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Gaussian Filters

Introduction

This chapter describes an important family of recursive state estimators, col-
lectively called Gaussian filters. Historically, Gaussian filters constitute the
earliest tractable implementations of the Bayes filter for continuous spaces.
They are also by far the most popular family of techniques to date—despite
a number of shortcomings.

Gaussian techniques all share the basic idea that beliefs are represented by
multivariate normal distributions. We already encountered a definition of
the multivariate normal distribution in Equation (2.4), which is restated here
for convenience:

p(@) = det(2r%)"2 exp{~1(z—wTE " (z - )}

This density over the variable x is characterized by two sets of parameters:
The mean 1 and the covariance ¥. The mean . is a vector that possesses the
same dimensionality as the state z. The covariance is a quadratic matrix that
is symmetric and positive-semidefinite. Its dimension is the dimensionality
of the state z squared. Thus, the number of elements in the covariance matrix
depends quadratically on the number of elements in the state vector.

The commitment to represent the posterior by a Gaussian has important
ramifications. Most importantly, Gaussians are unimodal; they possess a sin-
gle maximum. Such a posterior is characteristic of many tracking problems
in robotics, in which the posterior is focused around the true state with a
small margin of uncertainty. Gaussian posteriors are a poor match for many
global estimation problems in which many distinct hypotheses exist, each of
which forms its own mode in the posterior.

The parameterization of a Gaussian by its mean and covariance is called
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the moments parameterization. This is because the mean and covariance are the
first and second moments of a probability distribution; all other moments are
zero for normal distributions. In this chapter, we will also discuss an alter-
native parameterization, called canonical parameterization, or sometimes natu-
ral parameterization. Both parameterizations, the moments and the canonical
parameterizations, are functionally equivalent in that a bijective mapping
exists that transforms one into the other. However, they lead to filter algo-
rithms with somewhat different computational characteristics. As we shall
see, the canonical and the natural parameterizations are best thought of as
duals: what appears to be computationally easy in one parameterization is
involved in the other, and vice versa.
This chapter introduces the two basic Gaussian filter algorithms.

e Chapter 3.2 describes the Kalman filter, which implements the Bayes fil-
ter using the moments parameterization for a restricted class of problems
with linear dynamics and measurement functions.

¢ The Kalman filter is extended to nonlinear problems in Chapter 3.3, which
describes the extended Kalman filter.

e Chapter 3.4 describes a different nonlinear Kalman filter, known as un-
scented Kalman filter.

e Chapter 3.5 describes the information filter, which is the dual of the
Kalman filter using the canonical parameterization of Gaussians.

The Kalman Filter

Linear Gaussian Systems

Probably the best studied technique for implementing Bayes filters is the
Kalman filter, or (KF). The Kalman filter was invented by Swerling (1958) and
Kalman (1960) as a technique for filtering and prediction in linear Gaussian
systems, which will be defined in a moment. The Kalman filter implements
belief computation for continuous states. It is not applicable to discrete or
hybrid state spaces.

The Kalman filter represents beliefs by the moments parameterization: At
time ¢, the belief is represented by the the mean p; and the covariance ¥;.
Posteriors are Gaussian if the following three properties hold, in addition to
the Markov assumptions of the Bayes filter.
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1. The state transition probability p(z, | s, Z4—1) must be a linear function
in its arguments with added Gaussian noise. This is expressed by the
following equation:

32) T = Awxy_q + By + €t

Here z; and z,_ 1 are state vectors, and u; is the control vector at time ¢.
In our notation, both of these vectors are vertical vectors. They are of the

form
Tyt Uyt
T2t Uz ¢
(33) Ty = = and U = .
Tt Ut

A; and B, are matrices. A4, is a Square matrix of size n x n, where n is
the dimension of the state vector z,. B, is of size n X m, with m being the
dimension of the control vector u¢. By multiplying the state and control
vector with the matrices A; and B, respectively, the state transition func-
tion becomes linear in its arguments. Thus, Kalman filters assume linear
system dynamics.

els the uncertainty introduced by the state transition. It is of the same
dimension as the state vector. Its mean is zero, and its covariance will
be denoted R,. A state transition probability of the form (3.2) is called a
linear Gaussian, to reflect the fact that it is linear in its arguments with addi-
tive Gaussian noise. Technically, one may also include a constant additive
term in (3.2), which is here omitted since it plays no role in the material to
come.

Equation (3.2) defines the state transition probability p(z; | w,, Z¢—1). This
probability is obtained by plugging Equation (3.2) into the definition of
the multivariate normal distribution (3.1). The mean of the posterior state
is given by Aiz;_; + Bius and the covariance by R;:

1
(34) (e | ug, 24 1) = det (2nR;) "2
exp {—3 (2 — Az g — Btut)TRt—l(xt — Ay — Byuy) }
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Algorithm Kalman_filter(u;—1, Xt—1, %t 2t):

Bt = Ay pri—1 + B Ut
Y= A Y1 A’{ + Ry

Ki=2%t CF(C T C7 + Qt)“l
e = it + Ki(zt "_Ct fit)

Et = (I‘ Kt Ct) Et

return ut,Zt

Table3.1 The Kalman filter algorithm for linear Gaussian state transitions and mea-
surements.

2. The measurement probability p(ze | x¢) must also be linear in its argu-
ments, with added Gaussian noise:

2o — Cyxt + 0t

Here C; is a matrix of size k x n, where k is the dimension of the measure-
ment vector z¢. The vector 8, describes the measurement noise. The distri-
bution of §; isa multivariate Gaussian with zero mean and covariance Q-
The measurement probability is thus given by the following multivariate
normal distribution:

p(zt 1 ZEt) = det (27TQt)—% exp {—%(Zt = Ct (Et)T Qt—l (Zt = Ct mt)}

3. Finally, the initial belief bel(zo) must be normally distributed. We will
denote the mean of this belief by 1o and the covariance by Zo:

bel(wo) = P@o) = det (25o) 5 exp {—} (@0 — o) T (@0~ b}

These three assumptions are sufficient to ensure that the posterior bel(x+)
is always a Gaussian, for any point in time £. The proof of this non-trivial
result can be found below, in the mathematical derivation of the Kalman
filter (Chapter 3.24).
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The Kalman Filter Algorithm

The Kalman filter algorithm is depicted in Table 3.1. Kalman filters represent
the belief bel(z;) at time ¢ by the mean y; and the covariance ;. The input
of the Kalman filter is the belief at time ¢ — 1, represented by p11—1 and ¥¢_1.
To update these parameters, Kalman filters require the control u; and the
measurement z. The output is the belief at time %, represented by 4; and .

In lines 2 and 3, the predicted belief /i and ¥ is calculated representing
the belief bel(z;) one time step later, but before incorporating the measure-
ment 7. This belief is obtained by incorporating the control u;. The mean
is updated using the deterministic version of the state transition function
(3.2), with the mean ;-1 substituted for the state z;_1. The update of the co-
variance considers the fact that states depend on previous states through the
linear matrix A;. This matrix is multiplied twice into the covariance, since
the covariance is a quadratic matrix.

The belief bel(z;) is subsequently transformed into the desired belief
bel(z;) in lines 4 through 6, by incorporating the measurement 2. The vari-
able K,, computed in line 4 is called Kalman gain. It specifies the degree
to which the measurement is incorporated into the new state estimate, ina
way that will become clearer in Chapter 3.2.4. Line 5 manipulates the mean,
by adjusting it in proportion to the Kalman gain K; and the deviation of
the actual measurement, z;, and the measurement predicted according to the
measurement probability (3.5). The key concept here is the innovation, which
is the difference between the actual measurement z; and the expected mea-
surement C; ji; in line 5. Finally, the new covariance of the posterior belief
is calculated in line 6, adjusting for the information gain resulting from the
measurement.

The Kalman filter is computationally quite efficient. For today’s best algo-
rithms, the complexity of matrix inversion is approximately O(d?*) for ama-
trix of size d x d. Each iteration of the Kalman filter algorithm, as stated here,
is lower bounded by (approximately) O(k**), where k is the dimension of the
measurement vector z;. This (approximate) cubic complexity stems from the
matrix inversion in line 4. Even for certain sparse updates discussed in fu-
ture chapters, it is also at least in O(n?), where n is the dimension of the state
space, due to the multiplication in line 6 (the matrix K;C; may be sparse).
In many applications—such as the robot mapping applications discussed in
later chapters—-the measurement space is much lower dimensional than the
state space, and the update is dominated by the O(n?) operations.
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Figure 3.2 Tllustration of Kalman filters: (a) initial belief, (b) a measurement (in bold)
with the associated uncertainty, (c) belief after integrating the measurement into the
belief using the Kalman filter algorithm, (d) belief after motion to the right (which
introduces uncertainty), (e) a new measurement with associated uncertainty, and (f)
the resulting belief.

Illustration

Figure 3.2 illustrates the Kalman filter algorithm for a simplistic one-
dimensional localization scenario. Suppose the robot moves along the hori-
sontal axis in each diagram in Figure 3.2. Let the prior over the robot location
be given by the normal distribution shown in Figure 3.2a. The robot queries
its sensors on its location (e.g., 2 GPS system), and those return a measure-
ment that is centered at the peak of the bold Gaussian in Figure 3.2b. This
bold Gaussian illustrates this measurement: Its peak is the value predicted
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by the sensors, and its width (variance) corresponds to the uncertainty in
the measurement. Combining the prior with the measurement, via lines 4
through 6 of the Kalman filter algorithm in Table 3.1, yields the bold Gaus-
sian in Figure 3.2c. This belief’s mean lies between the two original means,
and its uncertainty radius is smaller than both contributing Gaussians. The
fact that the residual uncertainty is smaller than the contributing Gaussians
may appear counter-intuitive, but it is a general characteristic of information
integration in Kalman filters.

Next, assume the robot moves towards the right. Its uncertainty grows
due to the fact that the state transition is stochastic. Lines 2 and 3 of the
Kalman filter provide us with the Gaussian shown in bold in Figure 3.2d.
This Gaussian is shifted by the amount the robot moved, and it is also wider
for the reasons just explained. The robot receives a second measurement
illustrated by the bold Gaussian in Figure 3.2e, which leads to the posterior
shown in bold in Figure 3.2f.

As this example illustrates, the Kalman filter alternates a measurement up-
date step (lines 5-7), in which sensor data is integrated into the present belief,
with a prediction step (or control update step), which modifies the belief in
accordance to an action. The update step decreases and the prediction step
increases uncertainty in the robot’s belief.

3.24 Mathematical Derivation of the KF

This section derives the Kalman filter algorithm in Table 3.1. The section can
safely be skipped at first reading; it is only included for completeness.

Up front, the derivation of the KF is largely an exercise in manipulating
quadratic expressions. When multiplying two Gaussians, for example, the
exponents add. Since both original exponents are quadratic, so is the result-
ing sum. The remaining exercise is then to come up with a factorization of the
result into a form that makes it possible to read off the desired parameters.

Part 1: Prediction

Our derivation begins with lines 2 and 3 of the algorithm, in which the belief
b_el(:ct) is calculated from the belief one time step earlier, bel(z;_1). Lines 2
and 3 implement the update step described in Equation (2.41), restated here




