

= �(Aq +Bu + c).

It is easy to verify that L(M) = l.

(

Given an o�ine �nite automatonM = (Q;�; �

f

; q

0

; F

f

) that accepts a language l 2 f0; 1g

�

, assume

w.l.o.g. that there is no transition into the initial state q

0

. We de�ne a formal integer network N

and the simulation of M as follows:

The input letters from f0; 1; $g are translated via the function �

�1

. The number of neurons is

N = 3jQj+2. Of these, 3jQj are indexed by j = 0; : : : ; (jQj�1), and a pair (k; l) which may assume

the values (0; 0), (1; 0), or (1; 1). Each x

jkl

may assume a binary value only, where x

jkl

is 1 if and

only if the current state of the machine M is q

j

and its last input was �[(k; l)]. The construction

will be so that at each moment exactly one of these neurons has the value 1 and all the rest have

the value 0.

Before we show the update equations of the neurons x

jkl

, we introduce some notation: Introduce

jQj binary variables p

j

(j = 0; : : : ; (jQj � 1)), each of them having the value 1 if the state of the

60

machine M is q

j

. These variables can be updated by the previous activation values of the neurons

x

jkl

as follows:

p

+

0

= 1�

X

x

jkl

p

+

j

=

X

a

jkl

x

jkl

where the sum is over all j = 0; : : : ; (jQj � 1); and pairs (k; l) as before, and the constants a

jkl

are

such that a

jkl

= 1 when �

f

(q

j

; �[(k; l)]) = q

i

and a

jkl

= 0 otherwise.

Now we are ready to precisely state the update equation of the neurons x

jkl

:

x

+

j11

= �(p

j

+ V +D � 2)

x

+

j10

= �(p

j

+ 2V �D � 2)

x

+

j00

= �(p

j

� V �D) :

Two additional neurons are the validation and data output: De�ne F

R

= fq 2 Q j

~

�

f

(q; $

�

)

T

F

f

= �g. The validation neuron updates by x

+

v

= �(

P

jQj�1

j=0

a

j

x

j00

), where a

j

is 1

when q

j

2 (F

f

S

F

R

) and is 0 otherwise. The data neuron updates by a similar equation where

a

j

= 1 when q

j

2 F

f

and a

j

= 0 otherwise.

It is easy to verify that M and N accept the same language. Note that all weights of N are

integers.

61

Chapter 5

Networks with Rational Weights

As discussed in Chapter 3, our neural network model when restricted to integer weights, is not

more powerful than a �nite automaton. Here, we discuss the same model, but let the weights be

rational numbers. The rational numbers we consider are simple, small and do not require much

precision. For example, one could verify that the result we show in section 5.1 does not require more

complicated rational weights than those that can be written as

n

1

n

2

, for n

1

; n

2

2 IN, n

2

2 f1; : : : ; 4g

and n

1

2 f�4; : : :8g.

Related work that asserted universality of a �nite network|similar to the recurrent network

model|was done by Pollack [Pol87]. His model consisted of a �nite number of neurons with two

di�erent activation functions, identity and threshold. The machine was high-order (also called

Sigma-Pi), that is, the inputs of each neuron were combined using multiplications as opposed to

just linear combinations. Pollack conjectured that high-order connections are necessary in order to

achieve universality. The validity of this conjecture would imply that our recurrent network model

is less powerful than standard models of computation. This conjecture was for a time rather widely

accepted by the neural network community. In particular, it was the basic motivation for using

high-order models (i.e. ([CSSM89], [Elm90], [GMC

+

92], [Pol90], [WZ89]). In this chapter we refute

this conjecture.

We prove in this chapter that one can simulate all (multi-tape) Turing Machines by nets, using

only �rst-order (i.e., linear) connections and rational weights. Furthermore, this simulation can be

done in linear time. In particular, it is possible to give a net made up of about 1,000 processors

which computes a universal partial-recursive function. Non-deterministic Turing Machines can be

simulated by non-deterministic rational nets, also in linear time. Later in this chapter, we prove

that the simulation of a Turing machine by a neural network can in fact be done in real time rather

than linear time.

62

The simulation result has many consequences regarding the decidability , or more generally the

complexity, of questions about recursive nets of the type we consider. For instance, determining if

a given neuron ever assumes the value \0" is e�ectively undecidable (as the halting problem can be

reduced to it); on the other hand, the problem is believed to be decidable if a linear activation is

used (halting in that case is equivalent to a fact that is widely conjectured to follow from classical

results due to Skolem and others on rational functions; see [BR88], page 75), and is also decidable

in the pure threshold case (there are only �nitely many states). As our function � is in a sense

a combination of thresholds and linear functions, this gap in decidability is perhaps remarkable.

Another consequence of our results is that the problem of determining if a dynamical system

x

+

= �(Ax+ c)

(with A and c rational) ever reaches an equilibrium point, from a given (rational) initial state,

is e�ectively undecidable. Given the linear-time simulation bound, it is of course also possible to

transfer NP-completeness results into the same questions for nets having rational coe�cients.

The remainder of this chapter is organized as follows. In section 5.1, we prove the simulation

of a TM by a neural network with a linear slow down in the computation. Starting with section

5.2 and through the end of this chapter, we construct a network that simulates a given TM in real

time. This section includes the construction of a universal network with 886 neurons. The proof

of the real-time simulation is more complicated than the proof of the linear-time result, but it is

independent of the use of the language NEL and is self-contained.

5.1 Rational Networks Simulate Turing Machines in Linear Time

It is an easy exercise to verify that a network with rational weights can be simulated by a Turing

machine with a polynomial time slow down. Here, we show the other side of the simulation; we

prove that networks can simulate Turing machines. Furthermore, we construct a simulation that

does not require more than linear time slow-down in the computation.

Theorem 3 Let � : f0; 1g

�

! f0; 1g

�

be any recursively computable partial function. Then, there

exists a formal network N which computes �. Furthermore, if a Turing Machine M (of one

63

input tape and several working tapes) computes �(!) in time T (j!j), then N computes � in time

O (T (j!j) + j!j).

Proof. As a departure point, we pick single-tape Turing Machines with binary alphabets. As is

well-known, by storing separately the parts of the tape to the left and to the right of the head,

we may equivalently study push-down automata with two binary stacks. This machine consists of

a �nite control together with two binary stacks. At each step, the stacks are read via Top and

Isempty operations (the same de�nition as in Chapter 2: Top reads the top element of the stack

and Isempty veri�es if the stack is empty), the �nite control considers its state and the readings

from the stacks and computes two functions: the next state and the operations on each stack.

(The operations on the stacks are Push(0), Push(1), or Pop: Push adds the top element, while

Pop removes it from the stack.) At the end of the step, the stack operations are executed, and the

control changes its state according to the transition function.

To show the existence of a network that simulates a two stack machine in linear time, we exhibit

a program with this property. Given the linear time equivalence of programs in NEL and networks

(see Chapter 2), theorem 3 will be proved.

Consider a program with one binary input channel and one binary output channel, as follows:

Program Turing-machine (input,output);

Var s

1

; s

2

: Stack;

Begin

While (: Eoc (input)) do

s

1

= Push (Read (input), s

1

);

Repeat

%Simulate one step on the two stack machine

state = Next-state (state, Top (s

1

), s

1

, Top (s

2

), s

2

)

s

1

= Stack-Op

1

(state, Top (s

1

), Isempty (s

1

), Top (s

2

), Isempty (s

2

), s

1

)

s

2

= Stack-Op

2

(state, Top (s

1

), Isempty (s

1

), Top (s

2

), Isempty (s

2

), s

2

)

%Next-state, Stack-Op

1

and Stack-Op

2

are procedures that require constant

%computation time.

Until (halting state)

64

Open (output)

While (: Isempty (s

1

)) do

Begin

Write (output, Top (s

1

));

s

1

=Pop (s

1

)

End;

End.

5.2 Simulation of Turing Machines in Real Time

Theorem 3 states a Turing machine simulation by a neural network, while preserving the compu-

tation time, up to a linear slow-down. Here, we prove the following stronger result.

Theorem 4 Let M be a Turing machine that computes � in time T . Then, there is a network N

that computes � in time T +O(jwj) for any input !.

The result is proved not just for standard Turing machines, but also for multi-tape versions.

The proof is self-contained, without use of the language NEL.

It will be convenient to have a version of Theorem 4 that does not involve inputs but rather an

encoding of the initial data into the initial state. (This would be analogous, for Turing machines,

to an encoding of the input into an input tape rather than having it arrive as a stream of external

input.)

For processor net without inputs, we may think of the dynamics map F as a map Q

N

! Q

N

.

In that case, we denote by F

k

the k-th iterate of F . For a state � 2 Q

N

, we let �

j

:= F

j

(�). We

now state that if � : f0; 1g

�

! f0; 1g

�

is a recursively computable partial function, then there exists

a processor net N without inputs, and an encoding of data into the initial state of N , such that:

�(!) is unde�ned if and only if the second processor has activation value always equal to zero,

and it is de�ned if this value ever becomes equal to one, in which case the �rst processor has an

encoding of the result.

65

Given ! = a

1

� � �a

k

2 f0; 1g

�

, we de�ne the encoding function

�[a

1

� � �a

k

] :=

k

X

i=1

2a

i

+ 1

4

i

: (5.1)

(Note that the empty sequence gets mapped into 0.)

Theorem 5 Let M be a Turing machine computing � : f0; 1g

�

! f0; 1g

�

in time T . Then there

exists a processor net N without inputs so that the following properties hold: For each ! 2 f0; 1g

�

,

consider the initial state

�(!) := (�[!]; 0; : : : ; 0) 2 Q

N

:

Then, if �(!) is unde�ned, the second coordinate �(!)

j

2

of the state after j steps is identically equal

to zero, for all j. If instead �(!) is de�ned, then

�(!)

j

2

= 0 ; j = 0; : : : ; T � 1; �(!)

T

2

= 1 ;

and �(!)

T

1

= �[�(!)].

In the appendix of this chapter, we show how to add inputs and outputs to Theorem 5, thus

obtaining Theorem 4 as a corollary of Theorem 5.

To prove Theorem 5, we construct the network in three phases. After a general discussion (in

section 5.3), we show (in section 5.4) how to simulate a Turing machine with a \two-level" neural

network. In section 5.5, we modify the construction so that in one of the levels, the neurons di�er

from the standard neurons: they compute linear combinations of their input with no sigma function

applied to the combinations. Finally, in section 5.6, we show how to modify the last network into

a standard one with one level only.

5.3 General Construction Of The Simulation

As a departure point, we pick p

0

-tape Turing Machines with binary alphabets. We may equivalently

study push-down automata with p = 2p

0

binary stacks. We choose to represent the values in the

stacks as fractions with denominators which are powers of four. An algebraic formalization is as

follows.

66

5.3.1 P -Stack Machines

Denote by C the \Cantor 4-set" consisting of all those rational numbers q which can be written in

the form

q =

k

X

i=1

a

i

4

i

with 0 � k <1 and each a

i

= 1 or 3. (When k = 0, we interpret this sum as q = 0.) Elements of

C are precisely those of the form �[!], where � is as in Equation 5.1.

The instantaneous description of a p-stack machine, with a control unit of n states, can be

represented by a (p+ 1)-tuple

(s; �[!

1

]; �[!

2

]; : : : ; �[!

p

]);

where s is the state of the control unit, and the stacks store the words !

i

(i = 1; : : : ; p), respectively.

(Later, in the simulation by a net, the state s will be represented in unary as a vector of the form

(0; 0; : : : ; 0; 1; 0; : : : ; 0).)

For any q 2 C, we write

�[q] :=

8

>

<

>

:

0 if q �

1

2

1 if q >

1

2

;

and:

� [q] :=

8

>

<

>

:

0 if q = 0

1 if q 6= 0 :

We think of �[�] as the \top of stack," as in terms of the base-4 expansion, �[q] = 0 when a

1

= 1 (or

q = 0), and �[q] = 1 when a

1

= 3. We interpret � [�] as the \nonempty stack" operator. Nonempty

is the logical negation of the stack operation Isempty described in Chapter 2. We use it in this

chapter to simplify the discussion. It can never happen that �[q] = 1 while � [q] = 0; hence the pair

(�[q]; � [q]) can have only three possible values in f0; 1g

2

.

De�nition 5.3.1 A p-stack machine M is speci�ed by a (p+ 4)-tuple

(S; s

I

; s

H

; �

0

; �

1

; �

2

; : : : ; �

p

);

where S is a �nite set, s

I

and s

H

are elements of S called the initial and halting states , respectively,

67

and the �

i

's are maps as follows:

�

0

: S � f0; 1g

2p

! S

�

i

: S � f0; 1g

2p

! f(1; 0; 0); (

1

4

; 0;

1

4

); (

1

4

; 0;

3

4

); (4;�2;�1)g for i = 1; : : : p :

(The function �

0

computes the next state, while the functions �

i

compute the next stack op-

erations of stack

i

, respectively. The actions depend only on the state of the control unit and the

symbol being read from each stack. The elements in the range

(1; 0; 0); (

1

4

; 0;

1

4

); (

1

4

; 0;

3

4

); (4;�2;�1)

of the �

i

should be interpreted as \no operation", \push0", \push1", and \pop", respectively.)

The set X := S � C

p

is called the instantaneous description set ofM, and the map

P : X ! X

de�ned by

P(s; q

1

; : : : ; q

p

) := [�

0

(s; �[q

1

]; : : : ; �[q

p

]; � [q

1

]; : : : ; � [q

p

]);

�

T

1

(s; �[q

1

]; : : : ; �[q

p

]; � [q

1

]; : : : ; � [q

p

]) � (q

1

; �[q

1

]; 1);

.

.

.

�

T

p

(s; �[q

1

]; : : : ; �[q

p

]; � [q

1

]; : : : ; � [q

p

]) � (q

p

; �[q

p

]; 1)]

where the dot \�" indicates inner product, is the complete dynamics map ofM. As part of the de�ni-

tion, it is assumed that the maps �

i

, (i = 1; : : : p) are such that �

1

(s; �[q

1

]; : : : ; �[q

p

]; 0; � [q

2

]; : : : � [q

p

]),

�

2

(s; �[q

1

]; : : : ; �[q

p

]; � [q

1

]; 0; � [q

3

]; : : : � [q

p

]) : : : 6= (4;�2;�1) for all s; q

1

; : : : q

p

(that is, one does not

attempt to pop an empty stack).

Let ! 2 f0; 1g

�

be arbitrary. If there exist a positive integer k, so that starting from the initial

state, s

I

, with �[!] on the �rst stack and empty other stacks, the machine reaches after k steps the

68

halting state s

H

, that is,

P

k

(s

I

; �[!]; 0; : : :0) = (s

H

; �[!

1

]; �[!

2

]; : : : ; �[!

p

])

for some k, then the machineM is said to halt on the input !. If ! is like this, let k be the least

possible number such that

P

k

(s

I

; �[!]; 0 : : :0)

has the above form. Then the machineM is said to output the string !

1

, and we let �

M

(!) := !

1

.

This de�nes a partial map

�

M

: f0; 1g

�

! f0; 1g

�

;

the i/o map ofM. 2

Save for the algebraic notation, the partial recursive functions � : f0; 1g

�

! f0; 1g

�

are exactly

the same as the maps �

M

: C ! C of p-stack machines as de�ned here; it is only necessary to

identify words in f0; 1g

�

and elements of C via the above encoding map �. Our proof will then be

based on simulating p-stack machines by processor nets.

5.4 Network with Two Levels: Construction

Assume that a p-stack machineM is given. Without loss of generality, we assume that the initial

state s

I

, di�ers from the halting state s

H

(otherwise the function computed is the identity, which

can be easily implemented by a net), and we assume that S := f0; : : : ; sg, with s

I

= 0 and s

H

= 1.

We build the net in two stages.

� Stage 1: As an intermediate step in the construction, we shall show how to simulateM with

a certain dynamical system over Q

s+p

. Writing a vector in Q

s+p

as

(x

1

; : : : ; x

s

; q

1

; : : : ; q

p

) ;

the �rst s components will be used to encode the state of the control unit, with 0 2 S corresponding

to the zero vector x

1

= � � �= x

s

= 0, and i 2 S; i 6= 0 corresponding to the ith canonical vector

e

i

= (0; : : : ; 0; 1; 0; : : : ; 0)

69

(the \1" is in the ith position). For convenience, we also use the notation e

0

:= 0 2 Q

s

. The q

i

's

will encode the contents of the stacks. For notational ease, we substitute �[t

i

] and � [t

i

] by a

i

and

b

i

, respectively. Formally, de�ne

�

ij

: f0; 1g

2p

! f0; 1g;

for i 2 f1; : : : ; sg ; j 2 f0; : : : ; sg and

k

ij

: f0; 1g

2p

! f0; 1g;

for i = 1; : : : ; p ; j 2 f0; : : : ; sg ; k = 1; 2; 3; 4 as follows:

�

ij

(a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

) = 1 () �

0

(j; a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

) = i

(intuitively: there is a transition from state j of the control part to state i i� the readings from the

stacks are: top of stack

k

is a

k

, and the nonemptyness test on stack

k

gives b

k

),

1

ij

(a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

) = 1 () �

i

(j; a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

) = (1; 0; 0)

(if the control is in state j and the stack readings are a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

, then the stack i

will not be changed),

2

ij

(a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

) = 1 () �

i

(j; a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

) = (

1

4

; 0;

1

4

)

(if the control is in state j and the stack readings are a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

, then the operation

Push0 will occur on stack i),

3

ij

(a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

) = 1 () �

i

(j; a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

) = (

1

4

; 0;

3

4

)

(if the control is in state j and the stack readings are a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

, then the operation

Push1 will occur on stack i),

4

ij

(a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

) = 1 () �

i

(j; a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

) = (4;�2;�1)

(if the control is in state j and the stack readings are a

1

; a

2

; : : : ; a

p

; b

1

; b

2

; : : : b

p

, then the operation

Pop will occur on stack i).

Let

e

P be the map Q

s+p

! Q

s+p

:

(x

1

; : : : ; x

s

; q

1

; : : : ; q

p

) 7! (x

+

1

; : : : ; x

+

s

; q

+

1

; : : : ; q

+

p

)

70

where, using the notation x

0

:= 1�

P

s

j=1

x

j

:

x

+

i

:=

s

X

j=0

�

ij

(a

1

; : : : ; a

p

; b

1

; : : : b

p

) x

j

(5.2)

for i = 1; : : : ; s and

q

+

i

:= �

0

@

s

X

j=0

1

ij

(a

1

; : : : ; a

p

; b

1

; : : : b

p

)x

j

1

A

q

i

+ (5.3)

0

@

s

X

j=0

2

ij

(a

1

; : : : ; a

p

; b

1

; : : : b

p

)x

j

1

A

(

1

4

q

i

+

1

4

) +

0

@

s

X

j=0

3

ij

(a

1

; : : : ; a

p

; b

1

; : : : b

p

)x

j

1

A

(

1

4

q

i

+

3

4

) +

0

@

s

X

j=0

4

ij

(a

1

; : : : ; a

p

; b

1

; : : : b

p

)x

j

1

A

(4q

i

� 2�[q

i

]� 1)

for i = 1; : : : ; p.

Let � : X = S � C

p

! Q

s+p

be de�ned by

�(i; q

1

; : : : ; q

p

) := (e

i

; q

1

; : : : ; q

p

):

It follows immediately from the construction that

e

P(�(i; q

1

; : : : ; q

p

)) = �(P(i; q

1

; : : : ; q

p

))

for all (i; q

1

; : : : ; q

p

) 2 X .

Applied inductively, the above implies that

e

P

k

(e

0

; �[!]; 0; : : : ; 0) = �(P

k

(0; �[!]; 0; : : : ; 0))

for all k, so �(!) is de�ned if and only if for some k it holds that

e

P

k

(e

0

; �[!]; 0; : : : ; 0) has the form

(e

1

; q

1

; : : : ; q

p

)

(recall that for the original machine, s

I

= 0 and s

H

= 1, which map respectively to e

0

= 0 and e

1

in the �rst s coordinates of the corresponding vector in Q

s+p

). If such a state is reached, then q

1

is in C and its value is �[�(!)] .

� Stage 2: The second stage of the construction simulates the dynamics

e

P by a net. We �rst

need an easy technical fact.

71

Lemma 5.4.1 Let t 2 IN. For each function � : f0; 1g

t

! f0; 1g there exist vectors

v

1

; v

2

; : : : ; v

2

t
2 ZZ

t+2

and scalars

c

1

; c

2

; : : : ; c

2

t
2 ZZ

such that, for each d

1

; d

2

; : : : ; d

t

; x 2 f0; 1g and each q 2 [0; 1],

�(d

1

; d

2

; : : : ; d

t

)x =

2

t

X

i=1

c

i

�(v

i

� �)

and

�(d

1

; d

2

; : : : ; d

t

)xq = �

0

@

q +

2

t

X

i=1

c

i

�(v

i

� �)� 1

1

A

;

where we denote � = (1; d

1

; d

2

; : : : ; d

t

; x) and \�" = dot product in ZZ

t+2

.

Proof. Write � as a polynomial

�(d

1

; d

2

; : : : ; d

t

) = c

1

+ c

2

d

1

+ : : : c

t+1

d

t

+ c

t+2

d

1

d

2

+ : : : c

2

t
d

1

d

2

� � �d

t

;

expand the product �(d

1

; d

2

; : : : ; d

t

)x, and use that for any sequence l

1

; : : : ; l

k

of elements in f0; 1g,

one has

l

1

� � � l

k

= �(l

1

+ � � �+ l

k

� k + 1):

Using that x = �(x), this gives that

�(d

1

; d

2

; : : : ; d

t

)x =

c

1

�(x) + c

2

�(d

1

+ x� 1) + � � �+ c

2

t
�(d

1

+ d

2

+ � � �+ d

t

+ x� t) =

2

t

X

i=1

c

i

�(v

i

� �)

for suitable c

i

's and v

i

's. On the other hand, for each � 2 f0; 1g and each q 2 [0; 1] it holds that

�q = �(q + � � 1) (just check separately for � = 0; 1), so substituting the above formula with

� = �(d

1

; d

2

; : : : ; d

t

)x gives the desired result.

In the case where t = 2p and the arguments are the top and nonempty functions of the stacks,

the arguments are dependent and there is a need of only 3

p

terms in the summation, rather than

2

2p

.

72

Example 5.4.2 If p = 2,

(d

1

; d

2

; d

3

; d

4

) = (a

1

; a

2

; b

1

; b

2

) (� (�[q

1

]; �[q

2

]; � [q

1

]; � [q

2

])) ;

then the information of the values

(1; a

1

; a

2

; b

1

; b

2

; a

1

a

2

; a

1

b

2

; a

2

b

1

; b

1

b

2

)

includes the information

(a

1

b

1

; a

2

b

2

; a

1

a

2

b

1

; a

1

a

2

b

2

; a

1

b

1

b

2

; a

2

b

1

b

2

; a

1

a

2

b

1

b

2

) :

2

We can write the dynamics of the stack q

i

as the sum of four components:

q

i

=

4

X

j=1

q

ij

; (5.4)

where each q

ij

is the jth term (row) in Equation (5.3). That is, q

i1

may di�er from 0 only if the

last operation on stack i was \no-operation." Similarly, the components q

i2

; q

i3

; q

i4

may di�er from

0 only if the last operations of the ith stack were push0, push1, or pop, respectively.

Using Lemma 5.4.1, we can write

q

ij

= �

next-q

ij

+

s

X

k=0

j

ik

x

k

� 1

!

;

where

next-q

ij

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

q

i

if j = 1

1

4

q

i

+

1

4

if j = 2

1

4

q

i

+

3

4

if j = 3

4q

i

� 2�[q

i

]� 1 if j = 4 :

Similarly, the top of stack i (t

i

= �[q

i

]) can be expressed as

t

i

=

4

X

j=1

t

ij

; (5.5)

t

ij

= �

4

"

next-q

ij

+

s

X

k=0

j

ik

x

k

� 1

#

� 2

!

;

73

and the nonempty function of stack i (� [q

i

]) as

e

i

=

4

X

j=1

e

ij

; (5.6)

e

ij

= �

4

"

next-q

ij

+

s

X

k=0

j

ik

x

k

� 1

#!

:

Here, t

ij

is the \top" of the element q

ij

, and e

ij

is the nonempty test of the same element. As three

out of the four stack elements fq

i1

; q

i2

; q

i3

; q

i4

g of each stack i = 1; : : : ; p are 0, and the fourth has

the value of the stack i, it is also the case that three out of four elements of t

i

(and e

i

) are 0, and

the fourth one holds the correct value of the top (nonempty predicate) of the relevant stack.

We construct a network in which the stacks and their readings are not kept explicitly in values

q

i

; t

i

; e

i

, but implicitly only via q

ij

; t

ij

; e

ij

; j = 1; : : : ; 4 ; i = 1; : : : ; p : By Lemma 5.4.1, all update

equations of

x

k

; k = 1; : : : ; s (states)

q

ij

i = 1; 2 j = 1; 2; 3; 4 ;

t

ij

i = 1; 2 j = 1; 2; 3; 4 ;

e

ij

i = 1; 2 j = 1; 2; 3; 4 :

can be written as

� (lin. comb. of �(lin. comb. of tops and nonempty)) ;

that is, as what is usually called a \feedforward neural net with one hidden layer."

The main layer consists of the elements q

ij

; t

ij

; e

ij

. In the hidden layer, we compute all elements

�(� � �) required by the lemma to compute the functions � and
. We showed that 3

p

s + 2 terms

of this kind are required. We refer to these terms as \con�guration detectors" as they provide the

needed combinations of states and stack readings. These terms are all that are required to compute

x

+

k

. We also keep in the hidden layer the values of q

i

; t

i

to compute next-q

ij

.

The result is that

e

P can be written as a composition

e

P = F

1

� F

2

of two \saturated-a�ne" maps, i.e. maps of the form ~�(Ax+ c): F

1

: Q

�

! Q

�

; F

2

: Q

�

! Q

�

, for

� = 3

p

s+ 2p+ 2 and � = s+ 12p.

74

In summary:

� The main layer consists of:

1. s neurons x

k

; k = 1; : : : ; s that represent the state of the system unarily.

2. For each stack i; i = 1; : : : ; p we have

(a) four neurons q

1

ij

� q

ij

; j = 1; 2; 3; 4 ;

(b) four neurons t

1

ij

� t

ij

; j = 1; 2; 3; 4 ;

(c) four neurons e

1

ij

� e

ij

; j = 1; 2; 3; 4 :

� The hidden layer consists of:

1. 3

p

s+ 2 neurons for con�guration detecting. (The additional two are for the case of s

0

.)

2. For each stack i; i = 1; : : : p we have

(a) a neuron q

2

i

� q

i

;

(b) a neuron t

2

i

� t

i

:

5.4.1 Universal Network

The number of neurons required to simulate a TM consisting of s states and p stacks is:

s+ 12p

| {z }

main layer

+ 3

p

s+ 2 + 2p

| {z }

hidden layer

:

To approximate the number of processors in a universal processor net, we should calculate the

number s discussed above, which is the number of states in the control unit of a two stack universal

Turing Machine. Minsky proved the existence of a universal Turing Machine having one tape with

4 letters and 7 control states, [Min67]. Shannon showed in [Sha56] how to control the number of

letters and states in a Turing Machine. Following his construction, we obtain a 2-letter 63-state

1-tape Turing Machine. However, we are interested in a two-stack machine rather than one tape.

Similar arguments to the ones made by Shannon, but for two stacks, leads us to s = 84. Applying

the formula 3

p

s+s+14p+2, we conclude that there is a universal net with 870 processors. We will

see in the appendix of this chapter that to allow for input and output to the network, we need an

extra 16 neurons, thus having 886 in a universal machine. (This estimate is very conservative. It

75

would certainly be interesting to have a better bound. The use of multi-tape Turing Machines may

reduce the bound. Furthermore, it is quite possible that with some care in the construction one

may be able to drastically reduce this estimate. One useful tool here may be the result in [ADO91]

applied to the control unit|here we used a very ine�cient simulation.)

5.5 Removing the Sigmoid From the Main Level

Here, we show how to construct an equivalent network to the above, in which neurons in the main

level compute linear combinations only. In the following construction, we introduce a set of stack

\noisy-elements" f~q

i1

; ~q

i2

; ~q

i3

; ~q

i4

g for each stack i = 1; : : : p. These may assume not only values in

[0; 1], but also negative values. Negative values of the stacks are interpreted as the value 0, while

positive values are the true values of the stack. As in last section, only one of these four elements

may assume a non-negative value at each time. The Noisy-top and Noisy-nonempty functions

applied to the noisy-elements of the stacks may also produce values outside of the range [0; 1].

To manage with only one level of � functions, we need to choose a number representation that

enforces large enough gaps between valid values of the stacks. We choose base b = 10p

2

(p is the

number of stacks). Denote c = 2p+ 1, b = 10p

2

, �

1

= (10p

2

� 1), �

0

= (10p

2

� 4p� 1). The reading

functions noisy-top and noisy-nonempty corresponding to the of the jth noisy-element of stack i,

are de�ned as:

N-top (~q

ij

) := c(b~q

ij

� (�

1

� 1)) (5.7)

N-nonempty (~q

ij

) := b~q

ij

� (�

0

� 1) : (5.8)

The ranges of values of these functions are

N-top (~q

ij

) 2

8

>

>

>

>

>

<

>

>

>

>

>

:

[2p+ 1; 4p+ 2] when the top is \1"

[�8p

2

� 2p+ 1;�8p

2

+ 2] when the top is \0"

[�1;�20p

3

� 10p

2

+ 4p+ 2] for an empty stack ;

N-nonempty (~q

ij

) 2

8

>

>

>

>

>

<

>

>

>

>

>

:

[4p+ 1; 4p+ 2] when the top is \1"

[1; 2] when the top is \0"

[�1;�10p

2

+ 4p+ 2] for an empty stack :

76

We denote

~

t

ij

= N-top (~q

ij

) and ~e

ij

= N-nonempty (~q

ij

) for i = 1; : : : ; p, j = 1 : : : ; 4. Observe

that all these ranges are included in

R = [�1;�8p

2

+ 2] [[1; 4p+ 2] ;

Note that:

Property: For all p � 2, any negative value of the functions N-top and N-nonempty has an

absolute value of at least (2p� 1) times any positive value of them.

The large negative numbers operate as inhibitors. We will see later how this property assists

in constructing the network. As for the possibility of maintaining negative values in stack elements

rather than 0, Equation 5.4 is not valid any more. That is, the elements ~q

ij

; j = 1; : : : ; 4 can not be

combined linearly to provide the real value of the stack q

i

. This is also the case with the expression

in Equations 5.7, and 5.8, and thus Equations 5.5 and 5.6 are no longer valid.

Next, we prove that using the noisy-top and noisy-nonempty functions (rather than the binary

top and nonempty functions), one may still compute the next value of the stack noisy-elements

with one hidden layer only. We consider a function � : R

8p

! f0; 1g which is sign-invariant. That

is, if for all i = 1; : : : ; p and j = 1; : : : ; 4

sign (t

ij

) = sign (t

0

ij

) and sign (e

0

ij

) = sign (e

0

ij

)

then

�(t

11

: : : ; e

tr

) = �(t

0

11

: : : ; e

0

tr

) :

Here we prove that any such function �(�) can be written as a �nite sum of the type

P

c

i

�(linear combination of the t

ij

's and e

ij

's). (?)

That is, the stack noisy-elements are computed correctly using one hidden layer only.

To prove (?) , we state the following (more general) Lemma:

Lemma 5.5.1 For each t; r 2 IN, let R

t

be the range

[�1;�2t

2

+ 2] [[1; 2t+ 2] ;

77

and let

S

r;t

= fd j d = (d

(1)

1

; : : : ; d

(r)

1

; d

(1)

2

; : : : ; d

(r)

2

; : : : ; d

(1)

t

; : : : ; d

(r)

t

) 2 R

rt

t

; and

8i = 1; : : : ; t at most one of d

1

i

; : : : ; d

r

i

is positive g :

We denote by I the set of multi-indices (i

1

; : : : ; i

t

), with each i

j

2 f0; 1; : : : ; rg. For each function

� : S

r;t

! f0; 1g that is sign invariant, there exist vectors

fv

i

2 ZZ

t+2

; i 2 Ig

and scalars

fc

i

2 ZZ; i 2 Ig

such that for each (d

(1)

1

; : : : ; d

(r)

t

) 2 S

r;t

and any x 2 f0; 1g, we can write

�(d

(1)

1

; : : : ; d

(r)

t

)x =

X

i2I

c

i

�(v

i

� �

i

) ;

where

�

i

= �

(i

1

;:::;i

t

)

= (1; d

(i

1

)

1

; d

(i

2

)

2

; : : :d

(i

t

)

t

; x); and where we are de�ning d

0

i

= 0 : (5.9)

Note that jI j = (r+ 1)

t

. The operator \�" is the dot product in ZZ

t+2

. 2

Proof. As � is sign-invariant, we can write �|when acting on S

r;t

as a polynomial

�(d

(1)

1

; d

(2)

1

; : : : ; d

(r)

t

) = c

1

+ c

2

�(d

(1)

1

) + c

3

�(d

(2)

1

) + � � �+ c

rt+1

�(d

(r)

t

) +

c

rt+2

�(d

(1)

1

)�(d

(1)

2

) + : : :+ c

(r+1)

t
�(d

(r)

1

)�(d

(r)

2

) � � ��(d

(r)

t

) :

(Note that no term with more than t elements of the type �(d

(i)

j

) appears, as most �(d

(i)

j

) = 0, by

de�nition of S

r;t

. Observe that for any sequence l

1

; : : : ; l

k

of (k � t) elements in R

t

and x 2 f0; 1g,

one has

�(l

1

) � � ��(l

k

)x = �(l

1

+ � � �+ l

k

+ k(2t+ 2)(x� 1)):

This is due to two facts:

78

1. The sum of k; k � t elements of R

t

is non-positive when at least one of the elements is

negative. This stems from the property that any negative value in this range is at least (t�1)

times larger than any positive value there.

2. Each l

i

is bounded by (2t+ 2).

Expand the product �(d

1

1

; : : : ; d

r

t

)x, using the above observation and the fact x = �(x). This gives

that

�(d

(1)

1

; : : : ; d

(r)

t

)x =

c

1

�(x) + c

2

�

�

d

(1)

1

+ (2t+ 2)(x� 1)

�

+ � � �+ c

(r+1)

t
�

�

d

(r)

1

+ : : :+ d

(r)

t

+ t(2t+ 2)(x� 1)

�

=

X

i2I

c

i

�(v

i

� �

i

) ;

for suitable c

i

's and v

i

's, where �

i

is de�ned as in 5.9.

Remark 5.5.2 Note that in the case where the arguments are the functions N-top and N-

nonempty, the arguments are dependent and not all (r + 1)

t

terms are needed.

Network Description

The network consists of two levels. The main level consists of both s state neurons that are

updated as beforehand, and stack noisy-neurons accompanied by stack noisy-readings neurons:

~q

1

ij

;

~

t

1

ij

; ~e

1

ij

; i = 1; : : : ; p j = 1; : : : ; 4 | representing respectively stack noisy-elements, noisy-

top elements, and noisy-nonempty elements. Using the same notations for the functions

ij

as in

Equation 5.3, the update equations are

~q

1+

ij

= next-~q

ij

+

s

X

k=0

j

ik

x

k

� 1 ; (5.10)

~

t

1+

ij

= (2p+ 1)

"

10p

2

(next-~q

ij

+

s

X

k=0

j

ik

x

k

� 1)� (10p

2

� 2)

#

; (5.11)

~e

1+

ij

= 10p

2

(next-~q

ij

+

s

X

k=0

j

ik

x

k

� 1)� (10p

2

� 4p� 2) ; (5.12)

79

where

next-~q

ij

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

q

i

if j = 1

1

10p

2

q

i

+

10p

2

�4p�1

10p

2

if j = 2

1

10p

2

q

i

+

10p

2

�1

10p

2

if j = 3

10p

2

� 4pt

i

� (10p

2

� 4p� 1) if j = 4 ;

and q

i

and t

i

are the exact values of the stacks and top elements. Using Lemma 5.5.1, all the

expressions of the type
x can be written as linear combinations of terms like �(linear combinations

of

~

t

1

ij

; ~e

1

ij

).

The hidden layer consists of both up to (5

2p

s + 2) con�guration detectors neurons (as proved

in Lemma 5.5.1) and the stack and top neurons:

q

2

ij

; t

2

ij

; i = 1; : : : ; p j = 1; : : : ; 4 ;

which are updated by the equations

q

2+

ij

:= �(~q

1

ij

) [q

i

=

P

4

j=1

q

2

ij

] ;

t

2+

ij

:= �(

~

t

1

ij

) i = 1; : : : ; p j = 1; : : : ; 4 [t

i

=

P

4

j=1

t

2

ij

] :

5.6 One Level Network Simulates TM

Consider the above network. Remove the main level and leave the hidden level only, while letting

each neuron there compute the information that it received beforehand from a neuron at the main

level. This can be written as a standard network.

80

Appendix: Inputs and Outputs

We now explain how to deduce Theorem 4 from Theorem 5. In order to do that, we �rst show how

to modify a net with no inputs into one which, given the input u

!

(�), produces the encoding �[!]

as a state coordinate and after that emulates the original net. Later we show how the output is

decoded. We adapt the input-output convention described in Chapter 3; there are two input lines:

D = u

1

that carries the data, and V = u

2

that validates the data line.

Assume we are given a net with no inputs

x

+

= �(Ax+ c) (5.13)

as in the conclusion of Theorem 5. Suppose that we have already found a net

y

+

= �(Fy + gu

1

+ hu

2

) (5.14)

(consisting of 5 processors) so that, if u

1

(�) = D

!

(�) and u

2

(�) = V

!

(�), then with y(0) = 0 we have

y

4

(�) = 0 � � �0

| {z }

j!j+1

�[!]00 � � � and y

5

(�) = 0 � � �0

| {z }

j!j+2

11 � � � ;

that is,

y

4

(t) =

8

>

<

>

:

�[!] if t = j!j+ 2

0 otherwise,

and y

5

(t) =

8

>

<

>

:

0 if t � j!j+ 2

1 otherwise.

Once this is done, modify the original net (5.13) as follows. The new state consists of the pair

(x; y), with y evolving according to (5.14) and the equations for x modi�ed in this manner (using

A

i

to denote the ith row of A and c

i

for the ith entry of c):

x

+

1

= �(A

1

x+ c

1

y

5

+ y

4

)

x

+

i

= �(A

i

x+ c

i

y

5

) ; i = 2; : : : ; n :

Then, starting at the initial state y = x = 0, clearly x

1

(t) = 0 for t = 0; : : : ; j!j+2 and x

1

(j!j+3) =

�[!], while, for i > 1, x

i

(t) = 0 for t = 0; : : : ; j!j+ 3.

After time j!j+ 3, as y

5

� 1 and u

1

= u

2

� 0, the equations for x evolve as in the original net,

so x(t) in the new net equals x(t� j!j � 3) in the original one for t � j!j+ 3.

81

The system (5.14) can be constructed as follows:

y

+

1

= �(

1

4

y

1

+

1

2

u

1

+

1

4

+ u

2

� 1)

y

+

2

= �(u

2

)

y

+

3

= �(y

2

� u

2

)

y

+

4

= �(y

1

+ y

2

� u

2

� 1)

y

+

5

= �(y

3

+ y

5

)

This completes the proof of the encoding part. For the decoding process of producing the output

signal o, it will be su�cient to show how to build a net (of dimension 10 and with two inputs)

such that, starting at the zero state and if the input sequences are i

1

and i

2

, where i

1

(k) = �[w] for

some k and i

2

(t) = 0 for t < k, i

2

(k) = 1 (i

1

(t) 2 [0; 1] for t 6= k, i

2

(t) 2 [0; 1] for t > k), then for

processors z

9

, z

10

it holds that

z

9

=

8

>

<

>

:

1 if k + 4 � t � k + 3 + j!j

0 otherwise ,

and

z

10

=

8

>

<

>

:

!

t�k�3

if k + 4 � t � k + 3 + j!j

0 otherwise .

This is easily done with:

z

+

1

= �(x

2

+ z

1

)

z

+

2

= �(z

1

)

z

+

3

= �(z

2

)

z

+

4

= �(x

1

)

z

+

5

= �(z

4

+ z

1

� z

2

� 1)

z

+

6

= �(4z

4

+ z

1

� 2z

2

� 3)

z

+

7

= �(16z

8

� 8z

7

� 6z

3

+ z

6

)

z

+

8

= �(4z

8

� 2z

7

� z

3

+ z

5

)

z

+

9

= �(4z

8

)

z

+

10

= �(z

7

) :

82

In this case the output is o = (z

10

; z

9

).

Remark 5.6.1 If one would also like to achieve a resetting of the whole network after completing

the operation, it is possible to add the processor

z

+

11

= �(z

9

) ;

and to add to each processor that is not identically zero at this point of time,

v

+

i

= �(: : :� z

11

+ z

9

) ; v 2 fx; y; zg ;

where \: : :" is the formerly de�ned operation of the processor.

83

Chapter 6

Networks with Real Weights

We prove that neural networks with real weights can recognize in polynomial time the same class

of languages as those recognized by Turing Machines that consult sparse oracles in polynomial

time (the class P/poly); they can recognize all languages, including of course non-computable

ones, in exponential time. Furthermore, we show that almost every language requires exponential

recognition time. (For simplicity, we give our main results in terms of recognition; it is also possible

to provide a more general version regarding the computation of more general functions.)

The proofs of the above results will be consequences of the following equivalence. For functions

T : IN! IN and S : IN! IN, let net

R

(T) be the class of all functions computed by neural networks

that may have real weights in time T (n) |that is, recognition of strings of length n is in time at

most T (n)| and let circuit (S) the class of functions computed by non-uniform families of circuits

of size S(n) |that is, circuits for input vectors of length n have size at most S(n). We show that

if F is so that F (n) � n, then

net

R

(F (n)) � circuit (Poly(F (n)))

and

circuit (F (n)) � net

R

(Poly(F (n))) :

This equivalence will allow us to make use of results from the theory of (nonuniform) circuit

complexity in order to study nets with real weights.

One might ask about using such analog models, or even maybe high order nets, to \solve"

NP-hard problems in polynomial time. We introduce a nondeterministic model and show that the

equality P = NP in the real nets model is very not likely as it would imply the collapse of the

polynomial hierarchy to �

2

.

84

The remainder of this chapter will be organized as follows: In Sections 6.1 to 6.3, we show the

equivalence between real networks and Boolean circuits. We conclude in Section 6.5 with corollaries.

In Section 6.4, we show the equivalence between networks and threshold circuits. As Boolean and

threshold circuits are polynomially equivalent, this proof does not add any conceptually new ideas

to those in Sections 6.1 to 6.3. Nonetheless, the direct connection and simulation may shed insight

when a �ner comparison is desired. Furthermore, the proof techniques di�er in the two proofs.

6.1 Real Networks And Boolean Circuits

Circuit Families

We brie
y recall some of the basic de�nitions of non-uniform families of circuits. A Boolean circuit

is a directed acyclic graph. Its nodes of in-degree 0 are called input nodes , while the rest are called

gates and are labeled by one of the Boolean functions AND, OR, or NOT (the �rst two seen as

functions of many variables, the last one as a unary function). One of the nodes, which has no

outgoing edges, is designated as the output node. The size of the circuit is the total number of

gates. Adding if necessary extra gates, we assume that nodes are arranged into levels 0; 1; : : : ; d,

where the input nodes are at level zero, the output node is at level d, and each node only has

incoming edges from the previous level. The depth of the circuit is d, and its width is the maximum

size of each level. Each gate computes the corresponding Boolean function of the values from the

previous level, and the value obtained is considered as an input to be used by the successive level;

in this fashion each circuit computes a Boolean function of the inputs.

A family of circuits C is a set of circuits

fc

n

; n 2 INg :

These have sizes S

C

(n), depth D

C

(n), and width W

C

(n), n = 1; 2; : : :, which are assumed to be

monotone nondecreasing functions. If L � f0; 1g

+

, we say that the language L is computed by the

family C if the characteristic function of

L

\

f0; 1g

n

is computed by c

n

, for each n 2 IN.

85

The quali�er \nonuniform" serves as a reminder that there is no requirement that circuit families

be recursively described. It is this lack of classical computability that makes circuits a possible

model of resource-bounded \computing," as emphasized in [Par92]. We will show that recurrent

neural networks, although more \uniform" in the sense that they have an unchanging physical

structure, share exactly the same power.

If L is recognized by the formal net N in time T , we write �

N

= L and T

N

= T . If L is computed

by the family of circuits C, we write �

C

= L. We are interested in comparing the functions T

N

and

S

C

for formal nets and circuits so that �

N

= �

C

.

Statement Of Result

Recall that net

R

(T (n)) is the class of languages recognized by formal networks (with real weights)

in time T (n) and that circuit (S(n)) is the class of languages recognized by (non-uniform) families

of circuits of size S(n).

Theorem 6 Let F be so that F (n) � n. Then, net

R

(F (n)) �circuit (Poly(F (n))), and cir-

cuit (F (n)) �net

R

(Poly(F (n))).

More precisely, we prove the following two facts. For each function F (n) � n:

� circuit (F (n)) �net

R

(nF

2

(n)).

� net

R

(F (n)) �circuit (F

3

(n)).

6.2 Circuit Families Are Simulated By Networks

We start by reducing circuit families to networks. The proof will construct a �xed, \universal" net,

having roughly N = 1000 processors, which, through the setting of a particular real weight which

encodes an entire circuit family, can simulate that family.

Theorem 7 There exists a positive integer N such that the following property holds: For each

circuit family C of size S

C

(n) there exists an N -processor formal network N = N (C) so that

�

N

= �

C

and T

N

(n) = O(nS

2

C

(n)).

86

The proof is provided in the remainder of this section.

6.2.1 The Circuit Encoding

Given a circuit c|with size s, width w, and w

i

gates in the ith level|we encode it as a �nite

sequence over the alphabet f1; 3; 5; 7g, as follows:

� The encoding of each level i starts with the letter 7. Levels are encoded successively, starting

with the bottom level and ending with the top one.

� At each level, gates are encoded successively. The encoding of a gate g consists of three

parts|a starting symbol, a 2-digit code for the gate type, and a code to indicate which gate

feeds into it:

{ It starts with the letter 1.

{ A two digit sequence f53; 55; 33g denotes the type of the gate, fAND, OR, NOTg re-

spectively.

{ If gate g is in level i, then the input to g is represented as a sequence in f3; 5g

w

i�1

, such

that the jth position in the sequence is 5 if and only if the jth gate of the (i� 1)th level

feeds into gate g.

The encoding of a gate g in level i is of length (w

i�1

+ 3). The length of the encoding of a circuit c

is l(c) � jen(c)j = O(sw).

Example 6.2.1 The circuit c

1

in Figure 6.2.1 is encoded as

en[c

1

] = 7 153555

| {z }

g

1

155535

| {z }

g

2

133353

| {z }

g

3

7 155555

| {z }

g

4

:

For instance, the NOT gate corresponds to the subsequence \133353": It starts with the letter

1, followed by the two digits \33," denoting that the gate is of type NOT, and ends with \353,"

which indicates that only the second input feeds into the gate. 2

87

��

��

��

��

��

��

��

��

6

�

�

�

��

A

A

A

AK

�

�

�

��

S

S

S

So

Z

Z

Z

Z

Z}

@

@

@

@I

Z

Z

Z

Z}

6

�

�

�

�>

I3

Or

I2I1

Or

NotAnd

Figure 6.1: Circuit c

1

We encode a non-uniform family of circuits, C, of size S(n) as an in�nite sequence

e(C) = 9 en[c

1

] 9 en[c

2

] 9 en[c

3

] � � � ; (6.1)

where en[c

i

] is the encoding of c

i

in the reversed order.

Let b be a natural number, and r = r

1

r

2

� � � a �nite or in�nite sequence of natural numbers

smaller than b. The interpretation of the sequence r in base b is the number

rj

b

�

1

X

i=1

r

i

b

i

:

Generally, two di�erent sequences may result in the same encoding. For instance, both r = 0999 � � �

and r = 1000 � � � provide rj

10

= 0:1 . However, restricted to the sequences we will consider, the

encoding is one-to-one.

We can interpret Formula 6.1 in base 10. We denote this representation of the family of circuits

C as

^

C,

^

C = 9 en[c

1

] 9 en[c

2

] 9 en[c

3

] � � � j

10

: (6.2)

Let c

i

be the ith circuit in the family. We denote by

c

en[c

i

], the encoding en[c

i

] interpreted in base

10.

Cantor Like Set Encoding

A number which encodes a family of circuits, or one which is a su�x of such an encoding, is a

number between 0 and 1. However, not every number in the range [0; 1] can appear in this manner.

If the �rst digit to the right of the decimal point is 1, then the value of the encoding ranges in

88

[

1

10

;

2

10

]; if it is 3, the value ranges in [

3

10

;

4

10

], and so forth. The number cannot lie in any of the

ranges [

2i

10

;

2i+1

10

], for i = 0; 1; 2; 3. The second digit after the decimal point decides the possible

range relative to the currently candidate range. That is, it decides the current range [

2i+1

10

;

2i+2

10

]

(i = 0::4) just the same way that the �rst digit did with the range [0; 1]. See Figure 6.2.

Figure 6.2: Values of the circuit encoding

The set of possible values is a Cantor set in base 10. Its self-similar structure means that bit

(base 10) shifts preserve the \holes."

The advantage of this approach is that, just as when dealing with the rational case, there is

never a need to distinguish among two very close numbers in order to read the desired circuit out

of the encoding; the circuit can be then retrieved with �nite-precision operations employing a �nite

number of neurons.

6.2.2 A Circuit Retrieval

Lemma 6.2.2 For each (non-uniform) family of circuits C there exists a processor network N

R

(C)

with one input line such that, starting from the zero initial state and given the input signal u(1) =

1� 2

�n

; N

R

(C) outputs x

r

=

c

en[c

n

] after O(

P

n

i=1

l(c

i

)).

Proof. We show the existence of a universal network that has the value

^

C as one of its weights. The

network retrieves the relevant part of this number. We prove this by providing an NEL program

that receives as an input a natural number n and outputs the value

c

en[c

n

] in time O(

P

n

i=1

l(c

i

)).

89

� Constant:

^

C is a number between [0; 1]. Interpreted in base 10, it utilizes only the digits

f1; 3; 5; 7; 9g.

Recall that the data structure \stack of n letters" is represented as (Equation 2.4):

l = a

1

a

2

� � �a

k

,!

k

X

i=1

2a

i

+ 1

(2n)

i

:

A special case for a

i

= f0; 1; 2; 3; 4g is

l

f0;1;2;3;4g

=

4

X

i=0

2a

i

+ 1

10

i

; (6.3)

where the stack digit \0" is represented as 1, \1" as 3, \2" as 5, \3" as 7, and \4" as 9. Thus,

a network's weight

^

C is equivalent to a NEL's constant of the type \stack over f0; 1; 2; 3; 4g."

� Input: An input to the network of the type u = 1 � 2

�n

, where n is a natural number, is

equivalent to the NEL's input of type \counter" with the value n. (See Equation 2.6.)

� Output: The output of the program is a \stack over f0; 1; 2; 3; 4g," just as with constants.

In the network it is a number in [0; 1] interpreted as in Equation 6.3.

Function Retrieval (value n : counter): Stack of [0 : : :4];

Const

^

C: Stack of [0 : : :4];

Var count: Counter;

s

1

; s

2

: Stack of [0 : : :4];

Begin

s

1

=

^

C

Repeat

If (Top (s

1

= 4)) then count = Dec (count)

s

1

= Pop (s

1

)

Until (count= 0)

While (Top (s

1

) < 4) do

Begin

s

2

= Push(Top (s

1

), s

2

)

s

1

= Pop (s

1

)

End

90

Retrieval = s

2

End

Compiling this program into a network, we obtain a universal network architecture. The net-

works simulating the di�erent circuit families di�er only in the one constant encoding the family

of circuits:

^

C

We can obtain a more precise lemma:

Lemma 6.2.3 For each (non-uniform) family of circuits C there exists a 17-processor network

N

R

(C) with one input line such that, starting from the zero initial state and given the input signal

u(1) = 1 1 � � � 1

| {z }

n

0 0 � � � j

2

= 1� 2

�n

; u(t) = 0 for t > 1 ;

N

R

(C) outputs

x

r

= 0 0 0 � � � � � �0

| {z }

2n+2

P

n

i=1

l(c

i

)+4

c

en[c

n

] 0 0 0 � � � :

We provide the proof in the appendix of this chapter. The proof demonstrates how useful the

language NEL is as a proof technique.

6.2.3 Circuit Simulation By A Network

Let ! 2 f0; 1g

n

be a binary sequence. Denote by en[!] the sequence 2 f2; 4g

n

that substitutes

(2!

i

+ 2) for each !

i

, and by

c

en[!] the interpretation of en[!] in base 9, that is, en[!]j

9

. We next

construct a \universal net" for interpreting circuits.

Lemma 6.2.4 There exists a network N

s

, such that for each circuit c and binary sequence !,

starting from the zero initial state and applying the input signal

u

1

=

c

en[c] 0 0 � � � u

2

=

c

en[!] 0 0 � � � ;

N

s

outputs

x

0

= 0 0 � � � 0

| {z }

T

y 0 0 � � � x

v

= 0 0 � � � 0

| {z }

T

1 0 0 � � � ;

91

where y is the response of circuit c on the input !, and T = O(l(c) + j!j).

Proof. It is easy to verify that, given any circuit, there is a three-tape Turing Machine which can

simulate the given circuit in time O(l(c) + j!j). This Turing Machine would employ its tapes

to store the circuit encoding, the input and output encoding, and the current level's calculation,

respectively. Now we can simulate this machine by a net. Indeed, we proved in Chapter 5 that

if M is a p-tape Turing Machine with s states which computes in time T a function f on binary

input strings, then there exists a rational network N , which consists of

9

p

s+ s+ 28p+ 2

processors, that computes the same function f in time O(T). Closer counting shows that less than

1000 processors su�ce.

Remark 6.2.5 If the lemma would only require an estimate of a polynomial number of processors,

as opposed to the more precise estimate that we obtain, the proof would have been immediate from

the consideration of the circuit value problem (CVP). This is the problem of recognizing the set of

all pairs <x; y>, where x 2 f0; 1g

+

, and y encodes a circuit with jxj input lines which outputs 1

on input x. It is known that CVP 2 P ([BDG90] volume I, pg 110). 2

6.2.4 Proof: Circuit Families Are Simulated By Networks

Proof of Theorem 7.

Let C be a circuit family. We construct the required formal network as a composition of the following

three networks:

� An input network, N

I

, which receives the input

u

1

= ! 0 0 � � �

u

2

= 1 1 � � � 1

| {z }

j!j

0 0 � � � ;

and computes

c

en[!] and u

2

j

2

, for each ! 2 f0; 1g

+

. This network is trivial to implement.

92

� A retrieval network, N

R

(c), as described in Lemma 6.2.3, which receives u

2

j

2

from N

I

, and

computes

c

en[c

j!j

]. (Note that during the encoding operation, network N

I

produces an output

of zero, and N

R

(c) remains in its initial state 0.)

� A simulation network, N

S

, as stated in Lemma 6.2.4, which receives

c

en[c

j!j

] and

c

en[!j, and

computes

x

0

= 0 0 � � � 0

| {z }

T

�

c

(!) 0 0 � � � x

v

= 0 0 � � � 0

| {z }

T

1 0 0 � � � :

Notice that out of the above three networks, only N

R

depends on the speci�c family of circuits C.

Moreover, all weights can be taken to be rational numbers, except for the one weight that encodes

the entire circuit family.

The time complexity involved in the computation of the response of C to the input ! is dominated

by that of retrieving the circuit description. Thus, the complexity is of order

T = O

0

@

j!j

X

i=1

l(c

i

)

1

A

:

We remarked that the length of the encoding l(c

i

) is of order O(W

C

(i)S

C

(i)), which is itselfO(S

2

C

(i)).

Since S

C

(i) � S

C

(i+ 1) for i = 1; 2; : : : , we achieve the claimed bound T = O(j!jS

2

C

(j!j)).

Remark 6.2.6 In case of bounded fan-in, the \standard encoding" of circuit c

n

is of length l(c

n

) =

O(S

C

(n) log(S

C

(n))). The total running time of the algorithm is then O(nS

C

(n) log(S

C

(n))). 2

6.3 Networks Are Simulated By Circuit Families

We next state the reverse simulation, of nets by nonuniform families of circuits.

Theorem 8 Let N be a formal network that computes in time T : IN ! IN, where the function

T is computable in time O(T). There exists a non-uniform family of circuits C(N) of size O(T

3

),

depth O(Tlog(T)), and width O(T

2

), that accepts the same language as N does.

The proof is given in the next two subsections. In the �rst part, we replace a single formal network

by a family of formal networks with small rational weights. (This is unrelated to the standard fact

for threshold gates that weights can be taken to have n logn bits.) In the second part, we simulate

such a family of formal networks by circuits.

93

6.3.1 Linear Precision Su�ces

De�ne a processor to be a designated output processor if its activation value is used as an output

of the network (i.e. it is an output processor) and is not fed into any other processor. A formal

network, for which its two output processors are designated, is called an output designated network.

Those processors which are not the designated output processors, are called internal processors.

For the next result, we introduce the notion of a q-truncation net. This is a processor network

in which the update equations take the form

x

+

i

= q-Truncation [�(

N

X

j=1

a

ij

x

j

+

M

X

j=1

b

ij

u

j

+ c

i

)] ;

where q-Truncation means the operation of truncating after q bits.

Lemma 6.3.1 Let N be an output designated network. If N computes in time T , there exists a

family of T (n)-Truncation output designated networks N

1

(n) such that

� For each n, N

1

(n) has the same number of processors and input and output channels as N

does.

� The weights feeding into the internal processors of N

1

(n) are like those of N , but truncated

after O(T (n)) bits.

� For each designated output processor in N , if this processor computes x

+

i

= �(f), where f is

a linear function of processors and inputs, then the respective processor in N

1

(n) computes

�(2

~

f � :5), where

~

f is the same as the linear function f but applied instead to the processors

of N

1

(n) and with weights truncated at O(T (n)) bits.

� The respective output processors of N and N

1

(n) have the same activation values at all times

t � T (n).

Proof. We �rst measure the di�erence (error) between the activations of the corresponding internal

processors of N

1

(n) and N at time t � T (n). This calculation is analogous to that of the chop

error in
oating point computation, [Atk89].

94

We use the following notations:

- N is the number of processors, M is the number of input lines,

L � N +M + 1.

- W

0

is the largest absolute value of the weights of N , W � W

0

+ 1.

- x

i

(t) is the value of processor i of network N at time t.

- �

w

2 (0; 1) and �

p

> 0 are the truncation errors at weights and processors,

respectively.

- �

t

> 0 is the largest accumulated error at time t in processors of N

1

(n).

- u 2 f0; 1g

M

is the input to both N and N

1

(n). (u(t) = 0

M

for t > n.)

- a

ij

, b

ij

, and c

i

are the weights in
uencing processor i of network N .

- ~x

i

(t), ~a

ij

,

~

b

ij

, and ~c

i

are the respective activation values of processors, and

weights of N

1

(n).

Network N

1

(n) computes at each step

~x

+

i

= q-Truncation [�(

N

X

j=1

~a

ij

~x

j

+

M

X

j=1

~

b

ij

u

j

+ ~c

i

)] :

We assume inductively on t that for all internal processors i; j,

j ~x

i

(t)� x

i

(t)j � �

t

j~a

ij

(t)� a

ij

(t)j � �

w

j

~

b

ij

(t)� b

ij

(t)j � �

w

; and

j~c

i

(t)� c

i

(t)j � �

w

:

Using the global Lipschitz property j�(a)� �(b)j � ja� bj, it follows that

�

t

� N(W

0

+ �

w

)�

t�1

+ (N +M + 1)�

w

+ �

p

� LW�

t�1

+ L�

w

+ �

p

:

Therefore,

�

t

�

t�1

X

i=0

(LW)

i

(L�

w

+ �

p

) � (LW)

t

(L�

w

+ �

p

) :

We now analyze the behavior of the output processors. We need to prove that �(2

~

f � :5) = 0; 1

when �(f) = 0; 1 respectively. That is,

f � 0 =)

~

f <

1

4

95

and

f � 1 =)

~

f >

3

4

:

This happens if jf �

~

f j <

1

4

. Arguing as earlier, the condition �

t

<

1

4

su�ces. This is translated

into the requirement

(L�

w

+ �

p

) �

1

4

(LW)

�t

:

If both �

w

and �

p

are bounded by

1

8

(LW)

�(t+1)

, this inequality holds. This happens when the

weights and the processor activations are truncated after O(t log(LW)) bits. As L and W are

constants, we conclude as desired that a su�cient truncation for a computation of length T is

O(T).

6.3.2 The Network Simulation by a Circuit

Lemma 6.3.2 Let N

1

be a family of T (n)-Truncation output designated networks, where all net-

works N

1

(n) consist of N processors and the weights are all rational numbers with O(T) bits.

Then, there exists a circuit family C of size O(T

3

), depth O(T log(T)), and width O(T

2

), so that

c

n

accepts the same language as N

1

(n) does on f0; 1g

n

.

Proof. We sketch the construction of the circuit c

n

which corresponds to the T (n)-Truncation output

designated net N

1

(n).

The network N

1

(n) has two input lines: data and validation, where the validation line sees

n consecutive 1's followed by 0's. We think of the n data bits on the data line which appear

simultaneously with the 1's in the validation line, as data input of size n. These n bits are fed

simultaneously into c

n

via n input nodes.

To simulate the sequential input in N

1

(n), we construct an input-subcircuit which preserves the

input as it is to be released one bit at a time in later times of the computation. The input subcircuit

is of size nD

C

(n).

Let

p; p = 1; : : : ; N

96

be a processor of N

1

(n). We associate with each processor p a subcircuit sc(p). Each processor

p 2 N

1

(n) computes a truncated sum of up to N + 2 numbers, N of which are multiplications of

two T -bit numbers. Hardwiring the weights, we can say that each processor computes a sum of

(TN + 2) (2T)-bit numbers. Using the carry-look-ahead method, [Sav76], the summation can be

computed via a subcircuit of depth O(log(TN)), width O(T

2

N), and size O(T

2

N). (This depth is

of the same order as the lower bound when polynomial size is imposed, see [Has87], [Yao85].)

As for the saturation, one gate, p

u

, is su�cient for the integer part. As only O(T) bits are

preserved, the activation of each processor can be represented in binary by the unit gate, p

u

, and

the most signi�cant gates

p

i

; i = 1; : : :O(T)

after the operation

AND (p

i

;:(p

u

)); i = 1; : : :O(T) :

Let sc(p

0

) be a subcircuit of largest depth. Pad the other sc(p)'s with \demi gates" (e.g. an

AND gate of a single input), so that all sc(p)'s are of equal depth. The output of circuit sc(p) is

called the activation of sc(p).

We place the N subcircuits

sc(p); p = 1; : : : ; N

to compute in parallel. We call this subcircuit a layer. A layer corresponds to one step in the

computation of N

1

(n). As N

1

(n) computes in time T (n), T (n) layers are connected sequentially.

Each layer i receives the ith input bit from the input-subcircuit, and the N activation values of its

preceding layer (except for layer 1, which receives input only). This main subarchitecture is of size

O(T

3

), depth O(Tlog(T)), and width O(T

2

), where T = T (n).

As N

1

(n) may compute the response to di�erent strings of size n in di�erent times of order O(T),

we construct an output-subcircuit which forces the response to every string of size n to appear at

the top of the circuit.

For each layer i = 1; : : : ; T , we apply the AND function to the output of the subcircuits

sc(p1); sc(p2) ; where p

1

; p

2

are the output processors of N

1

(n). We transfer these values and

apply the OR functions to them. The resulting value is the output of the circuit. When OR is

applied at each layer, only D

C

(n) gates are needed for this subcircuit.

97

The resources of the total circuit are dominated by those of the main subarchitecture.

The proof of Theorem 8 follows immediately from Lemma 6.3.1 and Lemma 6.3.2.

6.4 Real Networks Versus Threshold Circuits

A threshold circuit is de�ned similarly to a Boolean circuit, but the function computed by each

node is now a linear threshold function rather than one of the Boolean functions (And, Or, Not).

Each gate i computes

f

i

: IB

n

i

7! IB ;

thus giving rise to the activation updates

x

i

(t+ 1) = f

i

(x

i1

; x

i2

; : : : ; x

in

) � H

0

@

n

i

X

j=1

a

ij

x

ij

(t) + c

i

1

A

: (6.4)

Here x

ij

are the activations of the processors feeding into it, and the a

ij

and c

i

are integer constants

associated to the gate. Without loss of generality, one may assume that these constants can each

be expressed in binary with at most n

i

log(n

i

) bits; see [Mur71]. If x

i

is on the bottom level, its

input is the external input. The function H is the threshold function

H(z) =

8

>

<

>

:

1 z � 0

0 z < 0 :

(6.5)

The relationships between threshold circuits and Boolean circuits are well studied. (See for example

[Par93].) They are known to be polynomial equivalent in size. We provide here an alternative direct

relationship between threshold circuits and real networks, without passing through Boolean circuits.

Statement Of Result

Recall that net

R

(T (n)) is the class of languages recognized by formal networks (with real weights)

in time T (n) and de�ne T-circuit (S(n)) as the class of languages recognized by (non-uniform)

families of threshold circuits of size S(n).

Theorem 9 Let F be so that F (n) � n. Then, net

R

(F (n)) �T-circuit (Poly(F (n))), and T-

circuit (F (n)) �net

R

(Poly(F (n))).

98

More precisely, we prove the following two facts. For each function F (n) � n:

� T-circuit (F (n)) �net

R

(nF

3

(n) log(F (n))).

� net

R

(F (n)) �T-circuit (F

2

(n)).

6.4.1 Families Of Threshold Circuits Are Simulated By Networks

We start by reducing threshold circuit families to networks. The proof will construct a �xed,

\universal" net, which, through the setting of a particular real weight which encodes an entire

family of threshold circuits, can simulate that family.

Theorem 10 There exists a positive integer N such that the following property holds: For each

family of threshold circuits C of size S

C

(n) there exists an N -processor formal network N = N (C)

so that �

N

= �

C

and T

N

(n) = O(nS

3

C

(n) log(S

C

(n)).

The proof is provided in the remainder of this subsection.

The Circuit Encoding

Given a threshold circuit c|with size s, width w, and w

i

gates in the ith level|we encode it as a

�nite sequence over the alphabet f1; 3; 5; 7; 9g, as follows:

� The encoding of each level i starts with the letter 9. Levels are encoded successively, starting

with the bottom level and ending with the top one.

� At each level, gates are encoded successively from left to right. The digit 7 separates successive

gates of the same level.

� The encoding of each gate includes the encoding of its weights and its bias, from left to right.

(The last weight is the bias.)

The encoding of each weight consists of two parts:

{ its sign (\55" for positive and \5" for negative),

99

{ its absolute value encoded over f1; 3g

�

(rather than f0; 1g).

The jth appearance of either \5" or \55" in a gate encoding starts the encoding of the weight

on the connection from the jth gate at the former level to the current gate. If no connection

exists between these gates, the letter 1 appears as the absolute value of the weight.

The encoding of a gate g in level i is of length (w

i�1

log(w

i�1

)). The length of the encoding of a

circuit c is l(c) � jen(c)j = O(sw

2

log(w)).

Example 6.4.1 The circuit c

2

in Figure 6.3 is encoded as

en[c

1

] = 9 553 531 551 553

| {z }

g

1

5533 551 55311 53

| {z }

g

2

9 55331 55313 533

| {z }

g

3

:

Figure 6.3: Circuit c

2

2

We encode a non-uniform family of threshold circuits, C, of size S(n) as an in�nite sequence

e(C) = 11 en[c

1

] 11 en[c

2

] 11 en[c

3

] � � � ; (6.6)

where en[c

i

] is the encoding of c

i

in the reversed order.

We represent this family C as

^

C, where

^

C = 11 en[c

1

] 11 en[c

2

] 11 en[c

3

] � � � j

12

: (6.7)

>From here, a similar network to the one developed for simulating Boolean circuits is constructed.

(See Subsection 6.2.)

100

The time complexity to compute the response of C to the input ! is dominated by that of

retrieving the circuit description. Thus, the complexity is of order

T = O

0

@

j!j

X

i=1

l(c

i

)

1

A

:

The length of the encoding l(c

i

) is of orderO(W

2

C

(i) log(W

C

(i))S

C

(i)), which is itselfO(S

3

C

(i) log(S

C

(i))).

Since S

C

(i) � S

C

(i+1) for i = 1; 2; : : : , we achieve the claimed bound T = O(j!jS

3

C

(j!j) log(S

C

(j!j))).

Remark 6.4.2 In case of a fan-in bounded by a constant, the encoding of the threshold circuit c

n

is of length l(c

n

) = O(S

2

C

(n)), like in the case of Boolean circuits. 2

6.4.2 Networks Are Simulated By Families Of Threshold Circuits

We next state the reverse simulation, of nets by nonuniform families of threshold circuits.

Theorem 11 Let N be a formal network that computes in time T : IN ! IN. There exists a non-

uniform family of threshold circuits C(N) of size O(T

2

), depth O(T), and width O(T), that accepts

the same language as N does.

We start with simulatingN by the family of T (n)-Truncation output designated networksN

1

(n)

as described in Lemma 6.3.1. Next, we simulate this family of networks of depth T (n) and size

O(T (n)) via a family of threshold circuits of depth 2T (n) and size O(T

2

(n)).

Assume N

0

� N

1

(n) is an m-truncation network for input of size n; N

0

has depth T (n) and

m = O(T (n)). Each gate of N

0

computes an addition of N m-bit numbers; then, it applies the �

function to it. Using a technique similar to the one provided in [Par93] pg 156-157, we show how

to simulate each � gate of N

0

via a threshold circuit of size O(m) and depth 2. We achieve the

simulation in two steps: First we add the N numbers and then we simulate the application of the

saturation functions.

Simulating a saturated gate in an m-truncation network by a threshold circuit.

Step 1: Adding N m-bit numbers.

Suppose the numbers are

z

1

; : : :z

N

;

101

each having m bit representation:

z

i

= z

i1

z

i2

� � �z

im

:

The sum of the N m-bit numbers has � m+ blogNc+ 1 bits in the representation. [As the upper

bound on the absolute value of the result is N(2

m

� 1).] Generally, the sum is

z

11

z

12

� � � z

1m

+

.

.

.

z

N1

z

N2

� � � z

Nm

y

�l

� � � y

�1

y

0

y

1

y

2

� � � y

m

As the network is an m-truncation network, we only need to compute y

0

; y

1

; : : :y

m

. We show below

how to compute y

k

, k � 1. The circuit for y

0

is very similar.

To compute y

k

, we need to consider only z

ij

for all i and j � k. Look at the sum:

z

1k

� � � z

1m

+

.

.

.

z

Nk

� � � z

Nm

c

�l

� � � c

�1

c

0

y

k

� � � y

m

It is easy to verify that

~z

k

� c

�l

� � � c

�1

c

0

y

k

� � � y

m

=

N

X

i=1

m

X

j=k

(z

ij

2

m�j

) :

To extract from the sum the y

k

th bit, we build the following circuit:

1. Level 1: For each possible value i of c

�l

� � � c

�1

c

0

(i = 1 : : :2

l+1

), we have a pair of threshold

gates

~y

ki0

= H(~z

k

� c

�l

� � � c

�1

c

0

1 0 0 � � � 0

| {z }

m�k

) ; ~y

ki1

= H(�~z

k

+ c

�l

� � � c

�1

c

0

1 1 1 � � � 1

| {z }

m�k

) :

If y

k

= 0, exactly one of each pair is active; if y

k

= 1, one of the pairs has both gates active

and the rest one only. Thus, the y

k

bit can be computed by counting if more than half of the

gates in the �rst level are active.

2. Level 2: It includes one gate only that computes the desired bit:

y

k

= H(

2

l+1

X

i=1

(~y

ki0

+ ~y

ki1

)� (2

l+1

+ 1)) : (6.8)

102

Step 2: Applying the saturated function.

The value of the kth bit is

b

k

=

8

>

<

>

:

y

k

c

0

= 0

0 c

0

= 1 :

First, we have to compute c

0

. We allocate 2

l

pairs of threshold gates in the �rst level:

~c

ki0

= H(~z

k

� c

�l

� � � c

�1

1 0 0 � � � 0

| {z }

m+1�k

) ; ~c

ki1

= H(�~z

k

+ c

�l

� � � c

�1

1 1 1 � � � 1

| {z }

m+1�k

) :

The majority of these gates is the value of c

0

:

c

0

�

2

l

X

i=1

(~c

ki0

+ ~c

ki1

)� 2

l

:

We change Equation 6.8 to compute b

k

directly without computing �rst y

k

.

b

k

= H(

2

l+1

X

i=1

(~y

ki0

+ ~y

ki1

)� (2

l+1

+ 1)� c

0

) : (6.9)

The size of the circuit that computes the kth bit is then O(2

l

), where l = blogNc. We copy this

circuit for each of the m bits to simulate one threshold gate. Thus, each � gate is simulated via a

threshold circuit of depth 2 and size O(m). The network itself is hence simulated via Nm copies

of those. As m = O(T), and N is considered a constant, the simulating threshold circuit has the

size O(T

2

), and it doubles the depth of the network N

0

.

6.5 Corollaries

Let net-p and net-exp be the classes of languages accepted by formal networks in polynomial time

and exponential time, respectively. Let circuit-p and circuit-exp be the classes of languages

accepted by families of circuits in polynomial and exponential size, respectively.

Corollary 6.5.1 net-p= circuit-p and net-exp= circuit-exp .

The class circuit-p is often called \P/poly" and coincides with the class of languages recognized

by Turing Machine \with advice sequences" in polynomial time. The following corollary states

that this class also coincides with the class of languages recognized in polynomial time by Turing

Machines that consult oracles, where the oracles are sparse sets. A sparse set S is a set in which

103

for each length n, the number of words in S of length at most n is bounded by some polynomial

function. For instance, any tally set, that is, a subset of 1

�

, is an example of a sparse set. The

class P (S), for a given sparse set S, is the class of all languages computed by Turing machines in

polynomial time and using queries from the oracle S.

From [BDG90], volume I, Theorem 5.5, pg 112, and Corollary 6.5.1, we conclude as follows:

Corollary 6.5.2

net-p = [

S sparse

P (S) :

From [BDG90], volume I, Theorem 5.11, pg 122 (originally, [Mul56]), we conclude as follows:

Corollary 6.5.3 net-exp includes all possible binary languages. Furthermore, most Boolean

functions require exponential time complexity.

Nondeterministic Neural Networks

The concept of a nondeterministic circuit family is usually de�ned by means of an extra input,

whose role is that of an oracle. Similarly, we de�ne a nondeterministic network to be a network

having an extra binary input line, the Guess line, in addition to the Data and Validation lines. A

language L is said to accepted by a nondeterministic formal network N in time B if

L = f! j 9 a guess
; �

N

(!;
) = 1; T

N

(!;
)� B(j!j)g :

It is easy to see that Corollary (6.5.1), stated for the deterministic case, holds for the nonde-

terministic case as well. That is, if we de�ne net-np to be the class of languages accepted by

nondeterministic formal networks in polynomial time, and circuit-np to be the class of languages

accepted by nondeterministic non-uniform families of circuits of polynomial size, then:

Corollary 6.5.4 net-np = circuit-np . 2

Since NP� net-np (one may simulate a nondeterministic Turing Machine by a nondeterministic

network with rational weights), the equality net-np = net-p implies NP� circuit-p= P/poly.

Thus, from [KL82] we conclude:

104

Theorem 12 If net-np = net-p then the polynomial hierarchy collapses to �

2

.

The above result says that a theory of computation similar to that which arises in the classical

case of Turing machine computation is also possible for our model of analog computation. In

particular, even though the two models have very di�erent power, the question of knowing if the

veri�cation of solutions to problems is really easier than �nding solutions, at the core of modern

computational complexity, has a precise corresponding version in our setup, and its solution will

be closely related to that of the classical case. Of course, it follows from this that it is quite likely

that net-np is strictly more powerful than net-p .

105

6.6 Appendix

Lemma 6.6.1 For each (non-uniform) family of circuits C there exists a 17-processor network

N

R

(C) with one input line such that, starting from the zero initial state and given the input signal

u(1) = 1 1 � � � 1

| {z }

n

0 0 � � � j

2

= 1� 2

�n

; u(t) = 0 for t > 1 ;

N

R

(C) outputs

x

r

= 0 0 0 � � � � � �0

| {z }

2n+2

P

n

i=1

l(c

i

)+4

c

en[c

n

] 0 0 0 � � � :

Proof. Let � = f1; 3; 5; 7; 9g. Denote by C

10

the \Cantor 10-set," which consists of all those real

numbers q which admit an expansion of the form

q =

1

X

i=1

!

i

10

i

(6.10)

with each !

i

2 �. Let � : IR ! [0; 1] be the function

�[x] :=

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if x < 0

10x� b10xc if 0 � x � 1

1 if x > 1 :

(6.11)

Let � : IR! [0; 1] be the function

�[x] :=

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if x < 0

2b5xc if 0 � x � 1

1 if x > 1 :

(6.12)

Note that, for each

q =

1

X

i=1

!

i

=10

i

2 C

10

;

we may think of �[q] as the \select left" operation, since

�[q] = !

1

;

and of �[q] as the \shift left" operation, since

�[q] =

1

X

i=1

!

i+1

=10

i

2 C

10

:

106

For each i � 0, q 2 C

9

,

�[�

i

[q]] = !

i+1

:

The following procedure summarizes the task to be performed by the network constructed below,

which in turn satis�es the requirements of the lemma.

Procedure Retrieval(

^

C; n)

Variables counter, y, z

Begin

counter 0, y 0, z

^

C ,

While counter < n

Parbegin

z �[z]

if �[z] = 9 then increment counter

Parend,

While �[z] < 9

Parbegin

z �[z]

y

1

10

(y + �[z])

Parend,

Return(y)

End

The functions � and � can not be programmed within the neural network model due to their

discontinuity. However, we can program the functions

~

�;

~

�, which coincide with �;� respectively

on C

10

:

~

�[q] =

9

X

j=1

(�1)

j�1

�(10q � j) ; (6.13)

and

~

�[q] = 1 + 2

4

X

j=1

�(10q � 2j) : (6.14)

The retrieval procedure is, then, achieved by the following network:

x

+

i

= �(10x

10

� i� 1) i = 0; : : : ; 8

107

x

+

9

= �(2u)

x

+

10

= �(

^

Cx

9

+ x

0

� x

1

+ x

2

� x

3

+ x

4

� x

5

+ x

6

� x

7

+ x

8

)

x

+

11

= �(

1

10

x

12

+

2

10

(x

1

+ x

3

+ x

5

+ x

7

+

x

17

2

)� 2x

13

)

x

+

12

= �(x

11

)

x

+

13

= �(u+ x

14

+ x

15

)

x

+

14

= �(2x

13

+ x

7

� 2)

x

+

15

= �(x

13

� x

7

)

x

+

16

= �(x

12

+ x

7

� 1)

x

+

17

= �(x

12

) :

If the input u arrives at time 1, then x

10

(2k + 3) =

~

�

k

[

^

C] (because of Equation 6.13). Processors

x

13

; x

14

; x

15

serve to implement the counter, and processor x

16

is the output processor. This network

satis�es the requirements of the lemma.

108

Chapter 7

Kolmogorov Weights: Between P and P=poly

In previous chapters, we showed that the computational power of neural networks depends on

the type of numbers utilized as weights. When the networks compute in polynomial time, the

computational power of these networks happens to coincide with the classes P and P=poly for

networks with rational and real weights, respectively.

It may be argued that any net with real weights that is computationally feasible to implement

must admit a \short" description of its real-valued weights. It is therefore interesting to have

characterizations of the accepted languages in terms of the amount of information and resources

required to specify these reals. We next show that this issue is closely linked to a natural question

regarding nonuniform complexity classes, namely, the possibility of bounding the amount of advice

allowed for machines in the class.

Thus we set bounds on the resource-bounded Kolmogorov complexity of the reals used as weights

in neural nets, and then prove that such bounds correspond precisely to the amount of advice

allowed to nonuniform classes lying between P and P=poly, as studied previously in [BHM92]. It is

known that P=poly and some of its subclasses can be characterized by polynomial time computation

using tally oracles. This motivates us to compare various real-weight neural models in terms of

the Kolmogorov complexity of these tally oracles. Using such Kolmogorov complexity arguments,

we prove that there exists a proper hierarchy of complexity classes de�ned by neural nets whose

weights have increasing Kolmogorov complexity.

7.1 Statement of Results

We de�ne di�erent classes of computable numbers by considering di�erent time constraints and

amounts of information in their construction. Our de�nition of Kolmogorov complexity of in�nite

109

sequences is a time-bounded analog of that in [Kob81]. We denote by w

1:k

the word consisting of

the �rst k symbols of w.

De�nition 7.1.1 Fix a universal Turing Machine U . Let f be a nondecreasing function, g a time-

constructible function, and � 2 f0; 1g

1

. We say that � 2 K[f(n); g(n)] if there exists � 2 f0; 1g

1

such that, for every n, the universal machine U outputs �

1:n

in time g(n), when given �

1:f(n)

and

n as inputs. If no condition is imposed on the running time, we say � 2 K[f(n)].

Observe that here the length of the output is provided for free to the universal machine; so

our de�nition corresponds to the complexity measure more commonly called \Kolmogorov com-

plexity relative to the length." The reason is that we want simple numbers (e.g. rationals) to have

extremely low complexity (e.g. constant), and the information contained in the length of a string

could be higher. However, the de�nitions are equivalent (modulo constants) for complexities at

least logarithmic.

Generally, K[F ;G] is the set of all in�nite binary sequences taken from K[f; g] where f 2 F and

g 2 G. For example, a sequence is in K[log,poly] if its pre�xes are computable from logarithmically

long pre�xes of some other sequence in polynomial time.

In what follows, we denote by f0; 1g

#

the set of both �nite and in�nite binary strings.

De�ne a function

�

4

: f0; 1g

#

! [0; 1]

by the formula

�

4

(�) = 0 �

4

(�) =

j�j

X

i=1

2�

i

+ 1

4

i

:

Here � is the empty string; j�j is the length of the string �, and can be either a �nite value or 1;

�

i

is the ith bit of the string �. The map �

4

is injective on f0; 1g

#

, and its image is the set:

(

n

X

i=1

�

i

4

i

j �

i

2 f1; 3g

)

n2IN[f0g[f1g

:

The inverse map �

�1

4

is well de�ned there. Let �

4

be the range of this function when restricted to

the domain of in�nite strings. That is,

�

4

�

(

1

X

i=1

�

i

4

i

j �

i

2 f1; 3g

)

:

110

Thus, �

4

can be used to de�ne the Kolmogorov complexity of numbers in �

4

: A number ! 2 �

4

is

said to be in K[f(n); g(n)] i� �

�1

(!) 2 K[f(n); g(n)].

The main contribution here is to show that the Kolmogorov complexity of the weights of nets

relates to a structural notion: the amount of advice for nonuniform classes. Important consequences

follow; for instance, we can prove the \hierarchy" theorem stated below. We say that a class F of

functions is closed under O(:) if for every f , g, if g 2 O(f) and f 2 F , then g 2 F .

Theorem 13 Let F ;G be two function classes closed under O(:), for which there exists some

s 2 G; s = o(n), such that the following property holds: 8p 2 poly, 8r 2 F ; r(p(n)) = o(s(n)).

Let N

K[F;poly]

be the set of networks that compute in polynomial time, and each of which uses

weights from K[F ; poly]

S

Q. Let L(N

K[F;poly]

) be the class of languages accepted by N

K[F;poly]

,

and similarly for G. Then:

L(N

K[F;poly]

) 6= L(N

K[G;poly]

) :

In Section 7.2, we establish an equivalence between oracle TMs and networks. We then introduce

in Section 7.3 a hierarchy in these sets of oracle TMs, thus concluding Theorem 13.

7.2 Equivalence of TMs with Tally Oracles and NNs

De�nition 7.2.1 Let S � f0; 1g

#

. The set S is closed under mixing if for any �nite number k 2 IN

and for any k strings from S,

�

1

= �

1

1

�

1

2

�

1

3

� � � ;

�

2

= �

2

1

�

2

2

�

2

3

� � � ;

: : : ;

�

k

= �

k

1

�

k

2

�

k

3

� � �

the shu�ed string

�

1

1

�

2

1

�

3

1

� � ��

k

1

�

1

2

�

2

2

�

3

2

� � ��

k

2

�

1

3

�

2

3

� � �

111

is again an element of S.

We recall the de�nition of the characteristic string of a set. If S is a set of strings in �

�

,

�

S

2 f0; 1g

1

is the characteristic sequence of S, de�ned in the standard way: the i

th

bit of the

sequence is 1 if and only if the i

th

word of �

�

in the lexicographic order is in S. We choose � as

the smallest alphabet containing all the symbols occurring in words of S, so that for a tally set T ,

�

T

denotes the characteristic sequence of T relative to f0g

�

.

De�nition 7.2.2 Let T � f0; 1g

?

. We de�ne the characteristic number of T as

T

4

= �

4

(�

T

) 2 �

4

;

where �

T

is the characteristic string of T .

The main theorem of this section is as follows:

Theorem 14 Let S � f0; 1g

1

be closed under mixing and let T be the class of tally sets

T = f T : �

T

2 S g :

Time in the following models is polynomially related:

1. Oracle Turing Machines that consult oracles in T .

2. Neural networks that have all weights in the set �

4

(S)

S

Q.

Some interesting special cases arise when considering various natural bounds for the Kolmogorov

complexity:

� S = K[n; poly], that is, arbitrary strings. The class of languages accepted in this case is

P=poly; this is the main result of Chapter 6.

112

� S = K[1; poly], that is, the sets of strings computable in polynomial time. The class of

languages accepted in this class is P, as proved in Chapter 5.

� S = K[log; poly]. In this case, the class of languages accepted is Full-P=log, described by

Balc�azar, Hermo and Mayordomo [BHM92]. This is the class of TMs that receive logarithmi-

cally long advices, where each advice aimed at words of length n is appropriate for all shorter

words as well. More formally, the class Full-P=log consists of those sets A for which there is

some B

A

2 P and h

A

2 LOG (LOG is the class of functions f de�ned on the naturals, such

that for some constant c, f(n) � c logn for all n 2 IN) such that:

8n 9!

n

(j!

n

j � h

A

(n)) 8x (jxj � n)

x 2 A () <x; !

n

>2 B

A

:

This class was shown in [BHM92] to have several interesting features. In particular, Theorem

17 there states that Full-P=log coincides with the class of languages recognized in polynomial

time by TMs that consult tally sets, having characteristic sequences in K[log; poly]. The

equivalence there implies this observation.

The next two subsections prove Theorem 14.

7.2.1 Proof: 1 � 2

Next, we denote by �

�

4

the range �

4

(f0; 1g

�

).

De�nition 7.2.3 An oracle neural network (ONN) is a network N with three additional special

\oracle neurons" Q;A;W | called the query, answer, and wait neurons | and a particular oracle

number Y . The above take their values in the following sets:

Q 2 �

�

4

; A 2 f0; 1g; W 2 f0; 1g; Y 2 �

4

:

� The network operates regularly as long as W = 0. When W = 1, the activations in the

network N are not being changed.

� The network can set W to 1 but cannot reset it.

113

� When W = 1, the three oracle neurons change as follows:

A

+

= (�

�1

4

(Y))

lex(Q)

Q

+

= 0

W

+

= 0

where lex(Q) is the lexicographic index of Q in �

�

4

. Other neurons of N do not change.

Setting W = 1 is like invoking a subroutine for solving a membership query. Y can be thought of

as the characteristic number of an oracle set Y

0

, and the subroutine tests whether �

�1

4

(Q) 2 Y

0

.

The model assumes that this oracle subroutine answers in unit time.

Lemma 7.2.4 Let T be a tally set. Time in the following models is polynomially related.

� Oracle TM that consults the tally set T .

� Oracle NN with all weights in Q and oracle number T

4

.

The proof of this lemma is completely analogous to the proof of the main result in Chapter 5, and

is not included here. The use of a base-4 Cantor set is critical in being able to implement the

desired subroutines, in particular, conditional statements.

Lemma 7.2.5 For each number T

4

2 �

4

, there exists a network with two inputs | denoted by

u

1

; u

2

| and two outputs (y

1

and y

2

) which when started from the zero initial value, and given the

input signals

u

1

= [

n

X

i=1

(

1

4

)

i

] 0 0 0 � � �

u

2

= 1 0 0 0 � � � ;

outputs

y

1

= 0 0 � � � 0

| {z }

v

b 0 0 � � �

y

2

= 0 0 � � � 0

| {z }

v

1 0 0 � � � ;

114

where b is the truth value of �

�1

4

(u

1

(1)) 2 T , for the tally set T that has T

4

as its characteristic

number; and v = O(n).

Proof. We use T

4

as one of the weights of the network. Notice that

u

1

(1) = : 11 � � �1

| {z }

n

in base 4 ;

T

4

= :3133113 � � � in base 4 ;

and the nth digit of T

4

in the base 4 expansion labels the decision of whether �

�1

4

(

P

n

i=1

(

1

4

)

i

) 2 T .

The following NEL program computes the required value �

�1

4

(u

1

(1)) 2 T .

Function Query: Boolean

Var

c : counter;

s : stack of Boolean;

Begin

Read (u

1

; c);

s := T

4

;

For i = 1 to (c� 1) do

Pop (T

4

) ;

Query := Top (T

4

);

End;

By Theorem 1, the constants of the network associated with this program are rationals except for

the constant T

4

.

Using the above two lemmas, we can prove the inclusion 1 � 2 as follows: let M be an OTM

that uses a tally set T as an oracle, where �

T

2 S. We construct a network N that accepts the

same language and has all its weights in �

4

(S)

S

Q. The network N consists of two subnetworks:

N

1

is an oracle network that consults the oracle number T

4

, and N

2

is the retrieval network of T

4

as

described in Lemma 7.2.5. (They are coupled with a few neurons, this should be clear.) By Lemma

7.2.4, N

1

has only rational weights, and by Lemma 7.2.5, N

2

has both rational weights and the

weight T

4

2 �

4

(S). The network N

1

simulates M in linear time (Chapter 5), while N

2

has a total

115

computation time bounded by O(

P

jqueriesj) | which is bounded by the computation time ofM .

Thus, given an OTM with an oracle in S, there is a corresponding neural network whose weights

are either rationals or in the set �

4

(S), that computes the same language with no more than linear

slowdown in the computation.

7.2.2 Proof: 2 � 1

Assume that we are given a network N with weights in �

4

(S)

S

Q. The network has a �xed number

k

0

2 IN of weights, which can be written in base four expansion as:

!

1

= :!

1

1

!

1

2

!

1

3

� � � ;

!

2

= :!

2

1

!

2

2

!

2

3

� � � ;

: : : ;

!

k

0

= :!

k

0

1

!

k

0

2

!

k

0

3

� � � :

Assume w.l.o.g. that the �rst k of them are in �

4

(S), that is, !

i

j

2 f1; 3g for such weights i. (The

weights !

k+1

; : : : ; !

k

0

are rationals.) As S is closed under mixing, the string

� =

!

1

1

� 1

2

!

2

1

� 1

2

!

3

1

� 1

2

� � �

!

k

1

� 1

2

!

1

2

� 1

2

!

2

2

� 1

2

!

3

2

� 1

2

� � �

!

k

2

� 1

2

!

1

3

� 1

2

!

2

3

� 1

2

!

3

3

� 1

2

� � �

is again an element of S.

We show the existence of an oracle TM M that consults a tally set with characteristic string

�

T

= �, and simulates the network N while keeping the polynomial time constraint. The machine

M performs the following operations:

1. M receives the input string x.

2. M computes the running time B(jxj) of N .

3. For a certain constant C, M executes:

For i = 1 to kCB(jxj)

query the ith word of �.

116

After these operations, M has the weights of N up to a precision CB(jxj). Here, C is a

constant such that this precision su�ces. The existence of such a C was proved in Chapter

6. (The (k

0

� k) rational weights are encoded in the machine M .)

4. Finally,M simulates N step by step in polynomial time.

7.3 Hierarchy of TMs That Consult Tally Oracles

All we are left in order to prove the proper hierarchy of computational classes associated to networks,

is to de�ne a hierarchy of subsets of �

4

, and prove that oracle TMs which consult the associated

tally sets result in computationally di�erent classes.

We de�ne a partial order of function classes. Let F ;G be function classes. We say that F � G if

there is some s 2 G so that s = o(n) and, for every polynomial p and every r 2 F , r(p(n)) = o(s(n)).

Note that this partial order de�nes a proper hierarchy. For instance, one may consider the

function classes �

i

= fq

1

; : : : ; q

i

g, where q

i

= log

(i)

is de�ned inductively by q

1

= log and q

i

=

log(q

i�1

) for i > 1.

For the next theorem, we denote by P(T

F

) the class of TMs that compute in polynomial time,

where each TM consults a tally set T such that �

T

2 K[f; poly] and f 2 F . We also denote by

L(P(T

F

)) the class of languages computed by these TMs.

Theorem 15 Let F ;G be function classes, such that F � G. Then, L(P(T

F

)) is properly included

in L(P(T

G

)).

Proof. We de�ne a set A 2 L(P(T

G

)) but not in L(P(T

F

)). Let s(n) be as in the theorem. Choose

an in�nite sequence
 62 K[n=2]. For each n de�ne the string �

n

as

�

n

=

1:s(n)=2

� 0

n�s(n)=2

;

if n � s(n)=2, and �

n

= 0

n

otherwise.

117

Let A be the tally set with characteristic string �

1

�

2

�

3

: : : Given

1:s(n)=2

it is easy to build

�

A

1:n

, so that

�

A

2 K[s(n)=2 + c; q(n)]� K[s(n); q(n)] ;

for some constant c and polynomial q. Hence, A 2 L(P(T

G

)).

However, A 62 L(P(T

F

)). Assume otherwise, then there is some machine that prints

1:s(n)=2

in

time p

1

(n), querying at most the �rst p

1

(n) elements of a tally set T , with �

T

2 K[r(n); p

2

(n)], p

1

,

p

2

polynomials, and r 2 G. Then

1:s(n)=2

is obtained from the �rst r(p

1

(n)) + O(1) < s(n)=4 bits

of �

T

, in fact in time O(p

2

(p

1

(n))). This contradicts the choice of
.

Theorem 14 establishes a connection between networks with weights from some set and oracle

Turing machines that consult related tally sets. Theorem 15 displays a the hierarchy of oracle

Turing machines whose their oracles belong to di�erent Kolmogorov complexity classes. To prove

the hierarchy in networks in terms of Kolmogorov complexity of their weights|that is, to prove

Theorem 13|it su�ces to show that Theorem 14 is applicable to Kolmogorov classes. That is,

that the classes of the form K[F ;poly] for F which is closed under O(:), are closed under mixing.

Lemma 7.3.1 Let F be a function class that is closed under O(:). Then, K[F ;poly] is closed

under mixing.

Proof. Let k 2 IN and �

1

; : : : ; �

k

2 K[F ;poly]. That is, for all i = 1; : : :k, �

i

1:n

is computed in

g

i

(n) 2 P time using the input �

i

1:f

i

(n)

: Thus, the shu�ed string of the �'s (~�) can be computed in

time g = O(n) +

P

k

i=1

g

i

(

n

k

) from an input which is equal to the pre�x length f =

P

k

i=1

f

i

(

n

k

) of

the shu�ed string of the �'s (

~

�). It is easy to verify that as both F and P are closed under O(:),

g 2 P and f 2 F . Thus, ~� 2 K[F ;poly].

118

Chapter 8

Equivalence of Di�erent Dynamical Systems

The material in this chapter could be seen as justifying a \Church's thesis" equivalence for analog

computing. We show that a large class of di�erent networks and dynamical systems has no more

computational power than our neural (�rst-order) model with real weights. Analogously to Church's

thesis of computability (see e.g. [Yas71] p.98), our results suggest the following Thesis of Time-

bounded Analog Computing: \Any reasonable analog computer will have no more power (up to

polynomial time) than �rst-order recurrent networks."

In previous chapters, we studied the computational power of the neural network model (see

Equation 1.2) presented in Chapter 1. As our model is highly homogeneous and extremely simple,

one may suspect that it is weaker than other possible more complex models. For example, in

many applications of neural networks to language recognition, each neuron is allowed to compute

inside its sigma function a polynomial combination of its input values (see Equation 1.1) rather

than a�ne combinations only. Furthermore, in both applications and biologically plausible models,

the activation function is usually more complicated than the saturated-linear function used in our

model; for instance, one encounters the classical sigmoid

1

1+e

�x

or other activations.

We show that if one allows multiplications in addition to only linear operations in each neuron,

that is, if one considers instead what are often called high order (or sigma-pi) neural nets, the

computational power does not increase. Even further, and perhaps more surprising, no increase in

computational power (up to polynomial time) can be achieved by letting the activation function be

not necessarily the simple saturated linear one, but any function which satis�es certain reasonable

assumptions. Also, no increase results even if the activation functions are not necessarily identical

in the di�erent processors.

We remark also that the neural network models that we study have a weak property of \robust-

ness" to noise and to implementation error, in the sense that small enough changes in the network

119

would not a�ect the computation for �nite times. This robustness includes changes in the precise

form of the activation function, in the weights of the network, and even an error in the update. In

classical models of (digital) computation, this type of robustness can not even be properly de�ned.

8.1 Generalized Networks: De�nition

We consider dynamical systems {which we will call generalized processor networks{ with far less

restrictive structure than the recurrent neural network model which was described in Chapter 1.

We show that these networks are not more powerful, up to polynomial time slowdown, than the

previously considered model.

Let N;M; p be natural numbers. A generalized processor network is a dynamical system D that

consists of N processors x

1

; x

2

; : : : x

N

; and receives its input u

1

(t); u

2

(t); : : : u

M

(t) via M input

lines. A subset of the N processors, say x

i1

; : : : ; x

ip

, is the set of output processors of the system,

used to communicate the output of the system to the environment. In vector form, a generalized

processor network D updates its processors via the dynamic equation

x

+

= f(x; u) ;

where x is the current state of the network (a vector), u is an external input (also possibly a vector),

and f is a composition of functions:

f = � � ;

where

� : IR

N+M

7! IR

N

is some vector polynomial in N +M variables with real coe�cients, and

 : IR

N

7! IR

N

is any vector function which has a bounded range and is locally Lipschitz. (Thus, the composite

function f = � � again satis�es the same properties.)

We also assume, as part of the de�nition of generalized processor network, that, at least for

binary inputs of the type considered in the de�nition of \formal networks," given in Chapter 3, D

outputs \soft" binary information. That is, there exist two constants �; �, satisfying � < � and

120

called the decision thresholds, so that each output neuron of D outputs a stream of numbers each

of which is either smaller than � or larger than �. We interpret the outputs of each output neuron

y as a binary value:

binary(y) =

8

>

<

>

:

0 if y � �

1 if y � � :

In the usual model we studied earlier, the values are always binary, but we allow more generality

to show that even if one allows more general analog values, no increase in computational power is

attained, at least up to polynomial time.

Remark 8.1.1 The above assumptions imply that, for each � > 0, there exists a constant C, such

that, for all x and ~x satisfying that

jx� ~xj < � and x 2 Range ()

(the absolute value sign indicates Euclidean norm), the following property holds:

j (x; u)� (~x; u)j � Cjx � ~xj

for any binary vector u. A similar property holds for f . 2

Let T : IN 7! IN be a function from integers into integers. We say that a generalized processor

network D computes in time T if for every input of size n 2 IN, D completes its output in no more

than T (n) steps.

A neural network is a special case of a generalized processor network, in which all coordinates

of the function compute the same piecewise linear function �, and the polynomial � is a �rst

order polynomial, that is, an a�ne function.

8.2 Generalized Networks with Bounded Precision

Let D be a generalized processor network

D : x

+

= (�(x; u))

121

as above. Let Q be a positive integer. The Q-truncation of D, denoted

Q-Truncation (D) ;

is the network with dynamics de�ned by

x

+

= Q-Truncation [(�(x; u))] ;

where \Q-Truncation" represents the operation of truncating after Q bits. The Q-chop of D is the

network with dynamics de�ned by

x

+

= Q-Chop [(�(x; u))] � Q-Truncation [(~�

Q

(x; u))] ;

where ~�

Q

is the same polynomial � but with coe�cients truncated after Q bits.

The next observations insure that round-o� errors due to truncation or chopping are not too

large.

Lemma 8.2.1 Assume D computes in time T , with decision thresholds �; �. Then, there is a

constant c such that the function

q(n) = cT (n)

satis�es the following property. For each positive integer n, let Q = q(n). Then, Q-Truncation(D)

computes the same function as D on inputs of length at most n, with decision thresholds

�

0

= � +

� � �

3

and �

0

= � �

� � �

3

:

Proof. Let D be a generalized processor network satisfying the above conditions, and let

~

D = Q-

truncation(D), with Q still to be decided upon. Let � be the error due to truncating after Q bits,

that is, � = c

1

2

�Q

for some constant c

1

. Finally, let �

t

be the largest accumulated error in all the

processors by time t. The following estimates are obtained using the Lipschitz property of f :

�

o

= 0

�

1

= �

�

t

= �

t�1

X

i=o

C

i

= �

C

t

� 1

C � 1

;

122

where C is the Lipschitz constant of f for � = 1 (c.f. Remark 8.1.1). To bound the error with the

amount
 =

���

3

, we require

�

t

�
 :

That is,

� �

(C � 1)

C

t

� 1

�

~

C

�t

;

for some constant

~

C . This requirement is met when � is the truncation error corresponding to

Q = (log

2

((

1

c

1

~

C))T ;

so we can take q(n) = log

2

(

1

c

1

~

C)T (n).

As a corollary of Lemma 6.3.1, and using an argument exactly as in the proof of Lemma 8.2.1,

we conclude:

Lemma 8.2.2 Lemma 8.2.1 holds for the Q-chop network as well.

8.3 Equivalence of Neural and Generalized Networks

De�nition 8.3.1 Given a vector function f = � � as above, we say that f is approximable in

time A

f

(n), if there is a Turing Machine M that computes T (n)-Truncation(f) in time A

f

(n) on

each input having total bit size n.

Example 8.3.2 If f = � �, is approximable, and � has rational coe�cients, then f is approx-

imable. (As � is approximable at this case.) 2

Lemma 8.3.3 Let L(T) be the class of languages recognized by generalized processor networks in

time T , for which the function f is approximable in time A

f

, and the function T is computable

in time M(n). Then, L(T) is included in the class of languages recognized by Turing Machines in

time O(M(n) + T (n)A

f

(T (n))).

123

Proof. Assume given a generalized processor networkD satisfying the above assumptions. A Turing

Machine which approximates it can be built as follows. The machine receives an input string of

length n. As a �rst step, it computes the function T (n), and it estimates the required precision

Q = q(n) as in the previous Lemma. Finally, it simulates the generalized processor network step

by step, forgetting all information but the �rst Q required bits. This Turing Machine computes

the required function in the stated time.

Corollary 8.3.4 Let D be a network which computes in polynomial time T , and so that f is

approximable is polynomial time. Then the language recognized by D is in P .

De�nition 8.3.5 Given a vector function f = � � as above, we say that f is non-uniformly

F (n)-approximable in time A

f

(n), if there is a Turing Machine M that computes T (n)-Chop(f)

using an advice function (c.f. [BDG90], volume I, pg 99-115) in K[F (n), poly(T (n))].

Example 8.3.6 Assume a generalized processor networkD that computes in time T . A polynomial

� with general real coe�cients is non-uniformly T (n)-computable: For each input of size n, the

machine receives the �rst O(T (n)) bits of each coe�cient as an advice sequence, and then computes

the polynomial. 2

From the above results, we may conclude as follows:

Theorem 16 Let D be a generalized processor network which computes via a function f = � �.

Assume is non-uniformly F (n)-approximable in polynomial time. Then there exists a neural

network N

D

which recognizes the same language as D and which does so with at most a polynomial

time slowdown. Furthermore, if is F (n)-approximable in polynomial time and � involves rational

coe�cients only, the weights of N

D

are rational numbers as well.

Corollary 8.3.7 Adding
exibility to the neural network model does not add power to the model,

except for a possible polynomial time speed up. This
exibility includes:

124

� Using a high order polynomial � rather than an a�ne function.

� Using other functions rather than the saturation we used earlier, including the possibility

of having di�erent functions in di�erent neurons.

� Allowing for the output to be \soft binary" rather than pure binary.

Note that networks with high order polynomials have appeared especially in the language recog-

nition literature (see e.g. [GMC

+

92] and references there). We emphasize the relationship between

these models: Let N

1

be neural network (of any order), which recognizes a language L in polynomial

time. Then there is a �rst order network N

2

which recognizes the same language L in polynomial

time.

Remark 8.3.8 The networks that we consider are mildly \robust to noise and to implementation

error" in the sense that small enough perturbations in weights or (formulated in a suitable sense)

in the sigmoid activation function do not a�ect the computation, as long as \soft binary" outputs

are considered. Given any time T , there is some �

T

so that an error of �

T

would not a�ect the

computation up to a time T . This is an easy consequence of the continuous dependence of the

output on all the data. (A detailed proof involves de�ning precisely \perturbations of the activation

function; we omit the details.) 2

125

Chapter 9

Space Constraints

This chapter discusses rational-weight neural nets on which a bound is set on the precision available

for the computations. It should be observed that any simulation of a neural net computation, e.g. by

implementing a simulation program on a more or less standard computer, will be subject to such

bounds. Indeed, e�cient implementations of the arithmetic require dedicated hardware, able to

handle \reals" of a limited precision seldom larger than 64 bits (and quite frequently smaller).

When larger precision is necessary, for instance to process longer inputs, one must resort to a

software implementation of real arithmetic (sometimes provided by the compiler), and even in this

case a physical limitation on the length of the mantissa of each state of a network under simulation

is imposed by the amount of available memory. It is thus important to know the computational

consequences of these limitations.

This very same observation suggests that some connection can be established between the space

requirements needed to solve a problem and the precision required on the states of the neural

networks that solve them. In Section 9.1 we consider rational networks consisting of neurons whose

precision increases as a function of the input length. In Section 9.2 we consider neurons of constant

precision and allow for a growing network. (This is the only place in this thesis where we consider

growing, not constant-size, networks.)

9.1 Space Classes

De�nition 9.1.1 A rational neural net works within precision S(n) if and only if all the weights,

and all the rational values of the states of the neurons through a computation on an input of length

n, can be represented in binary within O(S(n)) bits.

126

We observe here the following:

Theorem 17 Let S(n) � n be a space-constructible function. Then the following are equivalent:

1. the set L is accepted by a Turing machine within space O(S(n));

2. the set L is accepted by a neural net within precision O(S(n)).

The proof is omitted, as it is similar to the proof of Theorem 4 in Chapter 5, We should point

out, however, that the proof relies on a preliminary phase during which the input is completely

loaded into the state of a speci�c neuron, before proceeding to the actual computation. This is the

reason why we need the condition S(n) � n, since the precision needed for that neuron will be at

least linear. Actually, the proof of Theorem 18 below can be used as well to prove this theorem,

taking into account that the restrictions imposed there become trivial for at least linear space.

It is quite interesting as well to see what happens under sublinear precision bounds. The point

is that the input convention we have described for neural nets makes available each input symbol

only once; moreover, it is available for only a single step, since the next iteration brings a new

symbol in.

Thus, under sublinear bounds, we may expect some sort of equivalence to restricted variants of

Turing machines, such as on-line machines or a still more restricted model called here lr-machines.

An on-line machine is a Turing machine whose input head can either move to the right, or stay still,

but cannot backtrack to the left. We de�ne lr-machines as the subclass of on-line machines that

must move their input head to the right one symbol per each step, and cannot backtrack nor even

stay at a symbol for more than one step. However, they are allowed to continue working without

further reading after exhausting the input. This last period of work uses only the information

gathered in the worktapes during the reading. Clearly this restricted model is equivalent to the

standard model for at least linear space bounds.

For sublinear S(n), the next result provides one necessary and one su�cient characterization.

It is a simple extension of our previous results, and we only provide an outline of its proof.

Theorem 18 Let S(n) be any space-constructible function.

127

1. If a set L is accepted by an lr-machine within space O(S(n)), then L is accepted by a neural

net within precision O(S(n)).

2. If a set L is accepted by a neural net within precision O(S(n)), then L is accepted by an

on-line machine within space O(S(n)).

Note that, unlike the previous and next theorems, we don't have to impose any lower bound on

S(n) here. The �rst part essentially corresponds to proving that the intermediate step of loading

the input into a single neuron state, as done in Chapter 5, is not necessary; we may use instead

the real time simulation from the same chapter.

The second part consists of a straightforward simulation of the computation of the neural net.

The state of each of the �xed number of neurons is kept in a worktape , where it �ts due to

the precision bound. Since the network receives its input in real time, there is never the need of

backtracking the input head during the simulation. Observe however that the simulating machine

is not an lr-machine since each step of the net requires a nontrivial number of Turing machine steps

due to the arithmetic operations to be performed.

O�-line space-bounded machines can be proven equivalent to precision-bounded neural nets

under a di�erent input convention.

De�nition 9.1.2 A neural net with cyclic input receives the input w through two input lines as

follows: the data line brings in the bits of the input w repeatedly, w

1

, while the validation line

brings in (10

jwj�1

)

1

. 2

So, the data line brings in wwwwww : : : and the validation one, instead of marking the end of

the whole input, marks the beginning of each cycle. This (admittedly somewhat arti�cial) input

convention gives:

Theorem 19 Let S(n) � logn be a space constructible function. Then the following are equivalent:

1. the set L is accepted by an o�-line Turing machine within space O(S(n));

128

2. the set L is accepted by a neural net with cyclic input within precision O(S(n)).

Here we only sketch the proof.

Proof. 1) 2) The network N simulating the Turing machine M is built conceptually out of two

subnetworks: In a manner similar to that of Chapter 5 we construct a constant size subnet that

receives as input the bit currently scanned by the input-tape head of M and the state of M , and

returns a new state and the direction to move the input-tape head, right or left. Another neuron

keeps a rational that, interpreted as an integer value, indicates the current position of the input-

tape head. The value is incremented or decremented depending on the direction of movement.

Then another subnet, triggered by the 1 that marks the beginning of each cycle, counts up to the

position of the input-tape head to detect the input symbol necessary for the simulation of the next

step. With some precomputation time, it is possible to do the counting in real time using only

logarithmic precision.

2) 1) For the backward implication, use the same simulation as for the on-line case. When

reaching the right end of the input, stop the simulation, reset the input tape head, and resume it;

when the simulating machine is reading the �rst symbol of the input, it simulates a 1 on the input

validation line.

The fact that time-bounded rational nets correspond modulo polynomial-time simulations to

time-bounded Turing machines (Chapter 5), taken together with Theorem 17 here, allows us to

close this section by pointing out a remark on the \linear precision su�ces" lemma of Chapter

6. There it is proved that for a neural net running in time T (n), the net obtained truncating all

states to O(T (n)) bits is equivalent to it. That proof is valid for real weights; but if we consider its

restriction to the simpler rational case, then we can see an interesting intuitive analogy. Through

the equivalences with the Turing model, we see that this result corresponds in some sense to the

basic theorems relating time-bounded and space-bounded classes, and in particular to the by now

elementary result that everything done in time T (n) is done in space T (n) as well. The \linear

precision lemma", restricted to the rational case, would be essentially the neural net analog of this

result.

129

9.2 Fixed Precision

A rational network works within a constant precision if it works within a precision S(n) and S(n)

is a constant.

Clearly, a �nite net that works within a constant precision is essentially a �nite automaton. To

gain a recursive power with neurons of constant precision, we have to allow the network to grow as

a function of the computation time.

Ideally, the number of neurons required to simulate a Turing machine that operates in space

S is
(S). We prove that indeed this lower bound is achievable. Furthermore, we sketch the

construction of a network which, using this number of neurons, simulates a Turing machine in

linear time.

Theorem 20 Let M be a Turing machine that computes the function � in space S and time T .

Then, for each positive integer p, there exists a network N

p

[

cS

p

] (c is a constant independent of p)

that computes � in time O(T), consists of

cs

p

neurons, and works within a constant precision p.

Proof. Assume thatM is a z-stack machine. We show how to simulate a stack ofM . This, combined

with the proof of Theorem 4 in Chapter 5, proves the required conclusion.

We start with a few de�nitions: A p-block is a sequence of length p over the alphabet f0; 1; 3g.

The interpretation of a block b = b

1

b

2

� � �b

p

in base 4 (bj

4

) is the value

P

p

i=1

b

i

4

i

.

Given a sequence � = a

1

: : : a

l

2 f1; 3g

�

, the p-block family of the sequence �, F [�], is the

in�nite sequence of blocks f�

i

g

1

i=1

de�ned as follows:

�

i

= a

(i�1)p+1

� � �a

ip

i = 1; 2; : : :b

l

p

c

�

i

= a

(i�1)p+1

� � �a

l

0 � � �0

| {z }

p�l+pb

l

p

c

i = d

l

p

e

�

i

= 0 � � �0

| {z }

p

i > d

l

p

e :

Similarly, we de�ne the p-mirror-block family F

m

of the sequence � = a

1

: : : a

l

2 f1; 3g

�

to be

F

m

[�] = f

^

�

i

j

^

�

i

= reverse [�

i

]; �

i

2 Fg

1

i=1

where the reverse operation is de�ned intuitively as: reverse[a

1

a

2

� � �a

p

] = a

p

� � �a

2

a

1

.

130

Given a binary stack s, we identify it with a f1; 3g-sequence �

s

in the top to bottom order (as

was described in Chapter 2). Let F [�

s

] and F

m

[�

s

] be the p-block family and p mirror-block family

of s, respectively. We associate two sequences of neurons with s:

Q

i

= fq

i

j q

i

= �

i

j

4

; �

i

2 F [�

s

]g

^

Q

i

= fq̂

i

j q

i

=

^

�

i

j

4

; �

i

2 F

m

[�

s

]g :

Note that only 2d

jsj

p

e neurons of Q

i

S

^

Q

i

are not identically 0.

Each neuron q

i

and q̂

i

has three associated readout neurons:

T [q] =

8

>

<

>

:

0 q �

1

2

1 q >

1

2

E[q] =

8

>

<

>

:

0 q = 0

1 q 6= 0

H [E[q]; T [q]] =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 E[q] = 0

1

4

E[q] = 1; T [q] = 0

3

4

T [q] = 1 :

The top element of s is given by T [q

1

]. The stack s is empty when E[q

1

] = 0. We show how using

the blocks and mirror blocks, we simulate the stack operations push and pop in a constant number

of steps each:

� Push(I), I 2 f

1

4

;

3

4

g:

q

1

=

1

4

(q

1

�

H [q̂

1

]

4

p�1

) + I

q

i

=

1

4

(q

i

�

H [q̂

i

]

4

p�1

) +H [q̂

i�1

] i > 1

q̂

1

= 4(q̂

1

�H [q̂

1

] +

I

4

p

)

q̂

i

= 4(q̂

i

�H [q̂

i

] +

H [q̂

i�1

]

4

p

) :

� Pop:

q

i

= 4(q

i

�H [q

i

] +

H [q

i+1

]

4

p

)

q̂

i

=

1

4

(q̂

i

�

H [q

i

]

4

p�1

) +H [q

i+1

] :

131

That is, keeping the value of a stack both in a chain of p-blocks and in a chain of their mirror

images, the stack operations are simulated in a constant number of steps each. This proves the

theorem.

132

Chapter 10

Networks With General � and Finite Automata

It has been known at least since the work of McCulloch and Pitts ([MP43]) in 1943 that networks

consisting of threshold neurons can simulate �nite automata. In Chapter 4 we proved a similar

result for our model of networks (i.e., those employing saturated neurons) even when only integer

weights are allowed. Here we suggest that almost every "reasonable" kind of neuron will result

in a �nite automata simulation. Note that in this chapter we do not use exactly the model of

networks developed in Chapters 1 and 3, in the sense that both activation functions and input-

output conventions become more
exible.

Let % be any function that satis�es the following property:

? Both lim

x!1

= t

+

and lim

x!�1

= t

�

exist and t

+

6= t

�

.

We show that any network of %-neurons of the type

x

i

(t+ 1) = %

0

@

N

X

j=1

a

ij

x

j

(t) +

M

X

j=1

b

ij

u

j

(t) + c

i

1

A

; i = 1; : : : ; N (10.1)

can simulate a �nite automaton.

10.1 Simulation

Here, we use the general de�nition of �nite automaton with no initial state and with sequential

output. As a mathematical object, an automaton is a quintuple

M = (S; U; Y; f; h)

consisting of sets S, U , and Y (called respectively the state, input, and output spaces), as well as

two functions

f : S � U ! S ; h : S ! Y

133

(called the next-state and the output maps, respectively). A �nite automaton is one for which each

of the sets S, U , and Y is �nite.

We start by introducing the notion of simulation. In general, given an automaton M =

(S; U; Y; f; h), the map f can be extended by induction to arbitrary input sequences. That is,

for any sequence u

1

; : : : ; u

k

of values in U ,

f

�

(s; u

1

; : : : ; u

k

)

is de�ned as the iterated composition f(f(: : : f(f(s; u

1

); u

2

); : : : ; u

k�1

); u

k

). Suppose now given two

automata M = (S; U; Y; f; h) and M = (S; U; Y; f; h) which have the same input and output sets.

The automaton M simulates M if there exist two maps

enc : S ! S and dec : S ! S ;

called the encoding and decoding maps respectively, such that, for each s 2 S and each sequence

! = u

1

; : : : ; u

k

of elements of U ,

f

�

(s; !) = dec [f

�

(enc [s]; !)] ; h(s) = h(enc [s]) :

Assume that for some integer m the input value set U consists of the vectors e

1

; : : : ; e

m

in IR

m

,

where e

i

is the ith canonical basis vector, that is, the vector having a 1 in the ith position and

zero in all other entries. Similarly, suppose that Y consists of the vectors e

1

; : : : ; e

p

in IR

p

. (The

assumption that U and Y are of this special \unary" form is not very restrictive, as one may always

encode inputs and outputs in this fashion.) Note that networks having such inputs and outputs

are not of the \formal" type described in Chapter 3. The input validation information in such

networks is the sum of the di�erent input lines (this sum has the value 1 as long as some input is

present). Output validation information is computed analogously.

10.2 Main Result

The following interpolation fact holds for any function % which satis�es property ?:

134

Lemma 10.2.1 Let % be a function with the property ?. Then, there exist constants !

i

; b

i

; c

i

2

IR; i = 1; 2; 3 so that the function

f(y) = !

0

+

3

X

i=1

!

i

%(b

i

y + c

i

)

satis�es f(�1) = f(0) = 0 and f(1) = 1 .

Before proving the above lemma, we show how the theorem follows from it:

Theorem 21 Every �nite automaton can be simulated by a neural net with activation function %.

Proof. (*Of The Theorem*)

Assume that the states of the �nite automaton M to be simulated are f�

1

; : : : ; �

s

g. A neural

network that simulatesM has N = 3sm neurons and is built as follows. Denote the coordinates of

the state vector x 2 IR

N

by x

ijk

, i = 1; : : : s, j = 1; : : : ; m, k = 1; 2; 3.

Consider the Boolean variables g

rv

for r = 1; : : : ; s, v = 1; : : : ; m, that indicate if the current

state of M is r and the last input read was v. We will express these variables as

g

rv

� !

rv

+

3

X

k=1

!

rvk

x

rvk

; (10.2)

where the weights !

rv

; !

rvk

, will be found later. We write (g

rv

) for a matrix indexed by r and v.

In terms of these quantities, the update equations for r = 1; : : : ; s, v = 1; : : : ; m, k = 1; 2; 3, can be

expressed as follows:

x

+

rvk

= %

0

@

b

rvk

(

m

X

j=1

X

i2S

rv

g

ij

+ u

v

� 1) + c

rvk

1

A

; (10.3)

where

S

rv

:= fl j f(q

l

; e

v

) = q

r

g

and where b

rvk

as well as c

rvk

will also be speci�ed below. Finally, for each l = 1; : : : ; p, the lth

coordinate of the output is de�ned as

y

l

= %

0

@

c

m

X

j=1

X

i2T

l

g

ij

1

A

where T

l

:= fijh

l

(q

i

) = 1g for the coordinate h

l

of h, and c is any constant so that %(0) 6= %(c).

The proof that this is indeed a simulation is as follows:

135

1. We �rst prove inductively on the steps of the algorithm that the expressions (g

rv

) are always

of the type E

ij

, where E

ij

denotes the binary matrix that its ijth entry has the value 1 and

all the rest have the value 0. Furthermore, except for the starting time, E

rv

indicates that

the simulated �nite automata is in state r and it last read input was v.

� We start the network with an initial state x

0

2 IR

N

so that the starting (g

ij

) has the form

E

r1

, where q

r

is the corresponding state of the original automaton. It is easy to verify

that such x's are possible, since in Equation 10.2 the di�erent equations are uncoupled

for di�erent r and v, and not all weights !

rvk

for k = 1; 2; 3 can vanish, otherwise in

lemma 10.2, the function f (which is used as g

rv

) is constant.

� Assume (g

ij

) has indeed the Boolean values as stated at some time t, that is, only one

of the g

rv

has the value 1 and the rest are in 0, and the associated state of the �nite

automata is q

r

and the last read input is u

v

. Then, the expression

y

rv

= (

m

X

j=1

X

i2S

rv

g

ij

+ u

v

� 1)

can only take the values �1, 0, or 1. The value 1 can only be achieved for this sum if

both u

v

= 1 and there is some i 2 S

rv

so that g

ij

= 1, that is, if the current state of the

original machine is q

i

and f(q

i

; e

v

) = q

r

.

By Lemma 10.2.1, there exist values !

rvk

; b

rvk

; c

rvk

(k = 1 : : :3) so that f(y

rv

) (which is

by de�nition here the value of g

rv

at time t + 1) assumes the value 1 only if y

rv

was 1,

and is 0 for the other two cases. This proves the correctness in terms of the expressions

g

ij

. The vectors x

rvk

take the values %(b

rvk

y

rv

+ c

rvk

), as described by Equation 10.3.

2. The encoding and decoding functions are de�ned as follows: The encoding map enc [q

r

]

maps q

r

into any �xed vector x so that Equation 10.2 gives (g

ij

) = E

r1

. The decoding map

dec [x] maps those vectors x that result in (g

ij

) = E

rv

(r = 1 : : :s; v = 1 : : :m) into q

r

, and

is arbitrary on all other elements of IR

N

.

In the next section, we prove the lemma.

136

10.3 Proof of the Above Lemma

Proof. We prove more than required, namely, we show that for each choice of three numbers

r

�1

; r

0

; r

1

2 IR there exist !

0

; !

i

; b

i

; c

i

2 IR; i = 1; 2; 3 so that, denoting

f(y) = !

0

+

3

X

i=1

!

i

%(b

i

y + c

i

) ;

it holds that f(�1) = r

�1

; f(0) = r

0

, and f(1) = r

1

. To prove this, it su�ces to show that there

are b

i

; c

i

(i = 1; 2; 3), so that the matrix

�

bc

=

0

B

B

B

B

B

@

%[b

1

(�1) + c

1

] %[b

2

(�1) + c

2

] %[b

3

(�1) + c

3

]

%[b

1

(0) + c

1

] %[b

2

(0) + c

2

] %[b

3

(0) + c

3

]

%[b

1

(1) + c

1

] %[b

2

(1) + c

2

] %[b

3

(1) + c

3

]

1

C

C

C

C

C

A

is non-singular. Hence, for all R = col (r

�1

; r

0

; r

1

) there exists a vector A = col (!

1

; !

2

; !

3

) so

that

�A = R ;

and this solves our problem with !

0

= 0. We will prove this latter property for a certain function

~% of the form a%(x) + b, and this will imply the result for %.

Let m

i

, i = 1; 2; 3 be maps on the real numbers so that (m

i

(�1); m

i

(0); m

i

(1)) = e

i

(e

i

2 IR

3

is

the ith canonical vector). Let U = f�1; 0; 1g. We say that k %-neurons g

j

linearly interpolate[U]

the map m

i

if there exist constants !

i

1

; : : : ; !

i

k

that f

i

(u) =

P

k

j=1

!

i

j

g

j

(u) and

f

i

(u) = m

i

(u)

for all u 2 U . These neurons are said to �-approximate[U] m

i

if

jf

i

(u)�m

i

(u)j < �

for all u 2 U .

Proposition 10.3.1 There are three H-neurons (i.e., threshold neurons, also called before Heavi-

side neurons) that interpolate[U] the maps m

i

, i = 1; 2; 3.

137

Proof. Let

h

1

(x) = H(x+

1

2

)

h

2

(x) = H(x�

1

2

)

h

3

(x) = H(�x �

1

2

) :

The interpolation is by: m

1

= h

2

(w

1

1

= 0; w

1

2

= 1; w

1

3

= 0),m

2

= h

1

�h

2

(w

2

1

= 1; w

2

2

= �1; w

2

3

= 0),

and m

3

= h

3

(w

3

1

= 0; w

3

2

= 0; w

3

3

= 1).

Proposition 10.3.2 For all � > 0 there are three %-neurons that �-interpolate[U] the maps m

i

,

i = 1; 2; 3.

Proof. First note that we can impose t

+

= 1, and t

�

= 0 on % without restricting the a�ne span of

the neurons. This is possible by de�ning the function

~% =

%(x)� t

�

t

+

� t

�

:

Without loss of generality, we assume t

+

= 1 and t

�

= 0 from now on. So, for each � > 0 there

is some � > 0 such that for all y; jy �

1

2

j > �

j%(y �

1

2

)� H(y �

1

2

)j < � :

In particular 8y; jy �

1

2

j >

1

4

we can choose � > 4�, and using that H(�(y �

1

2

)) = H(y �

1

2

),

j%(�(y �

1

2

))� H(y �

1

2

)j < � :

A similar argument can be applied to (y +

1

2

) and (�y �

1

2

). We conclude that for all � > 0 there

exists some � so that

g

1

(x) = %(�(x+

1

2

))

g

2

(x) = %(�(x�

1

2

))

g

3

(x) = %(�(�x�

1

2

))

satisfy jg

i

(x)� h

i

(x)j <

�

3

for all u 2 U . The result is now clear.

138

Now, de�ne the three matrices:

� = [g

j

(u

i

)]

ij

M = [m

j

(u

i

)]

ij

W = [!

j

(u

i

)]

ij

From Proposition 10.3.2 we conclude that for all � > 0 there are g

1

; g

2

; g

3

so that

�

�

�

�

�

�

�

�

�

�

�

0

B

B

B

B

B

@

%[b

1

(�1) + c

1

] %[b

2

(�1) + c

2

] %[b

3

(�1) + c

3

]

%[b

1

(0) + c

1

] %[b

2

(0) + c

2

] %[b

3

(0) + c

3

]

%[b

1

(1) + c

1

] %[b

2

(1) + c

2

] %[b

3

(1) + c

3

]

1

C

C

C

C

C

A

0

B

B

B

B

B

@

0 1 0

0 �1 1

1 0 0

1

C

C

C

C

C

A

�

0

B

B

B

B

B

@

1 0 0

0 1 0

0 0 1

1

C

C

C

C

C

A

�

�

�

�

�

�

�

�

�

�

�

< �

Choosing � so that � is non-singular, the lemma results.

139

Chapter 11

Parallel Time Classes

Parallel models have in principle more power than sequential

�

ones. Many Parallel models exist,

and not all of them are equivalent. Our parallel models are taken from the so-called Second

Machine Class [VEB90]. This class captures a very frequently observed features of parallelism,

characterized by the Parallel Computation Thesis: time on these models corresponds, modulo

polynomial overheads, to space on First Class models. Prominent members of the Second Machine

Class are the alternating Turing machines and the Vector Machines ([PS76], see also [BDG90]).

Neural nets are considered a very appropriate model of parallel computation, due to the fact

that the net result embodies the activity of a large number of neurons (hence the name \Parallel

Distributed Processing"). It was proven in Chapter 8 that second-order nets can be simulated

with a polynomial overhead in time by �rst-order nets. That is, allowing neurons that compute

polynomials does not increase the computational power of nets (up to polynomial time). In this

chapter we show that second class power is obtained by nets with rational weights if they can use

rational functions (i.e. division) and bitwise AND, and obey an exponential precision bound.

We also consider the case of nets with real weights: the use of division and bitwise AND in

this case provides exactly the power of nonuniform parallel computation, so that time corresponds

to nonuniform (bounded fan-in) circuit depth; in particular, any arbitrary set can be decided

in linear time by nets with real weights, provided that division and bitwise AND are available.

(This corresponds to writing arbitrary boolean functions as sum of minterms in linear depth.) So,

essentially real weights add the characteristic of nonuniformity to both the sequential (compare

with Chapters 5, 6) and the parallel models (here).

�

The sequential models can be de�ned in a completely standard way by time-bounded or space-bounded multitape

Turing machines, possibly nondeterministic, e.g. classes like P, PSPACE, or NP. Relativizations of these classes are

also used; the oracle machine model used for de�ning them is standard. All these classes are invariant under changes

of the machine model, provided that it stays within the so-called First Machine Class [VEB90]: they simulate and

are simulated by multitape Turing machines within a polynomial time overhead and a linear space overhead.

140

The extended nets we consider in this chapter have processors with either an update equation

of the form

x

i

(t+ 1) = �

�

P

i

(x

1

(t); : : : ; x

N

(t))

Q

i

(x

1

(t); : : : ; x

N

(t))

�

;

where P

i

and Q

i

are polynomials, or of the form

x

i

(t+ 1) = x

j

1

(t) ^ : : :^ x

j

k

(t) ;

where ^ the denotes the bitwise AND of binary representations (note that adding � does not make

any di�erence in this case). When computing an update involving rational functions, it is assumed

that the denominator does not vanish (otherwise the computation is unde�ned).

The rest of this chapter is organized as follows: In section 11.1, we prove that, with the addition

of these operations, nets with rational weights are equivalent to parallel models. In section 11.2 we

sketch the proof that the same networks with real weights are also equivalent to the same parallel

models, but in their non-uniform versions.

11.1 Extended Nets with Rational Weights

We say that a net works within precision p(n) if the binary expansion of all weights, and of any

state appearing during the computation on an input of length n, is identically zero after the �rst

p(n) digits. Let NNTIME(t; p) be the set of languages accepted by nets with rational weights,

division and bitwise AND in time O(t(n)) and precision O(p(n)) simultaneously.

Intuitively, the extra power we get by using division can be demonstrated by the following

example. By repeated multiplication a net can build in time O(t) rationals as small as 2

�2

t

. To

recover the �rst bit of these numbers, a net without division can only multiply at each step by

some (constant) weight, and thus needs 2

(t)

steps. However, a single division can turn this digit

into the most signi�cant one.

We use this power of division, and bitwise AND, to simulate a model of unbounded parallelism

introduced by Pratt and Stockmeyer, that of vector machines ([PS76], see also [BDG90, KR90]).

Vector machines are machines that can implement boolean operations and left and right shifts

on their potentially in�nite registers; these capabilities give them the power of parallel machines.

More precisely, a vector machine is a processor together with a �xed number of vector registers V

1

,

141

V

2

, : : : , V

r

, each containing bit vectors. These bit vectors are ultimately constant sequences of bits

written from right to left, and in�nite to the left. The length of a vector register is the length of

its nonconstant part. Vectors that are ultimately 0 and ultimately 1 represent non-negative and

negative integers respectively. The input is given to the machine in register V

1

, and the output

is in V

1

when the machine halts. Programs for the vector machines can contain the following

instructions, assumed to have unit cost:

� V

i

:= x: Load the constant x into V

i

.

� V

i

:= not V

i

: Bitwise negate all of V

i

.

� V

i

:= V

j

^ V

k

: Bitwise AND V

j

and V

k

.

� V

i

:= V

i

" V

j

: If V

j

contains a positive number, shift V

i

to the left by V

j

positions; new

positions are �lled with zeros. Otherwise, do nothing.

� V

i

:= V

i

V

j

: If V

j

contains a positive number, shift V

i

to the right by V

j

positions; rightmost

bits are discarded. Otherwise do nothing.

� if V

i

= 0 go to label.

� accept, reject.

To make vector machines equivalent in power to other Second Class models, we have to impose

the following restriction: no register is ever shifted by more than 2

O(t(n))

positions in a single

shift instruction, where t(n) is the machine's running time (see [BDG90]). In other words, the

arguments V

j

in the shift instructions always consist of no more than O(t(n)) bits. We call machines

with this property restricted. Let VECTOR� TIME(t) be the class of languages accepted by

restricted vector machines in time O(t(n)).

We now show that, up to polynomial time, the classes VECTOR� TIME(t) and NNTIME(t; 2

t

)

are equal. The intuition behind this result is that the restriction on the allowed shifts in vector

machines can be compared to the restriction on precision in nets.

The equality will be proved in two parts.

Theorem 22 For any t(n) � n, VECTOR � TIME(t) � NNTIME(t

O(1)

; 2

O(t)

).

142

Proof. Let M be a restricted vector machine running in time t(n). For a given n, let s be the

minimum power of two such that the length of M 's registers is always less than s, during the

computation on an input of length n. It is easy to prove that s = 2

O(t(n))

(the restriction on the

shifts is necessary here).

To simulateM by means of a neural net, we encode the contents of each register V

i

ofM as the

activation value of a net processor v

i

. More precisely, if V

i

contains the vector : : :000b

`

b

`�1

: : : b

2

b

1

,

then v

i

= 0: 000 : : :000b

`

b

`�1

: : : b

2

b

1

| {z }

s

000 : : :, and if V

i

contains : : :111b

`

b

`�1

: : : b

2

b

1

, then v

i

=

0: 111 : : :111b

`

b

`�1

: : : b

2

b

1

| {z }

s

000 : : : Note that 0 � v

i

< 1, and that v

i

� 1=2 if and only if V

i

< 0.

Initially, the net reads the input and stores it as the state of v

1

, as described in Chapter 5. For

the actual computation, we divide the proof in two parts: First, we show that the e�ect of each

vector instruction can be simulated by rational functions and bitwise ANDs in time polylogarithmic

in s = 2

O(t(n))

, i.e., polynomial in t(n). Then, we show that these sequences of operations, as well

as the �nite control of the vector machine, can be programmed in a neural net.

We simulate each vector instruction as follows:

� V

i

:= x: The constant x is built into the network as a weight, and this instruction sets v

i

:= x.

� V

i

:= not V

i

: Build the rational 2

�s

as described below for the shift instructions. Then set

v

i

:= 1� 2

�s

� v

i

.

� V

i

:= V

j

^ V

k

: This is simulated by a bitwise AND of v

j

and v

k

.

� V

i

:= V

i

" V

j

. This is simulated as:

if v

j

< 1=2 (i.e., V

j

� 0) then begin

build y = 2

�2

s

v

j

;

v

i

:= v

i

=y

end

Testing condition \v

j

< 1=2" is equivalent to knowing whether �(4(v

j

� 1=2)) is 0 or 1. To

compute y we use the algorithm given in the �gure, which works in time O(log jV

j

j). Because

M is restricted, jV

j

j is 2

O(t(n))

and thus the computation takes time O(t(n)).

143

/* compute y = 2

�x

, where x = x

s�1

: : :x

0

is given as a real x

0

= 0:x

s�1

: : : x

0

*/

p := 1=2;

for i := 1 to log s do

p := p

2

;

/* p = 2

�s

here; recall that s is a power of 2 */

y := 1; z := 1=2;

while x

0

=p � 1 do begin /* digits left in x

0

*/

/* 9i (p = 2

�s+i

^ z = 2

�2

i

^ y = 2

�(x

i�1

:::x

0

)

) */

if (x

0

^ p)=p = 1 then /* x

i

= 1 */

y := y � z;

p := 2 � p;

z := z

2

end

Figure 11.1: Computing 2

�x

� V

i

:= V

i

V

j

. Similar to left shift using product times 2

�v

j

instead of division. Bitwise AND

the result with the value 1� 2

�s

to remove the over
ow to the right of the s designated bits.

� if V

i

= 0 go to label: Compute 2

�s

as above and then test whether �(v

i

=2

�s

) = 0. Note that

�(v

i

=2

�s

) = 1 for all possible contents of V

i

except for 0.

� accept, reject: To simulate these instructions, the net sets to 1 the output validation line and

to 1 or 0, respectively, the output data line.

It remains to show that sequencing all these instructions can be hardwired into a network. Here

we only provide an example: a subnet that implements the computation of p = 2

�s

following the

�rst loop of the algorithm in the �gure.

This network is triggered by the input a; it outputs its data via the neuron p and validates the

output via the neuron v.

� The binary input a is 0 except for once. When 1, it triggers the network described below.

� The output validation neuron v is set to 1, log(s) steps after a triggers.

� The output data neuron p contains the value 2

�s

when v = 1.

144

The internal neuron c counts the time. We assume that some neuron ` in the rest of the net provides

the reciprocal of s, the maximum length that a register can have. For example, if s = 32, ` contains

binary 0:00001 (recall that s is a power of two).

The update equations of the processors are:

p

+

:= �(a=2 + (1� a)p

2

)

/* a = 1 resets p to 1=2, a = 0 squares it */

c

+

:= �(a � `+ (1� a) � 2c)

/* a = 1 resets counter to 1=s */

v

+

:= �(4c� 1)

/* v

+

= 0 for c � 1=4, v

+

= 1 for c � 1=2 */

Theorem 23 For any t(n) � n, NNTIME(t; 2

t

) � VECTOR � TIME(t

O(1)

).

Proof. Consider a net running in time t(n) and within precision 2

t(n)

. To simulate the net by a

vector machine, we keep the state of each processor in a vector register of length 2

t(n)

. Recall

that addition, product, division, and bitwise AND of m-bit numbers can be computed in parallel

machines in time (logm)

O(1)

and m

O(1)

memory (see for example [KR90]). Thus, updating the

state of each processor at each simulated step needs t(n)

O(1)

time and 2

O(t(n))

memory on the

vector machine.

In fact, the simulations show that amount of memory in vector machines is polynomially related

to net precision. The theorems were stated for at least linear running time, as the networks need

linear time to read the input. However, the simulations work even for sublinear running times

t(n) � logn, if we adopt an alternative convention that the input is given to the net as the

initial state of one of the processors, as in theorem 5 of Chapter 5. Then we can characterize

NC, the class of sets accepted by Second Class machines in polylog time and polynomial space, as

NNTIME(log

O(1)

n; n

O(1)

).

145

11.2 Extended Nets with Real Weights

In section 11.1 we have considered nets whose processors can compute rational functions and bitwise

ANDs on their inputs, and shown that time in these nets is equivalent to time on parallel machines.

If we allow real instead of rational weights, their power changes accordingly: we obtain nonuniform

parallel time, or, equivalently, nonuniform circuit depth. For example, one can obtain the following

analog of the fact that nonuniform circuits of bounded fan-in and linear depth can decide any set.

Theorem 24 Every language is decided in linear time by a net with real weights whose processors

compute rational functions and bitwise ANDs.

Proof. The net contains a real weight whose binary expansion is the characteristic sequence of the

language to decide. On an input that has lexicographical number i, the net computes the real

x = 2

�i

using multiplication; it can do this as the input is entering. When the input ends, the net

ANDs x with the real encoding the set, and divides the result by x, thus determining whether the

input is in the set or not.

Note that, in fact, the net has the answer two steps after the input has been read.

146

Chapter 12

The Complexity of Language Recognition by Neural Networks

One of the current applications of recurrent neural networks is as language acceptors. That is,

given a string, the network's output is used to decide whether the string is in the language or

not. A numerical (gradient-descent) technique is used to \infer" an accepting network from a set

of training examples. Much e�ort has been directed towards practical implementations of this

application. Several models of acceptors have been developed. See for instance [CSSM89, Elm90,

GMC

+

92, Pol90, WZ89]. However, all of this has been done heuristically; some languages were

found to be \learned", others were not. One of the main di�culties is that of deciding a priori on

the proper size of the network to be used.

In this chapter we present some work of a heuristic and experimental nature which is comple-

mentary to the previous one on computational power of neural networks. This research represents

an attempt to measure the \neural complexity" of languages, that is, to quantify the size of a

recurrent neural network needed for acceptance of a given language.

We look at several di�erent second order neural network models{with sigmoid, linear, threshold,

or saturated functions{and sketch relationships between the number of neurons required in each of

the models. We provide a technique for estimating the number of neurons necessary to recognize a

regular language using a second order neural network with the linear activation function. We see

that, roughly, the number in the linear activation model is an upper bound for the saturated and

sigmoid models, and is a far better predictor than the minimal automaton size that had been used

as an upper bound so far. Moreover, this bound is easy to compute, using techniques from the

theory of rational power series in noncommuting variables.

We wish to emphasize once more that this chapter is mostly heuristic and experimental.

147

12.0.1 The Model in This Chapter

The second order recurrent neural network model that we consider in this chapter consists of N

neurons in a fully connected architecture. The input I consists ofM binary lines. Input is provided

to the network one letter at a time, i.e. at time t letter I(t) is input. Each letter i (i = 1; : : : ;M)

is presented in unary, as a vector which consists of (M � 1) 0's and a single 1 in the ith position.

Each neuron computes its next state as a combination of other neurons and the external input,

using the following dynamics, as in [GMC

+

92]:

x

k

(t+ 1) = �

0

@

N

X

i=1

M

X

j=1

a

k

ij

I

j

(t)x

i

(t)

1

A

: (12.1)

Here � can be one of the following functions:

� Linear L(x) := x

� The classical Sigmoid

�

s

(x) =

1

1 + e

�x

� Heaviside (also called threshold)

H(x) :=

8

>

<

>

:

0 if x < 0

1 if x � 0 :

The response of the network to the string ! = !

1

; !

2

; : : :!

l

2 �

�

M

, represented as the input sequence

I(1); I(2); : : : ; I(l), is the value x

1

(l + 1). The network accepts or recognizes a language L � �

�

M

if

for every string ! 2 �

�

M

x

1

(l+ 1) � � () ! 2 L ; x

1

(l+ 1) < � () ! =2 L ;

where � is a �xed real number, and a �xed initial state is assumed. That is, the language accepted

consists of all the input strings to which the network responds with a value larger than � . As in

this chapter we discuss only second order neural networks, we forgo the word \second" and call

them just \neural networks".

Our ultimate interest is in sigmoidal networks. Networks using the classical sigmoid were

reported as relatively easy to train (see e.g.[GMC

+

92]) using gradient descent techniques, and

148

hence have been popular in implementations. (Another reason to focus on the sigmoid activation

function stems from its biological plausibility of describing the graded response of a neuron.) As

part of this work, we study linear and saturated networks as well.

We �rst develop an upper bound on the size of linear networks. This bound is not larger than

the minimum non-deterministic FSA recognizing the language. Then, we develop a tighter upper

bound that is based on the saturated network, and heuristically is appropriate for the sigmoid

function. We see through a series of computer simulations that this bound is sometimes fairly

accurate.

The remainder of this chapter is organized as follows: Section 12.1 deals with space complexity

in linear-activation networks. We base the discussion on the theory of formal power series. This

approach identi�es languages with power series, and associates with each of these series a special

kind of matrix, called a Hankel matrix. The rank of each of these Hankel matrices provides an

upper bound on the space complexity of regular languages when using linear-activation networks.

In Section 12.2, we provide an algorithm to estimate the complexity of regular languages in linear-

activation networks. Section 12.3 compares di�erent models of activation functions in terms of

space complexity, thus suggesting that the space bound from Section 12.2 can be used to roughly

bound the saturated and sigmoidal activation networks as well. We check experimentally this

bound by working out several well-known examples.

12.1 Space Complexity in Linear Networks

Let � be an alphabet. A language L over � will be thought of as a function f

L

: �

�

! f0; 1g : We

interpret f

L

(w) as the truth value of w 2 L. A fuzzy language over �

�

is a function f

F

: �

�

! IR ,

where IR denotes the real numbers. The value f

F

(!) denotes the degree of ambiguity, or degree of

membership of the string ! in the language.

A linear-activation neural network N is a network with � = identity. The response of the

network N is a function f

N

: �

�

! IR , which is a fuzzy language. The language L accepted by a

neural network N with respect to a threshold
 2 IR is de�ned by: w 2 L () f

N

(!) �
 :

The l-complexity of a language L is the size of the smallest linear-activation neural network

accepting L with respect to some threshold
 2 IR.

149

12.1.1 Preliminaries

To estimate the l-complexity of regular languages, we discuss the notion of power series and Hankel

matrices.

A power series r over �

�

is a formal in�nite sum of the form

r =

X

w2�

�

C

w

w ; where each C

w

2 IR :

We can view a power series as an ambiguous, or fuzzy language: �

�

! IR. An unambiguous series

is one for which C

w

2 f0; 1g for all w 2 �

�

.

Similarly to the de�nition of the language accepted by a neural network, we say that a pair

(r; q), where r is a power series over �

�

and q 2 IR, de�nes the language L = L(r; q) by w 2 L ()

C

w

� q : We also say that a power series r which belongs to some pair de�ning L, is related to the

language L.

Conversely, the characteristic power series of a language L is the series r

c

(L), with C

w

= f

L

(w).

This series is unambiguous. Note that L(r

c

(L);

1

2

) � L for every language L.

From now on, we will assume for simplicity that we have a binary alphabet, I = f0; 1g

�

, i.e.

M = 2 in Equation 12.1.

De�nition 12.1.1 [SS78] The Hankel matrix,H

r

, of the power series r is the in�nite matrix whose

rows and columns are indexed by the strings over f0; 1g

�

|listed in the lexicographic order|and

is de�ned by

H

r

(u; v) = C

uv

:

Example 12.1.2 The Hankel matrix H

r

(L) of the characteristic power series of L = 1

�

is given

in Figure 12.1.

The columns are indexed by: �, 0, 1, 00, 01, 10, 11, 000, 001 ... and the rows are indexed

similarly. 2

150

� 0 1 00 01 10 11 � � �

� 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1

00 0 0 0 0 0 0 0

01 0 0 0 0 0 0 0

.

.

.

.

.

.

Figure 12.1: A Hankel Matrix of the language 1*

If r is a power series related to a language L, than the matrix H

r

is associated with L. Note

that there are in�nitely many Hankel matrices associated with L.

De�nition 12.1.3 The H-complexity of a language L is

H-Complexity(L) = min frank(H

r

)jL = L(r; q) for some q 2 IRg :

12.1.2 The Space Complexity Theorem

Theorem 25 For every language L, l-complexity(L) = H-complexity(L). If L is regular, these

numbers are �nite.

The proof consists of three parts: First we recall the equivalence between regular languages and

a subset of power series. Then, we recall the relationships between the rank of the Hankel matrix

of a power series and representations of this series. In the third part, we identify linear networks

with these representations. We end up by combining the three parts into the required result.

Lemma 12.1.4 The regular languages over an alphabet � are the languages associated with the

unambiguous series of IR

rat

� �

�

�, the set of rational series. (The set of rational series is the

smallest rationally closed subset of the power series over �

�

which contains all polynomials.)

151

Proof. We �rst cite Theorem (5.2) in [SS78]: If r 2 IR

rat

� �

�

� is unambiguous, then L(r; q) is

regular for every q 2 IR. (Of course, the only interesting case is q = 1, or equivalently any q 2 (0; 1].

See also Theorem 2.3 in [Son75] for another proof.)

Conversely, theorem (5.1) in [SS78] states: Let L be a regular language. Then, r

c

(L) is in

IR

rat

� �

�

�.

Given a word ! = u

1

� � �u

n

, we denote by ~! its transpose, u

n

� � �u

1

.

Lemma 12.1.5 [SS78] Let r be a power series over �

�

. Then, r 2 IR

rat

� �

�

� i� the rank of

H

r

is �nite. If H

r

has �nite rank N, then there exists a monoid representation

R : �

�

! IR

N�N

and vectors a 2 IR

1�N

, b 2 IR

N�1

such that

r =

X

w2�

�

aR(~w)bw ; (12.2)

Moreover, if also

r =

X

w2�

�

a

0

R

0

(~w)b

0

w

with a

0

2 IR

1�m

, b

0

2 IR

m�1

, R

0

(~w) 2 IR

m�m

, then m � N . Conversely, if there is any such

representation then the rank of H

r

is �nite. 2

That is, let L be a language and r be a power series related to L. The power series r admits a

representation (12.2) of size equal to the rank of H

r

, or none if the rank is in�nite. The smallest

dimension of a representation of a power series related to a language L, is equal to the H-complexity

of the language. For regular languages, this is �nite, by Lemma 12.1.4.

Lemma 12.1.6 The response of a linear-activation network to a string ! 2 �

�

can be written in

the form

aR(~w)b ;

for some representation of the same size as the network. Conversely, any power series admitting a

representation is a response of some linear-activation network of the same size.

152

Proof. We describe a linear-activation network of size N as follows: Each of the M = 2 possible

input letters, I

j

, is associated with a weight matrix A

j

of size N � N . At time t, the network

receives an input letter, represented in unary by I(t), and it changes its state according to the

corresponding associated weight matrices:

x(t+ 1) =

2

X

i=1

I

i

(t)A

i

x(t) :

That is, if I(t) = (1; 0) or I(t) = (0; 1), then x(t+ 1) = A

1

x(t) or x(t+ 1) = A

2

x(t) respectively.

Given such a network, its output is designated by (without loss of generality) the �rst neuron.

Let a be the row vector of size N , a = (1; 0; 0; : : : ; 0), corresponding to this output. Let the column

vector b of size N represent the initial state of the neural network. Assume that the input to the

system is w = u

1

; u

2

; : : : ; u

k

, where each u

l

is one of the 2 letters and its associated matrix is A

i

l

.

Then, the response of the system to the input string w is

aA

i

k

: : :A

i

2

A

i

1

b :

In general, we denote R(w) = A

i

1

: : :A

i

(k�1)

A

i

k

. We conclude that the responses of this network

can be represented as in the statement of the lemma.

Conversely, given the representation (12.2) for a power series, we can choose a basis in the

state-space so that a = (1; 0; 0; : : : ; 0), and a linear-activation network results. Hence, response of

linear-activation networks and power series are equivalent.

This completes the proof of Theorem 25. We are therefore motivated to estimate H-complexities.

12.2 Bounding The H-complexity

We de�ne

H-complexity(L) = rank (H

r

c

(L)

) :

By de�nition, for each language L, H-complexity(L) � H-complexity = l-complexity(L). That is,

H-complexity provides an upper bound on the l-complexity.

Given a regular language L represented as a regular expression, one can construct a nonde-

terministic �nite automaton (NFA) (with \�-moves") accepting it. The NFA outputs 1 for the

153

strings in L, and 0 for those that are not in L. An NFA can be thought of as a special case of a

linear-activation network, for which the activations of the neurons are nonnegative integers, and the

transition matrices consist of binary entries only. This gives a rise to a linear-activation network

accepting L with
 =

1

2

. This network is not necessarily the smallest in size.

We can then use the algorithm described in [Son79] to get a minimal network. (The minimal

network is not unique, but any two such networks can be shown to coincide up to a change of

basis in the space of neuron states.) The algorithm takes time polynomial in the size of the regular

expression. (See the related discussion in [Son88].)

From the above construction, we conclude that

Observation 12.2.1 For every language L, H-complexity(L) � j NFA(L)j ; where jNFA(L)j is

the number of states of a minimal size non-deterministic �nite automaton accepting L. 2

In Figure 12.2, the �rst to third columns (ignore the column labeled \experiment" for now),

we use nine languages to compare the size of the associated minimal DFA with the complexity

we found. The �rst seven are known by the name Tomita languages, see [Tom82], and the last

two are parity and dual parity. The comparison with DFA sizes is given here because much of the

previous literature had used this quantity as an estimate of \neural" complexity. (Clearly, the size

of a minimal NFA is not larger than that of the minimal DFA.) The particular languages used

for comparisons are those that were used in past grammatical inference studies based on neural

networks, e.g. [GMC

+

92]. (In the case of Dualparity, the l-complexity can be estimated as 2, since

The Language DFA's Size H-Complexity Experiment

Tomita1: 1* 2 1 1

Tomita2: (10*) 3 2 2

Tomita3: no (1

odd

) followed by (0

odd

) 5 3 3

Tomita4: does not contain 000 substring 4 3 2

Tomita5: ([01+10] [01+10])* 7 4 4

Tomita6: #1 - #0 is a multiple of 3 3 3 3

Tomita7: 0*1*0*1* 5 2 2

Parity: even number of 1's 2 2 2

Dualparity: even number of 0's, 1's 4 4 2

Figure 12.2: Comparison of DFA, H-Complexity, and Experimental results

154

r = C

!

! with C

!

= (�1)

k

+ (�1)

l

(k = number of zeroes, and l = numbers of ones) has rank 2,

and L(r; 2) = Dualparity. This illustrates the fact that H-complexity is not equal to the desired

l-complexity, but it merely provides a bound.)

Remark 12.2.2 In the more realistic case in which the language L is not available, and the only

data are a set of \training" strings together with information regarding their membership in the

language, then one can show that even the question of �niteness of rank for the Hankel matrix is

undecidable [Son75]. However, di�erent heuristics might be useful is this case, such as repetitively

enlarging the matrix until no change in its rank results after a few iterations.

Remark 12.2.3 The gap between l-complexity and H-complexity can be arbitrarily large. This is

easy to see from counting arguments. Indeed, there are an uncountable number of languages with

l-complexity equal to 2|see for instance [Rab66], page 311|but it is easy to see that there are

only a countable number of languages with �nite H-complexity.

12.3 Di�erent Activation Functions: Using The H-Complexity As a Bound

The space complexity using networks employing sigmoidal activation functions:

�(x) =

1

1 + e

�x

;

is in a sense bounded by the H-complexity: For any �nite number of strings, we may use a low-gain

approximation so as to cause the sigmoid to be close enough to the identity function in any given

bounded domain. Thus, for any �nite sample of a strings, the number of neurons required to accept

it in the sigmoidal model is bounded by the number in the linear-activation one.

To estimate better the space required in the sigmoidal model, we used the second order neural

network recognizer developed in [GMC

+

92], and trained the weights to generate acceptors for the

languages shown in Figure 12.2. The number of neurons found experimentally as required to accept

a language in the sigmoidal model is described in the fourth column. This number of neurons is

clearly only an upper bound on the true minimum number of neurons required. The correlation

155

between the values predicted by the H-complexity and the experimental values for sigmoids is

striking, especially in comparison with the values that would be predicted from minimal automata

size. Using high gain approximations, one can show that the space complexity using �

s

(x) is also

bounded by the complexity using H(x), on any �nite sample.

Generally, the picture looks like:

Figure 12.3: The space complexity relations in a second order network

156

Chapter 13

Conclusions and Final Remarks

In this dissertation, we addressed several theoretical issues concerning recurrent neural networks.

In our model, there are a �nite number of simple processors. Each processor applies a piecewise

linear activation function to an a�ne combination of the other activations and the external inputs.

Such a model is analog by nature, given the continuity of the activation functions.

We formalized a digital input-output convention, in Chapter 3, which allows measuring the

computational power of our networks. We showed that our homogeneous, simple model is not

weaker (up to at most a polynomial slow down in the computation) than any other \reasonable"

recurrent dynamical system consisting of a �nite number of processors. This result motivates the

following time bounded analog analogy of Church's thesis:

Any reasonable analog computer will have no more power

(up to polynomial time) than �rst-order recurrent networks.

Focusing on the speci�c piecewise-linear recurrent network model, we related its computational

power to the types of real constants allowed as weights. We established the existence of an in�nite

hierarchy of complexity classes of languages recognized by networks. When no constraints are placed

on the weights, that is, they can be arbitrary real numbers, our networks compute in polynomial

time exactly the nonuniform class P=poly (Chapter 6). If the weights can only be rational numbers

(Chapter 5), networks are polynomial time equivalent to Turing machines. Taking it to an extreme,

networks with integer weights are equivalent to �nite automata (Chapter 4).

The proper hierarchy of classes was revealed in the range of numbers between the rationals

and the reals. There, we characterized numbers in an information theoretic manner, using a time

bounded Kolmogorov type characterization (Chapter 7). We related the associated networks to

157

di�erent non-uniform complexity classes.

Another way to de�ne a proper hierarchy of networks was obtained by setting precision con-

straints on the individual neurons, in Chapter 9. These classes were compared against space classes

in digital computation.

A lower bound was obtained on the complexity of networks utilizing a very general class of

activation functions. We showed that any network using any activation function which has di�erent

limits at �1 simulates at least �nite automata (Chapter 10).

An interesting structural complexity question arises if one allows neurons to compute more

complex functions. We showed that second class power (i.e. unbounded parallelism) is attained by

networks with certain speci�c (and very rich) type of neurons (Chapter 11).

Finally, we complemented our theoretical work with heuristic estimates on the size of networks

required to recognize speci�c regular languages (Chapter 12). This bound was also compared with

experimental results.

The work described in this thesis opens up many further questions regarding the foundations

of recurrent networks and analog computation. Let me summarize a few of them:

� The exact characterization of networks whose activation is the classical sigmoid is still open.

They were proved in [KS93] to compute any recursive function, and in Chapter 8 we proved

that they compute not more than the class P/poly (i.e., according to our \Analog Church's

Thesis"). This range is, however, very large.

� Our networks are deterministic (non-random) and may compute exact real values. An inter-

esting question is to characterize networks for which these two principles do not hold.

� Many dynamical systems that perform computations are closely related to our model. In

particular, there are models in which processors compute discontinuous functions, as in the

model of complexity over the reals ([BSS89]). The precise relationships among such models

and our networks is still unclear.

� The question of �nding bounds on the minimum sizes of di�erent types of networks needed

to compute speci�ed functions in \real-time" is of great implementational importance. Here,

we have provided very preliminary work.

158

� We developed a real-time language (Chapter 2) that compiles into a recurrent network. Our

development was for theoretical purposes. However, after dealing with a few time concepts and

safety properties, one might obtain a powerful language useful for analog implementations.

� Most of our work set foundations for understanding the computational power of networks. It

is of a great importance to develop learning algorithms and design procedures that will allow

this power to be usefully exploited.

� Our models operate in discrete time. Other approaches to analog computing (see e.g. [Won92]

and the references there) are based on di�erential equations. We strongly conjecture that the

\Analog Church's Thesis," when properly formulated, will still be valid for continuous time

systems.

159

References

[AA87] J. Alspector and R.B. Allen. A neuromorphic vlsi learning system. In P. Loseleben,

editor, Advanced Research in VLSI: Proceedings of the 1987 Stanford Conference, pages

313{349, Cambridge, MA, 1987. MIT Press.

[ADO91] N. Alon, A.K. Dewdney, and T.J. Ott. E�cient simulation of �nite automata by neural

nets. J. A.C.M., 38:495{514, 1991.

[ASM93] F. Albertini, E.D. Sontag, and V. Maillot. Uniqueness of weights for neural networks.

In R. Mammone, editor, Arti�cial Neural Networks with Applications in Speech and

Vision. Chapman and Hall, London, 1993.

[Atk89] K.E. Atkinson. An Introduction to Numerical Analysis. Wiley, New York, 1989.

[Bar92] A.R. Barron. Neural net approximation. In Proc. Seventh Yale Workshop on Adaptive

and Learning Systems, pages 69{72, Yale University, 1992.

[Bat91] R. Batruni. A multilayer neural network with piecewise-linear structure and back-

propagation learning. IEEE Transactions on Neural Networks, 2:395{403, May 1991.

[BDG90] J.L. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity, volume I and II.

Springer-Verlag EATCS Monographs, Berlin, 1988-1990.

[BGSS93] J. L. Balc�azar, R. Gavald�a, H.T. Siegelmann, and E. D. Sontag. Some structural

complexity aspects of neural computation. In IEEE Structure in Complexity Theory

Conference, pages 253{265, San Diego, CA, May 1993.

[BGV88] J.R. Brown, M.M. Garber, and S.F. Vanable. Artici�al neural network on a simd archi-

tecture. In Proc. 2nd Symposium on the Frontier of Massively Parallel Computation,

pages 43{47, Fairfax, VA, 1988.

[BH89] E.B. Baum and D. Haussler. What size net gives valid generalization? Neural Compu-

tation, 1:151{160, 1989.

[BHM92] J. L. Balc�azar, M. Hermo, and E. Mayordomo. Characterizations of logarithmic advice

complexity classes. Information Processing 92, IFIP Transactions A-12, 1:315{321,

1992.

[BR88] J. Berstel and C. Reutenauer. Rational Series and their Languages. Springer-Verlag,

Berlin, 1988.

[BR90] A. Blum and R.L. Rivest. Training a 3-node neural network is np-complete. In D.S.

Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 9{18.

Morgan Kaufmann, San Mateo, CA, 1990.

160

[BSS89] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over

the real numbers: Np completeness, recursive functions, and universal machines. Bull.

A.M.S., 21:1{46, 1989.

[CD89] S.M. Carroll and B.W. Dickinson. Construction of neural nets using the radon trans-

form. In Proc. Int. Joint Conf. Neural Networks, volume I, pages 607{611, 1989.

[Che80] G.W. Cherry. Pascal Programming Structure: An Introduction To Systematic Program-

ming. Reston Publishing, Reston Virginia, 1980.

[CSSM89] A. Cleeremans, D. Servan-Schreiber, and J. McClelland. Finite state automata and

simple recurrent recurrent networks. Neural Computation, 1, No. 3:372, 1989.

[Cyb89] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control,

Signals, and Systems, 2:303{314, 1989.

[DDGS93] C. Darken, M. Donahue, L. Gurvits, and E. Sontag. Rate of approximation results

motivated by robust neural network learning. In Proc. Sixth ACM Workshop on Com-

putational Learning Theory, Santa Cruz, July 1993.

[DS92] D. DasGupta and G. Schnitger. The power of approximating: a comparison of activa-

tion functions. In Conf. on Neural Information Processing Systems, Denver, 1992.

[EDK

+

89] S. P. Eberhardt, T. Daud, D. A. Kerns, T. X. Brown, and A. P. Thakoor. Competitive

neural architecture for hardware solution to the assignment problem. Neural Networks,

4, 1989.

[Elm90] J.L. Elman. Finding structure in time. Cognitive Science, 14:179{211, 1990.

[FG90] S. Franklin and M. Garzon. Neural computability. In O. M. Omidvar, editor, Progress

In Neural Networks, pages 128{144. Ablex, Norwood, NJ, 1990.

[Fra89] J.A. Franklin. On the approximate realization of continuous mappings by neural net-

works. Neural Networks, 2:183{192, 1989.

[GF89] M. Garzon and S. Franklin. Neural computability. In Proc. 3rd Int. Joint Conf. Neural

Networks, volume II, pages 631{637, 1989.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, New York, 1979.

[GMC

+

92] C. L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, and Y.C. Lee. Learning and

extracting �nite state automata with second-order recurrent neural networks. Neural

Computation, 4(3), 1992.

[Has87] J. H. Hastard. Computational limitations for small depth circuits. PhD thesis, Mas-

sachusetts Institute of Technology, 1987.

[HMP92] T.A. Henziger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-time

systems. Technical report, School of Formal techniques in real-time and fault-tolerant

systems, Univ. of Nijmegen, The Netherlands, 1992.

[Hon88] J.W. Hong. On connectionist models. On Pure and Applied Mathematics, 41, 1988.

161

[Hop84] J.J. Hop�eld. Neurons with graded responses have collective computational properties

like those of two-state neurons. In Proc. of the Natl. Acad. of Sciences, volume 81,

pages 3088{3092, USA, 1984.

[Hor91] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural

Networks, 4:251{257, 1991.

[HS87] R. Hartley and H. Szu. A comparison of the computational power of neural network

models. In Proc. IEEE Conf. Neural Networks, pages 17{22, 1987.

[HSW90] K. Hornik, M. Stinchcombe, and H. White. Universal approximation of an unknown

mapping and its derivatives using multilayer feedforward networks. Neural Networks,

3:551{560, 1990.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

[Jud90] J.S. Judd. Neural Network Design and the Complexity of Learning. MIT Press, Cam-

bridge, MA, 1990.

[KL82] R.M. Karp and R. Lipton. Turing machines that take advice. Enseign. Math., 28, 1982.

[Kle56] S. C. Kleene. Representation of events in nerve nets and �nite automata. In C.E.

Shannon and J. McCarthy, editors, Automata Studies, pages 3{41. Princeton Univ.

Press, 1956.

[Kob81] K. Kobayashi. On compressibility of in�nite sequences. Technical Report Research

Report C-34, Department of Information Sciences, Tokyo Institute of Technology, 1981.

[KR90] R.M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines.

In Handbook of Theoretical Computer Science, volume A, pages 869{941. MIT/Elsevier,

1990.

[KS93] J. Kilian and H.T. Siegelmann. On the power of sigmoid neural networks. In Proc.

Sixth ACM Workshop on Computational Learning Theory, Santa Cruz, July 1993.

[Lip87] R.P. Lippmann. An introduction to computing with neural nets. IEEE Acoustics Speech

and Signal Processing Magazine, pages 4{22, April 1987.

[LLPS93] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks

with a non-polynomial activation function can approximate any function. Neural Net-

works, 6, 1993.

[Maa93] W.G. Maass. Bounds for the computational power and learning complexity of analog

neural nets. In Proceeding of the 25 Annual ACM Symposium on Theory of Computa-

tion, San Diego, May 1993.

[Mac92] B. J. MacLennan. Continuous symbol systems: The logic of connectionism. In D.S.

Levine and M.

~

Aparicio IV, editors, Neural Networks for Knowledge Representation and

Inference. Lawrence Erlbaum, Hillsdale, NJ, 1992.

[Mat92] M. Matthews. On the uniform approximation of nonlinear discrete-time fading-memory

systems using neural network models. Technical Report Ph.D. Thesis, ETH No. 9635,

E.T.H. Zurich, 1992.

162

[Min67] M. L. Minsky. Computation: Finite and In�nite Machines. Prentice Hall, Engelwood

Cli�s, 1967.

[Mot93] L. Motus. Time concepts in real-time software. Control Enginnering Practice, 1:21{33,

Feb 1993.

[MP43] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous

activity. Bull. Math. Biophys, 5:115{133, 1943.

[MP88] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry.

MIT Press, Cambridge, 1988.

[MS93] M. Macintyre and E.D. Sontag. Finiteness results for sigmoidal `neural' networks. In

Proceeding of the 25 Annual ACM Symposium on Theory of Computation, San Diego,

May 1993.

[MSS91] W. Maass, G. Schnitger, and E.D. Sontag. On the computational power of sigmoid

versus boolean threshold circuits. In Proc. 32nd IEEE Symp. Foundations of Comp.

Sci, pages 767{776, 1991.

[Mul56] D.E. Muller. Complexity in electronic switching circuits. IRE Trans. Electronic Comp.,

5:15{19, 1956.

[Mur71] S. Muroga. Threshold Logic and its Applications. Wiley, New York, 1971.

[Par92] I. Parberry. Knowledge, understanding, and computational complexity. Technical Re-

port CRPDC-92-2, Department of Computer Sciences, University of North Texas, Feb

1992.

[Par93] I. Parberry. The Computational and Learning Complexity of Neural Networks. draft,

1993.

[Pen89] R. Penrose. The Emperor's New Mind. Oxford University Press, Oxford, 1989.

[PI91] M. M. Polycarpou and P.A. Ioannou. Identi�cation and control of nonlinear systems

using neural network models: Design and stability analysis. Technical Report Report

91-09-01, Department of EE/Systems, USC, Los Angeles, Sept 1991.

[Pol87] J. B. Pollack. On Connectionist Models of Natural Language Processing. PhD thesis,

Computer Science Dept, Univ. of Illinois, Urbana, 1987.

[Pol90] J.B. Pollack. The induction of dynamical recognizers. Technical Report 90-JP-

Automata, Dept of Computer and Information Science, Ohio State U., 1990.

[PS76] V.R. Pratt and L.J. Stockmeyer. A characterization of the power of vector machines.

Journal of Computer and System Sciences, 12:198{221, 1976.

[Rab66] M. Rabin. Lectures on classical and probabilistic automata. In E.R. Caianiello, editor,

Automata Theory. Academic Press, London, 1966.

[Ros62] F. Rosenblatt. Principles of Neurodynamics. Spartan Books, New York, 1962.

[Sav76] J.E. Savage. The Complexity of Computing. Wiley, New York, 1976.

163

[SCLG91] G.Z. Sun, H.H. Chen, Y.C. Lee, and C.L. Giles. Turing equivalence of neural net-

works with second order connection weights. In Proceedings of the International Joint

Conference on Neural Networks, IEEE, 1991.

[Sha56] C. E. Shannon. A universal turing machine with two internal states. In C.E. Shannon

and J. McCarthy, editors, Automata Studies, pages 156{165. Princeton Univ., 1956.

[Son75] E.D. Sontag. On certain questions of rationality and decidability. J. Comp. Syst. Sci.,

11:375{381, 1975.

[Son79] E. D. Sontag. Realization theory of discrete-time nonlinear systems: Part i- the bounded

case. IEEE Trans.Circuits and Syst., 26:342{356, 1979.

[Son88] E.D. Sontag. Controllability is harder to decide than accessibility. SIAM J. Control

and Optimization, 26(6):1106{1118, 1988.

[Son90] E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Sys-

tems. Springer, New York, 1990.

[Son92a] E. D. Sontag. Feedforward nets for interpolation and classi�cation. J. Comp. Syst. Sci,

45:20{48, 1992.

[Son92b] E.D. Sontag. Feedback stabilization using two-hidden-layer nets. IEEE Trans. Neural

Networks, 3:981{990, 1992.

[Son92c] E.D. Sontag. Neural nets as systems models and controllers. In Proc. Seventh Yale

Workshop on Adaptive and Learning Systems, pages 73{79, Yale University, 1992.

[SS78] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series.

Springer-Verlag, New-York, 1978.

[SS91a] H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets. Appl.

Math. Lett., 4(6):77{80, 1991.

[SS91b] E.D. Sontag and H.J. Sussmann. Backpropagation separates where perceptrons do.

Neural Networks, 4:243{249, 1991.

[SS92] H. T. Siegelmann and E. D. Sontag. On the computational power of neural nets.

In Proc. Fifth ACM Workshop on Computational Learning Theory, pages 440{449,

Pittsburgh, July 1992.

[SS93] H. T. Siegelmann and E. D. Sontag. Analog computation via neural networks. In The

second Israel Symposium on Theory of Computing and Systems, Natanya, Israel, June

1993.

[SSG92] H. T. Siegelmann, E. D. Sontag, and C. L. Giles. The complexity of language recognition

by neural networks. In J. van Leeuwen, editor, Algorithms, Software, Architecture

(Proceedings of IFIP 12th World Computer Congress), pages 329{335, Amsterdam,

1992. North Holland.

[SSar] H. T. Siegelmann and E. D. Sontag. Analog computation via neural networks. Theo-

retical Computer Science, to appear.

164

[Ste84] G.L. Steeler. Common LISP: The language. Digital Equipment Cooperation USA,

1984.

[Sus92] H.J. Sussmann. Uniqueness of the weights for minimal feedforward nets with a given

input-output map. Neural Networks, 5:589{593, 1992.

[SW90] M. Stinchcombe and H. White. Approximating and learning unknown mappings using

multilayer feedforward networks with bounded weights. In Proceedings of the Interna-

tional Joint Conference on Neural Networks, IEEE, 1990.

[Tom82] M. Tomita. Dynamic construction of �nite-state automata from examples using hill-

climbing. In Proceedings of the Fourth Annual Cognitive Science Conference, pages

105{108, Ann Arbor MI, 1982.

[VEB90] P. Van Emde Boas. Machine models and simulations. In Handbook of Theoretical

Computer Science, volume A, pages 1{66. MIT/Elsevier, 1990.

[VSD86] A. Vergis, K. Steiglitz, and B. Dickinson. The complexity of analog computation. Math.

and Computers in Simulation, 28:91{113, 1986.

[Wol91] D. Wolpert. A computationally universal �eld computer which is purely linear. Tech-

nical Report LA-UR-91-2937, Los Alamos National Laboratory, 1991.

[Won92] W.S. Wong. Solving combinatorial optimization problems by gradient
ows. In Proc.

IEEE Conf. Decision and Control, pages 1494{1496, Tucson, Dec 1992. IEEE.

[WZ89] R.J. Williams and D. Zipser. A learning algorithm for continually running fully recur-

rent neural networks. Neural Computation, 1, No. 2, 1989.

[Yao85] A. Yao. Separating the polynomial-time hierarchy by oracles. In Proc. 22nd IEEE

Symp. Foundations of Comp. Sci., pages 1{10, 1985.

[Yas71] A. Yasuhara. Recursive Function Theory and Logic. Academic Press, New York, 1971.

[ZZZ92] B. Zhang, L. Zhang, and H. Zhang. A quantitative analysis of the behavior of the pln

network. Neural Networks, 5:639{661, 1992.

165

Vita

Hava (Eve) Tova Siegelmann

1980 Graduated from Hare'ali Ha-ivri High school, Haifa, Israel.

1982-84 Military Personnel, Israel Defense Forces, Israel.

1984-88 Undergraduate in Technion (IIT), Haifa, Israel. B. A. in Computer Science.

1987-88 Graduate Teaching Assistant, Departments of Computer Science and Mathematics, Israel

Institute of Technology (Technion), Haifa, Israel.

1988 Summer Intern, Telecommunication Research Laboratories of Finland, Helsinki, Finland.

1988-92 Graduate work in Hebrew University, Jerusalem, Israel. M. Sc. in Computer Science.

1988 Graduate Teaching Assistant, Department of Computer Science, The Hebrew University,

Jerusalem, Israel.

1989 Research Associate, School of Computer Information Science, Syracuse University, Syra-

cuse, New York.

1990-93 Graduate work in Computer Science, Rutgers, The State University of New Jersey.

1990-91 Rutgers Doctoral Fellow, Department of Computer Science, Rutgers.

1990 Summer - Graduate Research Assistant, Department of Computer Science, Rutgers.

1991 Summer intern in NEC Research, Princeton, New Jersey.

1992-93 Graduate Research Assistant, Department of Computer Science, Rutgers.

1992 Summer intern in NEC Research, Princeton, New Jersey.

1993 Ph.D. in Computer Science.

Publications

1991 1. Siegelmann H. T. and B. R. Badrinath, \Integrating Implicit Answers with Object-

Oriented Queries," Proceedings of the Conference on Very Large Data Bases, Barcelona,

Spain, September 1991.

166

2. Siegelmann H. T. and O. Frieder, \The Allocation of Documents in Multiprocessor

Information Retrieval Systems: An Application of Genetic Algorithms," Proceedings

of the IEEE Conference on Systems, Man, and Cybernetics, Charlottesville, Virginia,

October 1991.

3. Frieder O. and H. T. Siegelmann, \On the Allocation of Documents in Information

Retrieval Systems," Proceedings of the ACM Fourteenth Conference on Information

Retrieval (SIGIR), Chicago, Illinois, October 1991.

4. Siegelmann H. T. and E. D. Sontag, \Turing Computability with Neural Networks,"

Applied Mathematics Letters, 4(6), (1991): 77-80.

1992 5. Siegelmann H. T. and E. D. Sontag, \On the Computational Power of Neural

Networks" Proceedings of the Fifth ACM Workshop on Computational Learning, Pitts-

burgh, July 1992, 440-449. Theory, Pittsburgh, Penn., July 1992.

6. Siegelmann H. T., E. D. Sontag and C. L. Giles, \The Complexity of Language

Recognition by Neural Networks,"Algorithms, Software, Architecture, (J. van Leeuwen,

ed), North Holland, Amsterdam, 1992, pp. 329-335. (Proceedings of IFIP 12th World

Computer Congress.)

7. Siegelmann H. T. and E. D. Sontag, \Some Recent Results on Computing With

`Neural Nets', " IEEE Conference on Decision and Control, Tuscon, Arizona, December

1992: 1476-1481.

1993 8. Balc�azar J. L., R. Gavald�a, H. T. Siegelmann, and E. D. Sontag, \Some Structural

Complexity Aspects of Neural Computation," IEEE Structure in Complexity Theory

Conference, San Diego, California, May 1993.

9. Siegelmann H. T. and E. D. Sontag, \Analog Computation Via Neural Networks,"

The second Israel Symposium on Theory of Computing and Systems, Natanya, Israel,

June 1993.

10. Kilian J. and H. T. Siegelmann, \Computability With The Classical Sigmoid,"

Proceedings of the Fifth ACM Workshop on Computational Learning, Santa Cruz, July

1993.

167

To appear 11. Siegelmann H. T. and O. Frieder, \Document Allocation in Multiprocessor Informa-

tion Retrieval Systems," chapter in Lecture note series in Computer Science: Advanced

Database Concepts and Research Issues, editors Nabil R. Adam and Bharat Bhargava,

Springer Verlag, November 1993.

12. Siegelmann H. T. and E. D. Sontag, \Analog Computation Via Neural Networks,"

in Theoretical Computer Science.

