Elements of MATLAB

Lloyd D. Fosdick
Elizabeth R. Jessup
Carolyn J. C. Schauble

19 August 1988
Revised
September 20, 1995

High Performance Scientific Computing
University of Colorado at Boulder

Copyright (©)1995 by the HPSC Group of the University of Colorado

The following are members of
the HPSC Group of the Department of Computer Science
at the University of Colorado at Boulder:

Lloyd D. Fosdick
Elizabeth R. Jessup
Carolyn J. C. Schauble
Gitta O. Domik

MATLAB

Contents
1 What is MATLAB?
2 Getting started
2.1 Bringing up MATLAB
2.2 Standard helpo oo
3 Some examples
3.1 Simple matrix operations
3.2 Simpleplots
4 Short outline of the language
4.1 Types . . o e
4.2 Names e

4.3 Scalar constants oL 0oL
4.4 Display format L L
4.5 Vector constants L oo
4.6 Matrix constantso L Lo oo
4.7 Arithmeticoperators 000
4.8 Expressions and statementso
4.9 Compatibility oo
4.10 Matrix referenceso Lo
4.11 Relational and logical operators

4.11.1 Relational operators

4.11.2 Logical operators

Built-in functions
5.1 Polynomial curve fitting 0L
5.2 Figenvalues and eigenvectors L.

MATLAB scripts and user-defined functions

6.1 Asamplescript

6.2 Comments and white space

6.3 Continued lines

6.4 A sample function.

6.5 Control statements L.
6.5.1 forstatement oo

CUBoulder : HPSC Course Notes

i MATLAB

6.5.2 while statement 26

6.5.3 if statemento 26

6.5.4 Furtherhelp oo 26

7 Input/output 26
7.1 UNIX commands within MATLAB 27
7.2 Sessionlog L 27
7.3 Savingdata L 28
74 MAT-files o 28

8 Graphics 28
8.1 Types of two-dimensional plots 29
8.2 Labelling plots 30
8.3 Handle Graphics L. 33
8.4 Hardcopy plots 34
8.5 Three-dimensional plotting 35
8.5.1 Three-dimensional grids 35

8.5.2 Contour plots 37

8.6 Multipleplots 37
8.6.1 Multiple functionsinaplot 37

8.6.2 Multiple plots in a window 39

8.6.3 Multiple figure windowso L. 42

8.7 Creating images 43

9 That’s it! 43
10 Acknowledgements 44
References 44

CUBoulder : HPSC Course Notes

MATLAB i1

Trademark Notice

PostScript is a trademark of Adobe Systems, Inc.
DEC, DECstation are trademarks of Digital Equipment Corporation.

X-Window System is a trademark of The Massachusetts Institute of Tech-
nology.

Handle Graphics, MATLAB are trademarks of The MathWorks, Inc.
Sun, Sun 3/60, and SunView are trademarks of Sun Microsystems, Inc.

UNIX is a trademark of UNIX Systems Laboratories, Inc.

CUBoulder : HPSC Course Notes

Elements of MATLAB*

Lloyd D. Fosdick
Elizabeth R. Jessup
Carolyn J. C. Schauble

19 August 1988

Revised
September 20, 1995

1 What is MATLAB?

MATLAB is an interactive system for matrix computations. It has a simple
command language that allows you to easily multiply and invert matrices,
solve systems of linear equations, and perform many other operations on
rectangular arrays of numbers. It is also easy to plot data on the screen or
printer with MATLAB.

MATLAB is often used interactively as if it were a very powerful hand
calculator. But you can also use MATLAB in a programmable mode; you
may write scripts for it just as you do for other command languages. You
can also write your own functions, and these can be invoked interactively or
from scripts or from other functions.

The examples in this document were run on UNIX workstations; both
a Sun 3/60 under the SunView window environment and a DECstation

*This work has been supported by the National Science Foundation under an Ed-
ucational Infrastructure grant, CDA-9017953. It has been produced by the HPSC
Group, Department of Computer Science, University of Colorado, Boulder, CO 80309.
Please direct comments or queries to Elizabeth Jessup at this address or e-mail
jessup@cs.colorado.edu.

Copyright ©1995 by the HPSC Group of the University of Colorado

2 MATLAB

5000/200 under the X-Window system were used. A basic knowledge of
UNIX is assumed for the remainder of this tutorial. MATLAB is available
on other platforms, including PC’s; the following MATLAB material applies
to those platforms as well.

2 Getting started

These notes are intended to get you started, providing only the bare es-
sentials. The MATLAB User’s Guide [MathWorks 92b] and the MATLAB
Reference Guide [MathWorks 92a] are the basic manuals.

2.1 Bringing up MATLAB

It you have to login to a different machine than the server in order to run
MATLAB and you are using an X terminal, make sure the DISPLAY environ-
ment is set properly. Without the proper DISPLAY setting, the figure window
cannot appear on your screen. This can be set by typing the command

setenv DISPLAY yourterminalname:0

from the UNIX shell.
If this does not work, you may need to type

xhost + remotemachinename

where remotemachinename is the name of the remote machine with MAT-
LAB installed on it. In some cases, you may need to do this before logging
into the remote machine. This should enable that machine to display on your
local screen.

Once the DISPLAY environment is set correctly, get into the directory from

which you wish to use MATLAB. Start MATLAB by typing the command
matlab

from the shell. The basic MATLAB environment is activated, and your
window should appear as shown in the top of figure 1. Use the quit command

to exit MATLAB.

CUBoulder : HPSC Course Notes

MATLAB 3

% matlab
<MATLAB(R) >
(c) Copyright 1984-1993 The MathWorks, Inc.
A1l Rights Reserved
Version 4.1

Jun 10 1993

Commands to get started: intro, demo, help help
Commands for more information: help, whatsnew, info, subscribe

>> ..
>> quit
0 flop(s).

A

Figure 1: MATLAB window: A sample session.

2.2 Standard help
Notice the message on the initial MATLAB window:

Commands to get started: intro, demo, help help
Commands for more information: help, whatsnew, info, subscribe

Each of these facilities may be entered by typing the appropriate name. When
help is entered, a list of topics appears. To narrow the choice, just enter

help aparticulartopic

and helpful information on aparticulartopic is brought to the screen.

The info command provides the address of The MathWorks, Inc.; it also
tells you how to obtain more information on MATLAB.

The terminal command lists the graphics terminals capable of running

MATLAB.

CUBoulder : HPSC Course Notes

4 MATLAB

Typing demo brings up MATLAB Expo; this is a mouse-driven facility
with MATLAB demonstrations. These demos include examples, games, and
snazzy graphics. Expo was completely implemented using MATLAB with
the MATLAB UI (User Interface) tools. Try a few of the demos to see what
MATLAB can do.

3 Some examples

This section demonstrates some basic matrix and plotting commands. As you
read about each, type in the statements, as printed in this font, followed
by a carriage return. MATLAB prints out each variable as it is assigned.
The constructs and syntax in these statements will be described in detail
in section 4. This section merely provides some examples to give you the

flavor of MATLAB.

3.1 Simple matrix operations

The following statements produce matrices A and B:

A
B

The matrices made by these statements are:

1 2 45
(i) ()
You can create new matrices by using A and B in expressions. The
statements

C
D

A+ B
A x B

produce the matrices
5 7 16 19
C_(Q 12)’ D_(42 50)

CUBoulder : HPSC Course Notes

MATLAB 3

Unlike some other programming languages, the MATLAB multiplication op-
erator * performs correct matrix multiplication when working with two ma-
trix operands; this is not an elementwise operation.

The statement

E=A

makes E the transpose of A; i.e.,

1 3
5=(55)
And the statement

F= AxA

makes F the product of A and its transpose; i.e.,
5 13
= (13 34)
The statements

Y
X

[1; -1]
ANY

give the solution to the equation

Ax X =Y

()

In order to get a feel for the notation here, think of the backslash operator,
\, as denoting division from the left so that A \ Y in MATLAB is equivalent
to the mathematical expression A=! x Y.

that is,

We can also use the backslash operator to solve a system with a rectan-
gular coefficient matrix. In the case that the coefficient matrix A has more
rows than columns, MATLAB returns the least squares approximation to the
solution.

CUBoulder : HPSC Course Notes

6 MATLAB

0.8r 8

0.6+ .

04f 1

-0.2+ i

-04+ i

-0.6}+ i

Figure 2: Plot of sine function on [0, 27].

3.2 Simple plots

The statements

U = 0:pi/20:2%pi
W = sin(U)
plot(U,W)

generate a plot of the sine function' on the interval [0,27] as shown in fig-
ure 2. The first statement creates a vector of 41 values beginning at zero, in
increments of 7 /20, the last value being 2x. The second statement produces
a vector of 41 values equal to the sines of the 41 values in U. The last state-
ment makes a plot of the curve whose abscissae (the x-axis values) are given
by the values of the elements of U and whose ordinates (the y-axis values) are
given by the elements of W. Note that the name pi in a MATLAB statement
denotes a constant equal to .

IThe use of functions in MATLAB is described in more detail in sections 5 and 6.

CUBoulder : HPSC Course Notes

MATLAB 7

Type in these three statements. Observe that when values are assigned
to a vector, those values are printed out across the screen. Extra lines are
used if needed, and the columns are numbered.

Notice that a new window is generated by the first plotting command;
this graphics window is called the figure window. If you are using an X
terminal, the mesh grid outlining the MATLAB figure window may appear
first, allowing you to place it anywhere on the screen. Use the mouse to drag
it to your preferred location and then click the lefthand button of the mouse.

The figure window remains until you exit your MATLAB session or un-
til you use the close command. Any additional plotting commands reuse
this figure window, unless you open a new figure window with the figure
command. On most windowing systems, the figure windows can be closed,
reopened, moved, or resized, in the same manner as any other window.

This is a very simple plot. You may feel the need to label the axes and
provide a title. This is not difficult. MATLAB commands for labelling plots
and commands for controlling the size of the axes and grid are covered in
section 8. Image processing is discussed there as well.

4 Short outline of the language

This section provides information about the basic syntax and semantics for
MATLAB commands. For additional information, use the help command or

see your MATLAB manual.

4.1 Types

Fundamentally there is one type, a rectangular array of numbers. There are
no type declarations. The dimensions of an array are determined by the
context.

Nevertheless, it is convenient to think of three types in the language:
scalar, actually an array consisting of one row and one column; vector, ac-
tually an array consisting of one row and ¢ columns, or an array consisting
of r rows and one column; and matriz, an array consisting of r rows and ¢
columns.

CUBoulder : HPSC Course Notes

8 MATLAB

4.2 Names

Names consist of a letter followed by zero or more letters, digits, and under-
score characters. Only the first 19 characters are significant. Uppercase and
lowercase letters are distinguished; thus, A1 and a1 denote different variables.

4.3 Scalar constants

These values are written with an optional decimal point and an optional
power of 10. A minus sign is placed at the front of negative values. No
blanks are permitted within a value. Examples of legal values are:

99 39.24 -0.0075 1.35e-24 0.2E-5 12.0e44
Complex numbers are also allowed. If you type
z=2-51
at the MATLAB prompt, the response will be

Z=
2.0000 - 5.00001

The character j may also represent the value of \/—1 as in the following:

zz = 3 + 2]

zZZ =
3.0000 + 2.00001

4.4 Display format

MATLAB has the ability to display the values of variables in several different
ways, including short, long, short e, and long e. The default format
is called a short format and shows the number to 4 decimal places. For
instance, if you type

x = 32.75

MATLAB responds with

CUBoulder : HPSC Course Notes

MATLAB 9
X:
32.7500

Should you specify that you wish to use the short display format at this
format, MATLAB displays x in the same manner.

format short
X

X:
32.7500

The long format has fourteen decimal places.

format long
X

X:
32.75000000000000

Z=
2.00000000000000 - 5.000000000000001

The two e formats give values in scientific form (i.e., floating-point), both
long and short:

format short e
X

X =
3.2750e+01

format long e
X

3.275000000000000e+01

CUBoulder : HPSC Course Notes

10 MATLAB

It is also possible to display values in hexadecimal or in bank format (with
up to two decimal places). Try

help format

for information on other format options. It is important to know that all
values are stored as double precision numbers regardless of the format chosen
for output.

4.5 Vector constants
A vector constant may be expressed explicitly as in
[99 39.24 -0.0075]

a vector (1 row, 3 columns) of three elements, or it may be expressed implic-
itly as in

[1:0.5:3]
which is equivalent to the expression
[1 1.5 2 2.5 3]

The expression 1:0.5:3.0 1s a constructor. The semantics of this con-
structor are given by:

initial value : step : final value

The parameter step may be negative, as in
[3:-0.5:1]

If the step parameter is omitted, it is assumed to be 1. The elements of a
vector may be separated by one or more blanks, as above, or by commas.
Type the statement

V = [6:-0.3:3]

and observe the resultant vector.

These vectors are called row vectors. Column vector consist of a single
column with one or more rows. A column vector may be defined by the
expression

CUBoulder : HPSC Course Notes

MATLAB 11

[9; -45.4; 0.22]

where a semicolon (;) is used to terminate each row. The transpose of a row
vector also forms a column vector. Try entering the statements

VR = [-5; 0.25; 3.5; 0.0; 6.2]
vl = Vv’

to see the column vectors produced.

4.6 Matrix constants

A matrix constant may be expressed by explicitly listing the elements, with
rows separated by a semicolon, as in

[T 2 3 4,1 4 9 16; 0.5 1.0 4.5 -8]

which is a matrix consisting of 3 rows and 4 columns. The rows of a matrix
may be written on separate lines of the input, omitting the semicolon, as in

[1 234
149 16
0.5 1.0 4.5 -8]

A row can be specified with a vector constructor as in
[1:4; 1 4 9 16; 0.5 1.0 4.5 -8]
Type the statement
M=1[1:4;1 4 9 16; 0.5 1.0 4.5 -8]

and observe the resultant matrix.

4.7 Arithmetic operators

The arithmetic operators are

A

CUBoulder : HPSC Course Notes

12 MATLAB

standing for addition, subtraction, multiplication, right division, left divi-
sion, and exponentiation. The precedence of these operators is as expected;
namely, ~ is done first, *, /, and \ next, and then + and -. Of course,
parentheses may be used to alter this operation order.

Addition, subtraction, multiplication, and exponentiation have their usual
meanings when applied to matrices, vectors, and scalars. The left division
and right division operators act as ordinary division when applied to scalars.
Their meaning in matrix operations is defined as follows: A \ B is equiv-
alent to the mathematical expression A=! x B; A / B is equivalent to the
mathematical expression A x B7L.

When a period character “.” appears in front of an arithmetic operator,
it means the operation should be performed element-by-element. For opera-
tions with scalars and for the addition and subtraction of vectors or matrices,
there is no change in the operation. Recall the 2 x 2 matrices A and B defined

earlier:

A

A =
1.00 2.00
3.00 5.00

B

B =
4.00 5.00
6.00 7.00

Now consider the following example :

C=A .%xB
D=4A./B

The matrices computed here are:

o 410 (02500 0.4000
— L1835)0 7T {05000 0.7143

The MATLAB User’s Guide [MathWorks 92b] refers to these as array oper-
ations.

Using matrices defined earlier in this tutorial, try some of these operations
to verify your understanding of them.

CUBoulder : HPSC Course Notes

MATLAB 13

4.8 Expressions and statements

Expressions are formed in the usual way with parentheses used to denote
grouping. MATLAB does a lot of checking: for instance, if you try to do
something stupid like multiply a 3x3 matrix by a 4 x4 matrix, then MATLAB
squawks at you.

Normally, each line you write is an assignment statement as in the exam-
ples above. However there are exceptions, as in the use of the plot command
that appeared in section 3.2 and for the control statements described in sec-
tion 6.5.

When you have completed typing in an assignment statement, you get
an echo on the screen that shows the value of the expression on the right of
the assignment, as we have observed earlier. You can suppress the echo by
putting a semicolon at the end of the line. If you type a line containing only
an expression, as in

A+ B

then the value is assigned to a default variable ans.
A long line of input can be continued on the next line by using an ellipsis
as in

A=A+B+C ...
+ D

Short expressions can be placed on the same line separated by commas

x=4,y=3,z=4

X =

4.00
y =

3.00
Z =

4.00

CUBoulder : HPSC Course Notes

14 MATLAB

allowing each expression value to be returned in the same order, or they may
be separated by semi-colons,

suppressing the response.

4.9 Compatibility

Operations on arrays and vectors must be compatible in the usual sense of
matrix algebra. In the expression

A *x B

the number of rows of B must equal the number of columns of A. In the
expression

A .x B
the number of rows of A must equal the number of rows of B and likewise,

for the columns.
If x is a scalar, and A is a matrix, then the expressions

e
~ + *
Mo oMM

are all valid; they mean that the indicated operation is to be performed
element-by-element with the scalar, yielding an array of the same dimension
as A. The expression

AT ox

implies that the matrix A is to be multiplied by itself x-1 times.

CUBoulder : HPSC Course Notes

MATLAB 15

4.10 Matrix references

The usual subscript notation can be used to reference the elements of a
matrix. Thus A(2,3) is the element of A in the second row and third column.

You also can refer to rows of a matrix, columns of a matrix, and blocks
of rows and columns. Thus A(:,2) refers to the second column of A. In
particular, if A is the matrix defined earlier, then the statement

X =A(:,2)

gives us the vector

()

Similarly, A(2, :) refers to the second row of A, i.e., (3 5)

Now, suppose that M is a 12 x 12 matrix. The expression M(3:5,5:10)
refers to a block, or submatrix of M, that consists of the elements in rows 3
through 5 that are also in columns 5 through 10. It is as if you cut out a
3 x 6 piece of M, as illustrated in figure 3.

4.11 Relational and logical operators

Relational expressions can be used in MATLAB as in other programming
languages, such as Fortran or C.

4.11.1 Relational operators

The relational operators are

These can be used with scalar operands or with matrix operands. A one or
a zero is returned as the result, depending on whether or not the relation
proves to be true or false. When matrix operands are used, a matrix of zeros
and ones is returned, formed by componentwise comparison of the matrix
elements.

CUBoulder : HPSC Course Notes

16 MATLAB

..... M(35,510)

Figure 3: Submatrix of 12 x 12 matrix M.

4.11.2 Logical operators

Relational expressions can be combined using the MATLAB logical opera-
tors:

&, |, and ~

meaning AND, OR, and NOT, respectively. These operators are applied element-
by-element.

As in other programming languages, logical operations have lower prece-
dence than relational operations which, in turn, are lower in precedence than
arithmetic operations.

5 Built-in functions

There are many built-in functions within MATLAB. You can browse the
manuals to see what is available. You can also type

help

CUBoulder : HPSC Course Notes

MATLAB 17

in MATLAB to obtain a list of built-in functions.
The usual math functions are built-in. We have already used the trigono-
metric function sin in the example in section 3.2 to produce a simple plot.

Those MATLAB commands are repeated here:

U = 0:pi/20:2%pi
W = sin(U)
plot(U,W)

Both sin and plot are built-in functions. Notice that the sin function has
a single argument, the vector U. This function returns a vector of the same
length as U where each element is the sine of the value of the corresponding
element in U; in other words, wy = sin(uy), we = sin(usy), etc.

In the above example, the plot function (or command) has two argu-
ments, U and W; both of these arguments are vectors. MATLAB plots the
elements in the first vector U against the elements in the second vector W.
The plot function can also be used with a single vector argument; in this
case, the elements of the vector are plotted against the indices. Type

help plot

in MATLAB to see what other arguments can be used.
Some built-in functions are rather special. An example is the function
ones that generates an array of ones; using this, the expression

ones(r,c)

produces an r X ¢ array with every element equal to 1. There is a correspond-
ing function zeros. Similarly, the expression

eye(r)

produces the r x r identity matrix. For more information on any of these
functions, use the help command.

Some of the functions save a great deal of programming work. For in-
stance, the polyfit function is useful for curve fitting and providing polyno-
mial approximations; this is discussed in section 5.1. The eig function pro-
vides the eigenvalues and eigenvectors of a matrix argument; this is described
below in section 5.2. Section 6.4 tells how to write your own functions.

It was noted earlier that MATLARB is case-sensitive. All built-in functions
have lower case names.

CUBoulder : HPSC Course Notes

18 MATLAB

5.1 Polynomial curve fitting

In section 3.1, we saw how to find the least squares solution to an overdeter-
mined linear system. Sometimes, the least squares problem is not presented
as a matrix problem but rather as a collection of data to be approximated in
the least squares sense by a polynomial. One way to determine the coefficients
of that polynomial is to set up and solve the appropriate overdetermined lin-
ear system. Another way is to call the matlab function polyfit to determine
those coefficients.

Suppose, for example, that we want to make a polynomial approximation
of the function y = sin(z) in the z-interval [0, 7] given the values

y =10, 0.7071, 1.0000, 0.7071, 0.0000]
at the x values
z = [0, 0.7854, 1.5708, 2.3562, 3.1416].
Typing
p = polyfit(x,y,2)
finds the coefficients
p=[—0.3954, 1.2420, —0.0049]

of the quadratic approximating the given data y in the least squares sense.
The degree of the approximating polynomial is equal to the third argument
of polyfit.

In this case, the approximating polynomial is y = pya®+ pyx +ps. Typing

pvals = polyval(p,x)

evaluates this quadratic at the given values of z.

Figure 4 shows the the sine function on the interval [0, 7] with the sampled
points marked by circles. The least squares quadratic is shown by the dotted
line. This figure was created with MATLAB; how to plot points and how to
graph multiple curves on the same plot is covered in section 8.

CUBoulder : HPSC Course Notes

MATLAB 19

-0.2 I I I I I I
0 0.5 1 15 2 25 3 35

Figure 4: A quadratic fit to the sine function on [0, 7].

5.2 Eigenvalues and eigenvectors

A different MATLAB function makes it easy to compute the eigenvalues and
eigenvectors of a matrix. Suppose that we have defined a matrix A. We can
compute its eigenvalues by typing eig(A) as in the following example.

A=1[210; 121; 01 2];
eig(h)

ans =

3.4142
2.0000
0.5858

In this case, the eigenvalues are the elements of the column vector ans. We
can put the eigenvalues into any column vector y by typing y = eig(4a).

To also compute its eigenvectors, we must provide a place for MATLAB
to store them:

CUBoulder : HPSC Course Notes

20 MATLAB

[X,D] = eig(h)

X =
0.5000 -0.7071 -0.5000
0.7071 0.0000 0.7071
0.5000 0.7071 -0.5000

D =
3.4142 0 0
0 2.0000 0
0 0 0.5858

In this case, the eigenvalues are stored on the diagonal of the matrix D and
the corresponding eigenvectors are stored as the columns of the matrix X.

We can check the quality of the computed eigenvalues and eigenvectors
by computing the residual errors. We will generally find that the computed
quantity A*X - X*D is a matrix with very small elements and that AxX(:,j)
- D(j,j)*X(:,3) is a vector with very small elements, for j = 1,2,3. It
is generally convenient to express the residual error in terms of the norm of
these quantities. In exact arithmetic, these matrices and vectors and their
norms would be exactly zero.

6 MATLAB scripts and user-defined func-
tions

As mentioned earlier, it is possible to write programs for MATLAB. There
are two types of MATLAB programs: scripts and functions.

A script is a program, containing regular MATLAB commands that could
be entered interactively during a MATLAB session. When the name of a
script is entered at the command prompt, the script is executed. This means
that the commands within the script are executed, affecting the variables in
the global workspace.

A function is also a program. As might be expected, a function returns a
value, but otherwise it does not affect the variables in the global workspace.

CUBoulder : HPSC Course Notes

MATLAB 21

Like a script, a function is executed by typing its name at the command
prompt. If a function has parameters, they are entered enclosed in parenthe-
sis following the function name.

Both scripts and functions should be stored as files with a .m extension,
e.g., myscript.m or myfunction.m. Because of this extension, scripts and
functions are typically referred to as M-files. Any of the commands discussed
above can be used in a MATLAB script or function.

When creating and testing new MATLAB scripts and functions, you may
find it useful to have two command windows open: one from which you are
running MATLAB and one from which you may be editing the new script or
function.

Figure 5: Plot of cosine function on [0, 27].

6.1 A sample script

The following is a simple script that plots a cosine curve in MATLAB.

CUBoulder : HPSC Course Notes

22 MATLAB

% This is a sample MATLAB script

h that plots a cosine curve

U = 0:pi/20:2%pi

Z = cos(U)

plot(U,Z) % This statement does the plotting.

The first two lines of this script are comments followed by a blank line; see
section 6.2 for a more detailed discussion on the use of comments and white
space in MATLAB scripts. Except for the comment at the end of the last
line, the rest of the script is similar to the commands that produced the sine
curve in figure 2.

To use a script within MATLAB, just enter the script file name without
the .m extension; typing myscript will execute the script myscript.m. If
the sample script above is stored in a file named plotcos.min the directory
from which you are running MATLAB, you need only type

plotcos

to run the script, causing the appropriate plot to appear in your figure win-
dow, as shown in figure 5. Note that running this script may alter the values
of U and Z.

6.2 Comments and white space

For both scripts and functions, the percent symbol % precedes a comment:
% This is a comment in MATLAB.

The % symbol may be in any position of the line; whatever follows the %
is considered to be part of that comment. A comment may even follow a

MATLAB command on the same line.
plot(U,Z) % This is a plot command

It is useful to place explanatory comments at the beginning of your MAT-
LAB script or function as documentation. If you later type the command

help myprog

CUBoulder : HPSC Course Notes

MATLAB 23

MATLAB responds by printing out the first contiguous block of comments
in the script or function stored in myprog.m.

Blank lines may be inserted in a MATLAB script or function; this provides
white space and promotes the readability of the program. The blank line
following the first block of comments in the myscript script indicates the
end of the lines to be printed by the help myscript command.

6.3 Continued lines

At times it is desirable to break up a MATLAB command line into two or
more separate lines. As discussed above, an ellipsis ... at the end of any
MATLAB command line indicates that that line is to be continued onto the

next line. This symbol may consist of three or more consecutive periods.

The definition of a matrix may require several lines since each line rep-
resents a row of the matrix. The line for each row may itself be a continued
line.

6.4 A sample function

Like a script, a function is a collection of MATLAB commands stored in an
M-file. Unlike a script, a function can itself be evaluated. A function may
take on a scalar or an array value. A scalar function value can be viewed
by typing the file name without the extension, e.g., myfunction, or it can
be assigned directly to a variable, as in y = myfunction. The value of an
array-valued function must be assigned to an array variable. User-defined
functions may be used not only interactively but also within scripts or other
functions.

Note: the name of the function must match the name of the M-file for
it. In other words, if you are creating a function named myfunction, the
file containing the MATLAB commands that define that function must be
stored as myfunction.m.

CUBoulder : HPSC Course Notes

24 MATLAB

A function may require input arguments. Once the arguments have been
defined, the function is evaluated by typing its file name (minus the ex-
tension) followed by the argument list, e.g., y = myfunction(argl, arg2,

., argn). For example, the following function evaluates a cubic polyno-
mial at the larger of the two input arguments.

% This is a sample MATLAB function
/A that evaluates a cubic polynomial
h at the larger of the two arguments x1 and x2.

function y = mycubic(x1,x2)

x = max(x1,x2);

y = x°3 + 2%x”2 + 1; 7, This statement determines
% the function value.

It the function mycubic is stored in the M-file mycubic.m, we can evaluate
the function mycubic by typing a series of statements like z1 = 1; z2 = 2;
z = mycubic(zl, z2). This series of statements causes the value 17 to be
assigned to the variable z.

In the following example, the array-valued function trigfunction takes
an angle theta (in radians) as argument and returns both its sine and cosine.

% This is a sample MATLAB function
h to evaluate the sine and cosine
h of the input angle.

function [costheta,sintheta] = trigfunction(theta)
costheta = cos(theta);
sin(theta);

sintheta

To evaluate this function, we must assign its value to an array: [c,s] =
trigfunction(0). After this call, we see that ¢ = 1 and s = 0.

Function arguments may be manipulated within a function, but input
values are the same on exit as on entry.

6.5 Control statements

MATLAB contains for, while, and if statements. The syntax of each is il-
lustrated in the examples below. These statements may be used interactively,
but are more commonly included with MATLAB scripts or functions.

CUBoulder : HPSC Course Notes

MATLAB 25

It is important to recognize that many of the operations that might re-
quire one of these statements in a language like C or Fortran do not require
them in MATLAB. Matrix multiplication is the most obvious example, since
the simple expression

A x B

produces the multiplication of the matrices A and B without any looping.

6.5.1 for statement

The sum of all the elements of the vector V can be computed using the for
statement:

However, this is more efficiently done by using the built-in sum function
S = sum(V)

The for statement may be nested and a constructor with an arbitrary
step can be used to define the loop index.

total = 0
for 1 = firsti : deltai : lasti
S(i) =0
for j = firstj : deltaj : last]
S(1) = S(1) + fun(i,j)
end
total = total + S(i)
end

where fun is some function of 1 and j.

CUBoulder : HPSC Course Notes

26 MATLAB

6.5.2 while statement

A while statement can be used to control the number of iterations of a loop:

while err > maxerr

n=n+1

err = funapprox(n,x) - funexact(x)
end

A group of while statements can be nested and any relational expressions
may be used (see section 4.11).

6.5.3 1if statement

for 1 =1 : maxrow
for 1 =1 : maxrow
if abs(A(i,j)) < thresh
A(i,j7) =0
else
A(i,j) = sign(A(d,j))
end
end
end

6.5.4 Further help

The help command gives information on these control statements; e.g., type
help if
Then try

help break

7 Input/output

This section discusses methods for creating input data for MATLAB as well
as ways to output the data. Graphical output is covered in section 8.

CUBoulder : HPSC Course Notes

MATLAB 27

In addition to the commands discussed here, there are a number of MAT-
LAB file input /output functions that resemble those in the C programming
language. These include such functions as fread, fwrite, fscanf, fprintf,

fopen, and fclose. See the MATLAB Reference Guide [MathWorks 92a] or

use help for more information on using these functions.

7.1 UNIX commands within MATLAB

While in MATLAB, it is sometimes useful to run normal UNIX commands.
This can be done with the escape command (!). For instance, to display the
contents of the current directory (when you can’t remember the name of your
M-file), just type

I1ls

Fortran and C programs can be edited, compiled, and run in the same man-
ner.

'vi myprog.f
177 -0 -o myprog myprog.f
'myprog > myoutput

Then the output of these programs can be used as input to MATLAB scripts
or can be edited to form M-files to produce plots or other data in MATLAB.

7.2 Session log

The diary command make it possible to save a log of partial or entire MAT-
LAB sessions. If you type
diary mylogfile

all the lines subsequently appearing in the MATLAB window are saved into
a file named mylogfile. If the filename is omitted, the name diary is used.
This feature can be turned off by the command

diary off
or by exiting MATLAB.

This not only provides a log of your session; it also suggests a method for
saving the results to be later edited into another format.

CUBoulder : HPSC Course Notes

28 MATLAB

7.3 Saving data

An alternate method for storing results from your MATLAB runs is using
the save command. For example, suppose you have created the following
array

M= [1:1:3; 10:2:14; 31:3:37; 5:5:15]

1 2 3
10 12 14
31 34 37

5 10 15

and you wish to store this data for use elsewhere. Just type
save mydatafile M /ascii

where the /ascii option of the command assures the results are in text
format. Then the file, mydatafile, contains the following:

1.0000000e+00
1.0000000e+01
3.1000000e+01
5.0000000e+00

2.0000000e+00
1.2000000e+01
3.4000000e+01
1.0000000e+01

3.0000000e+00
1.4000000e+01
3.7000000e+01
1.5000000e+01

7.4 MAT-files
MATLAB data may also be read or stored using MAT-files with the load

and save commands. There are some special routines and examples (in both

Fortran and C) to assist the user. See the chapter on Disk Files in the
Tutorial section of the MATLAB User’s Guide [MathWorks 92b].

8 Graphics

The sample script given in section 6.1 illustrated how to make a plot of the
cosine function using the plot function as shown in figure 5. This plot is
a simple two-dimensional X-Y plot drawn in the current MATLAB figure

CUBoulder : HPSC Course Notes

MATLAB 29

window. Many other types of plots are available in MATLAB. This section
introduces you to a number of these and describes how to label, combine,

store, and print MATLAB plots.

8.1 Types of two-dimensional plots

There are two types of two-dimensional or linear X-Y plots: line and point.
Three-dimensional wire frame and contour plots are also available; these are
discussed in section 8.5. Polar, logarithmic, semi-log, and bar plots can be
employed as well; see the entries on polar, loglog, semilogx, semilogy,

and bar in the MATLAB Reference Guide [MathWorks 92a] or type
help

for more information on these plots.

In the graphical examples discussed earlier in this document, the line
type of X-Y plot is used. The other type is a point plot; points are included
as part of figure 4. With a line plot, the gaps between the points are filled
in smoothly so that you get a continuous curve; in the point type, no fill-in
is done so only the points you specify are plotted.

An example of a statement that gives a point plot is

plot(U,W,’+’)

The sine curve appears as 41 distinct points (marked “+7), as shown in
figure 6. The statement

plot(U,W,’+’,U,W)

gives a point plot for the first plot, and a line plot for the second. Since
both curves are the same, the effect is to highlight the points on the curve.
This last feature is convenient for showing a least squares fit to experimental
data. You can plot the distinct data points and the smooth curve that fits
the data in the same picture. More information on graphing two curves in
the same plot is given in section 8.6.1.

You can use any symbol in the set {. + * o x} for point plots. You
can use any symbol in the set {- -- : -.} for line plots. If nothing is
specified, as in most of the examples here, the default line plot (symbol
“-7) is employed. You can also plot with different colors when using a color
monitor; look at

CUBoulder : HPSC Course Notes

30

MATLAB

08 L + +

0.6+ + +

0.2

0+ +

-0.2+

-0.61 *

-0.81 + +

Figure 6: Point plot of sine function.

help plot

for information on specifying color arguments.

8.2 Labelling plots

The picture can be labelled, the axes can be labelled, and you can display
grid lines in the coordinate system. The following script does all of this for

the sine plot previously shown in figure 2:

% This MATLAB script plots a sine curve

U = 0:pi/20:2%pi

W = sin(U)

plot(U,W) % produces basic plot
title(’Sine Function’) % places title at top
xlabel (’angle in radians’) % labels x-axis

CUBoulder : HPSC Course Notes

MATLAB 31

Sine Function
T T

sine

-0.2- 1
-0.4 1
_0.67 .
-0.8 1
-1 | | | | f |
0 1 2 3 4 5 6 7
angle in radians
Figure 7: Labeled plot of sine function.
ylabel(’sine’) % labels y-axis
grid % adds grid marking

Notice that the labelling commands are given after the plot is created. The
result is shown in figure 7.

It is also possible to place text on the graph while it is in the figure
window by using the mouse. The command

gtext (’Your text’)

makes a crosshair appear on the window containing the plot, as in figure 8(a).
Just move the mouse to the desired location and click; the label containing
Your text appears there, with the first letter placed in the inside corner of
the northeast quadrant of the crosshair. The final result is in figure 8(b).

CUBoulder : HPSC Course Notes

32

sine

sine

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Sine Function

3 4 5
angle in radians

(a)

Sine Function

Your text

3 4 5
angle in radians

(b)

MATLAB

Figure 8: Sine function plot: (a) with gtext crosshair; and (b) with label entered

by gtext.

CUBoulder : HPSC Course Notes

MATLAB 33

8.3 Handle Graphics

Plots can also be labelled or manipulated in other ways using what MATLAB
calls handle graphics. When the figure window is formed, it is assigned a
unique number called its handle. This permits more than one figure window
to exist at a time.? If you type

gct

the value returned contains the handle of the current figure window.

A figure window is provided with a set of default properties. You can use
the figure window handle to redefine any of these properties. As an example,
we can alter some of the properties of the current figure window as follows:

handfig = gcf
set (handfig, ’Position’, [0, 0, 300, 280])

The first line stores the handle of the current figure window in the variable
handfig. The second line moves the window to the bottom left corner of the
screen and resizes it to be 300 x 280 pixels. Type

help gcf
help set
help get

to learn to alter other figure window properties.

In MATLAB, every graphical object has a handle. The list of graphical
objects includes the screen itself, the figure windows, and the axes of the
plot within the figure windows. For instance, the handle of the root screen
is the integer zero. Images, lines, surfaces, and text along with user interface
controls and menus are also graphical objects. This hierarchy of graphi-
cal objects with handles allows the user to control the MATLAB graphics
environment as he wishes.

The gca function returns the handle of the axes object in the current
figure window. Using this and the axes function, the ticknames or ticks
on the axes of the current figure may be modified. The older axis func-
tion can be used for a similar purpose. See the MATLAB Reference Guide
[MathWorks 92a] or type

2For more information on multiple figure windows, see section 8.6.3.

CUBoulder : HPSC Course Notes

34 MATLAB

help gca
help axes
help axis

for more information.

8.4 Hardcopy plots

When a plotting command is executed, the plot appears in the active figure
window. This is the current figure window for all plots. Later plots may
erase this plot, unless a new figure window is created or control is given to
another window. However, if you type

print

on some systems, a hardcopy of the plot in the current figure window is
printed on your default printer.

You can also save a copy of the plot with the print statement. For
example,

print myplot -dps

translates the current plot into PostScript and stores it in a file named
myplot .ps.

It is possible to convert the plot into a color or an encapsulated PostScript
file by using other options of the print command. For example,

print mycplot -dpsc
generates the color PostScript file, mycplot.ps, and
print myeplot -deps

produces the encapsulated PostScript file, myeplot.eps. The PostScript files
can be printed out from the UNIX shell with the 1pr command

lpr myplot.ps
lpr mycplot.ps

and both the PostScript and encapsulated PostScript files can be incorpo-
rated into figures within the text of a paper.
Many other options are available for this command. Refer to the sec-

tion on print in the MATLAB Reference Guide [MathWorks 92a] for more

information.

CUBoulder : HPSC Course Notes

MATLAB 35

8.5 Three-dimensional plotting

At times, three-dimensional grid plots or contour plots are desired. MATLAB
provides some facility for these.

8.5.1 Three-dimensional grids

Mesh plots show a three-dimensional surface as a mesh or wire frame surface.
Here the a and y values merely provide the size of the grid; a rank(x) x
rank(y) matrix gives the values of the grid points of the surface — one value
for each xy point. Thus, the only needed argument to the mesh command is
that matrix.

The plot in figure 9 is created by the following script:

% This MATLAB script plots a 3-D sine curve as mesh

U = 0:pi/20:2%pi;
X = ones(size(U’))*U;
Y = U’*ones(size(U));

W2 = sin(X) + sin(Y);

mesh (W2)
title(’Mesh plot: sin(X) + sin(Y)’)

A surface plot with shading can be obtained by adding the following two
commands:

surf (W2)
title(’Surface plot: sin(X) + sin(Y)’)

This is shown in figure 10.
If we use the £1113 function,

£1113(X, Y, W2, U)
title(’3-D polygon plot: sin(X) + sin(Y)?’)

we no longer have a surface. Instead, the grid is broken up into three-
dimensional polygons, one per column. This is displayed in figure 11. Consult
the manual or type help for a more detailed explanation of the £1113 and
related functions.

CUBoulder : HPSC Course Notes

36

Mesh plot: sin(X) + sin(Y)

NSt

Figure 9: Mesh plot of sin X +sin Y.

Surface plot: sin(X) + sin(Y)

AN
AN
0SSN
iy (O N\
,///0;":'0 NN

Vi NN

TN
{O00GETORNN
W

Figure 10: Shaded surface plot of sin X 4+ sin Y.

CUBoulder : HPSC Course Notes

MATLAB

MATLAB 37

8.5.2 Contour plots

The command to produce a contour plot of a surface works in much the same
way as the mesh and surf commands. The plot in figure 12 is generated by
the same script as in section 8.5.1, substituting the following lines for the
original mesh and title commands.

contour (W2)
title(’Contour plot: sin(X) + sin(Y)’)

8.6 Multiple plots

Often there are times when you need to observe more than one plot at the
same time. You may wish to plot more than one function on the same plot.
You may wish to have more than one plot in the same window. You may
even wish to have more than one figure window containing plots.

8.6.1 Multiple functions in a plot

Suppose you want two curves plotted on the same graph as in figure 4. The
script below graphs the sine and cosine curves together. This plot is shown
in figure 13.

% Plots both sine and cosine curves together

U = 0:pi/20:2%pi
W = sin(U)

Z = cos(U)
plot(U,W,U,Z)

The pattern illustrated here holds true in general, and the vector of ab-
scissae (U in this example) need not be the same in each case. Thus

plot(X1,Y1,X2,Y2,X3,Y3)
plots the three curves (f(X1,Y1), ¢(X2,Y2), hA(X3,Y3)) in the same plane.
An alternate method for putting one plot on top of another is to use the

hold command. This tells MATLAB not to erase the contents of the figure
window until the command

CUBoulder : HPSC Course Notes

38 MATLAB

3-D polygon plot: sin(X) + sin(Y)

Figure 11: Three-dimensional polygon plot of sin X + sin Y.

Contour plot: sin(X) + sin(Y)
; T

5 10 15 20 25 30 35 40

Figure 12: Contour plot of sin X 4+ sin Y.

CUBoulder : HPSC Course Notes

MATLAB 39

08 / 1
\ /’
/ /
/
N ’
0.6 \ / 1
. /
\ /

\ //
N ’
0.4 Y / .
/
\ ;
/

\ ;
,
0.2} \ ; 1
: ;
,
\
|- \ / —
=U. \ v
,

\ /)
Y /
\
-0.61) / .
Y /
Y /
\

Figure 13: Plot of sine and cosine.

hold off

is entered. In this way, any number of plots can be placed within the same
plane with the axes remaining constant.

Some built-in functions provide multiple plots. The surfc function com-
bines a surface plot with a contour plot of the same three-dimensional object.
Figure 14 shows the effect of this function on the same sine function used in
figures 9 through 12.

8.6.2 Multiple plots in a window

Occasionally, it is useful to have more than one plot within in the figure
window. This can be done; an example is shown in figure 15 of drawing
both the mesh and contour figures shown in figures 9 and 12 in one window.
The two plot statements that produced this example were preceded by the
function named subplot, as follows

CUBoulder : HPSC Course Notes

40

Combined surface and contour plot:

S NN S~
0 SN S
SOSeR i
CSOSSSSSS: SOSSe RN
SO S SSTUTNN
SIS S

SO
SRR

-2
60

0 o 10

sin(X) + sin(Y)

<
=
SN

=
SSOCSC
S CS X

TR S
N\\uertee

5 10 15 20 25

Figure 15: Subplots of mesh and contour plots.

CUBoulder : HPSC Course Notes

30

MATLAB

MATLAB 41

subplot(2,1,1), mesh(W2)
subplot(2,1,2), contour(W2)

There are three numeric arguments to subplot; these are all positive
numbers. The first number specifies the vertical number of plots desired in
the figure window; the second specifies the horizontal number of plots. The
last number tells in which subplot region the plotting command (plot, mesh,
contour) is to plot.

Figure 16 contains four plots in a single figure window. The MATLAB
script that produced these plots is below:

% This script uses the ’sphere’ and ’cylinder’
% functions to produce subplots of a sphere and
% the cylinder constructed with one of the

% columns of the matrix defining its y-axis.

[Sxx, Syy, Szz] = sphere(16);
subplot(2,2,1), mesh(Sxx, Syy, Szz)
title(’Mesh plot: sphere(16)’)

subplot(2,2,2), surfl(Sxx, Syy, Szz)
title(’Shaded Surface plot: sphere(16)’)

[Cxx, Cyy, Czz] = cylinder(2+Syy(8,:));
subplot(2,2,3), mesh(Cxx, Cyy, Czz)
title(’Mesh plot: cylinder(2+Syy(8,:))’)

subplot(2,2,4), surf(Cxx, Cyy, Czz)
title(’Surface plot: cylinder(2+Syy(8,:))’)

There are two built-in functions used in this script: sphere and cylinder.
The sphere function returns three matrices containing the coordinates of
the sphere; in this case, each of the matrices will be of size 17 x 17. The
cylinder function is similar, but we have specified the radius of the cylinder
to be 2 plus the elements of the middle row of the matrix that defines the
y-coordinates of the sphere.

CUBoulder : HPSC Course Notes

42 MATLAB

Mesh plot: sphere(16) Shaded Surface plot: sphere(16)

-1 -1 -1 -1

Surface plot: cylinder(2+Syy(8,:))

Figure 16: Subplots showing the mesh and shaded surface plots of a sphere
determined by three 17x 17 matrices of coordinates (named Sxx, Syy, and Szz) and
the mesh and surface plots of a cylinder whose width is two plus the y coordinates
of the sphere.

8.6.3 Multiple figure windows

The figure command is used to create additional figure windows. If you
type

hnum = figure

a new figure window is activated, and the handle number of the new figure
window is assigned to hnum. If you wish to make a new figure window with
a particular handle (say 123), just type

figure(123)

The figure command can also be used to specify other parameters for the
new window. These include the size of the window, the title of the window,

CUBoulder : HPSC Course Notes

MATLAB 43

the position of the window on the screen, and the background color. See the

MATLAB Reference Guide [MathWorks 92a] or type
help figure

for more information.

8.7 Creating images

Besides producing various plots, it is possible to create an image in a figure
window with MATLAB. These images may be colored by different color maps.
Refer to the manuals or type

help image
help colormap
help ColorSpec

to find out more about these possibilities.

9 That’s it!

Well, that is a brief overview of MATLAB. Be sure to do all of the examples
given here while you are on the computer. This gets you started.

We have tried to make this short so that you would be able to quickly get
into using MATLAB. On the other hand, this has forced us to leave out a
lot of stuff that is potentially useful. Now it is up to you to learn more from
the manuals and on-line documentation.

CUBoulder : HPSC Course Notes

44 MATLAB

10 Acknowledgements

We would like to thank Jim Tung of The MathWorks, Inc. for his careful

proofreading and many suggestions.

References

[MathWorks 92a] The MathWorks, Inc., Natick, MA. [Aug 1992]. MATLAB:
Reference Guide.

[MathWorks 92b] The MathWorks, Inc., Natick, MA. [Aug 1992]. MATLAB:
User’s Guide for UNIX Workstations.

[Sigmon 94] SIGMON, KERMIT. [1994]. MATLAB Primer. CRC Press, Inc.,
Boca Raton, FL, 4th edition.

CUBoulder : HPSC Course Notes

