
Assignment 4: Sensor Network SNL
To run the SN Matlab functions, there needs to be a file named: CS6380_SN_Agent1.m in the home

directory. The simulation function will make more copies of this as needed to make more sensor

network agents (motes). The motes are placed in a 10x10 region.

Example Run
> clear all % the agents use persistent variables, this clears them

> [res_50,motes_50] = CS6380_SN_sim(20,50,3,1); % 20 time steps; 50 motes;

 3 for broadcast range; 1 means random placement
> trace_50 = CS6380_SN_mess2trace(res_50); % extract content from messages
> clus_50 = CS6380_SN_clusters(trace_50); % extract clusters from content

> CS6380_SN_show_motes(motes_50,clus_50);

Figure 1. Example of SNL Protocol with 50 Motes

Agent Behavior
The agent is defined as a FSM. It takes a percept as input and returns actions. The percept consists of

two parts: a message, and a temperature:

 percept.message:

o .type (int): currently only uses ACL_INFORM (assigned value 8)

o .sender (int): sender UID

o .receiver (int): receiver UID (if 0 BROADCAST)

o .content (int vec): SNAL (Sensor Network Agent Language) message

 (1): SNAL code; one of:

 MY_ID = 1;
 CLUSTER = 2;
 TEMP_REQ = 3;
 TEMP = 4;
 DISTS_REQ = 5;
 DISTS = 6;

 percept.temp (float): temperature at mote location

The action returned has two components which each may have several entries:

 actions.do (will be [] for this assignment)

 actions.message (message list):

o (i).message (message data type)

Each agent should also have a set of persistent variables to keep track of its state (e.g., my agent):

persistent UID state resolved leader time remaining neighbors distances
persistent my_leader locs time_start3 time_end3 known_leaders

if isempty(state) % initial values
 UID = 1;
 state = 1;
 resolved = 0;
 leader = 0;
 time = 0;
 remaining = [UID];
 neighbors = [];
 distances = [];
 my_leader = 0;
 locs = [];
 time_start3 = -1;
 time_end3 = -1;
 known_leaders = [];
end

Function Descriptions
function [results,motes] = CS6380_SN_sim(max_time,num_motes,b_range,...
 type_init)
% CS6380_SN_sim - simulate sensor network agents
% On input:
% max_time (int): max number of time steps
% num_motes (int): number of sensor network agents
% b_range (float): broadcast range for motes
% type_init (int): picks type of sensor network layout
% 1: random (uniform 2D) in 10x10 region
% 2: grid: sqrt(num_motes) per side
% 3: special test layout: Nei(1,2), Nei(1,3), Nei(4,2), Nei(4,3)
% should result in 1 and 4 as leaders
% Call:
% clear all
% [res_50,motes_50] = CS6380_SN_sim(20,50,3,1);
% trace_50 = CS6380_SN_mess2trace(res_50);
% clus_50 = CS6380_SN_clusters(trace_50);
% CS6380_SN_show_motes(motes_50,clus_50);
% Author:
% T. Henderson
% UU
% Summer 2014
%

function motes = CS6380_SN_init_motes(num_motes,b_range,type_init)
% CS6380_SN_init_motes - initializes the mote locations and neighbors
% On input:
% num_motes (int): number of motes
% b_range (float): maximum broadcast range
% type_init (int): picks type of sensor network layout
% 1: random (uniform 2D) in 10x10 region
% 2: grid: sqrt(num_motes) per side
% 3: special test layout: Nei(1,2), Nei(1,3), Nei(4,2), Nei(4,3)
% should result in 1 and 4 as leaders
% On output:
% motes (mote data structure):
% (i).x (float): x location
% .y (float): y location
% .nei (int vec): list of neighbor indexes (==UID's)
% Call:
% motes = CS6380_init_motes(10,3,1);
% Author:
% T. Henderson
% UU
% Summer 2014
%

function temp = CS6380_SN_temp(x,y)
% CS6380_SN_temp - return temperature at location [x;y]
% On input:
% x (float): x location
% y (float): y location
% On output:
% temp (float): temperature at [x;y]
% Call:
% tp = CS6380_SN_temp(2.3,5.7);
% Author:
% T. Henderson
% UU
% Summer 2014
%

Figure 2. Temperature Function for SN Assignment

function messages = CS6380_SN_in_range(UID,a_mess,motes)
% CS6380_SN_in_range - return messages that are within range of mote
% On input:
% UID (int): unique ID
% a_mess (message list): list of messages in actions
% motes (mote data structure): mote info
% On output:
% messages (message list): messages in range of UID
% Call:
% mess_list = CS6380_SN_in_range(3,prev_mess,motes);
% Author:
% T. Henderson
% UU
% Summer 2014
%

function trace = CS6380_SN_mess2trace(messages)
% CS6380_SN_mess2trace - convert simulation trace to messages
% On input:
% messages (message data structure): from SN simulation
% (i).message
% .type (only type==8 used: ACL_INFORM)
% .sender (int): UID of sender
% .receiver (int): UID of receiver (or 0 if BROADCAST)
% .content (int vec): SNAL(Sensor Network Agent Language) format
% (1): MESSAGE_TYPE
% (2:end): MESSAGE INFO
% .RSS (float): received signal strength
% On output:
% trace (trace data type):
% (i).info: content from messages
% Call:
% trace_50 = CS6380_SN_mess2trace(res_50);
% Author:
% T. Henderson
% UU
% Summer 2014
%

function clusters = CS6380_SN_clusters(trace)
% CS6380_SN_clusters - extract clusters from message trace
% any content message with SNAL command == 2 gives cluster
% On input:
% trace (trace data structure): list of message contents
% (i).info (int vec): [SNAL_cmd info]
% On output:
% clusters (cluster data structure): clusters in sorted order
% (i).cluster (int vec): [LEADER f1 f2 ... fn]
% Call:
% clus_50 = CS6380_SN_clusters(trace_50);
% Author:
% T. Henderson
% UU
% Sumer 2014
%

function CS6380_SN_show_motes(motes,clusters)
% CS6380_SN_show_motes - display motes, comm network and leaders
% On input:
% motes (mote data structure): mote info
% (i).x (float): x location
% (i).y (float): y location
% (i).nei (int vec): neighbors (UID) indexes
% clusters (cluster data structure): clusters in sorted order
% (i).cluster (int vec): [LEADER f1 f2 ... fn]
% On output:
% Figure showing layout of SNL
% Call:
% CS6380_SN_show_motes(motes_50,clus_50);
% Author:
% T. Henderson
% UU
% Sumer 2014
%

