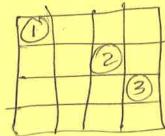
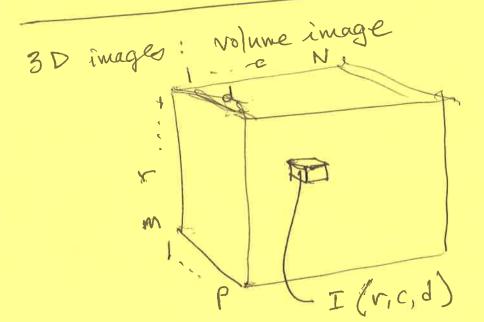

CS4640 Aug. 20
Representation: chapter)
digital image (20): M×N away of values
I(m,n)
$\frac{1}{2}$
M
if viewed as a continuous patch of the plane
$I(x_1y)$
then Eastessan coordinates
origin & y x matches row y matches col
×


However, some put origin at lower left;

Given an image, sometimes need to convert between this coordinate frame + vow, as liberes

y= M-r+1 =x = C


1= M-y+1

what values an image can howe

bonay: I(m,n) e 20,17

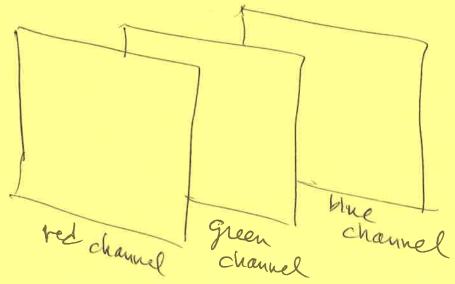
gray level: I(m,n) € {0,1,..., 255}

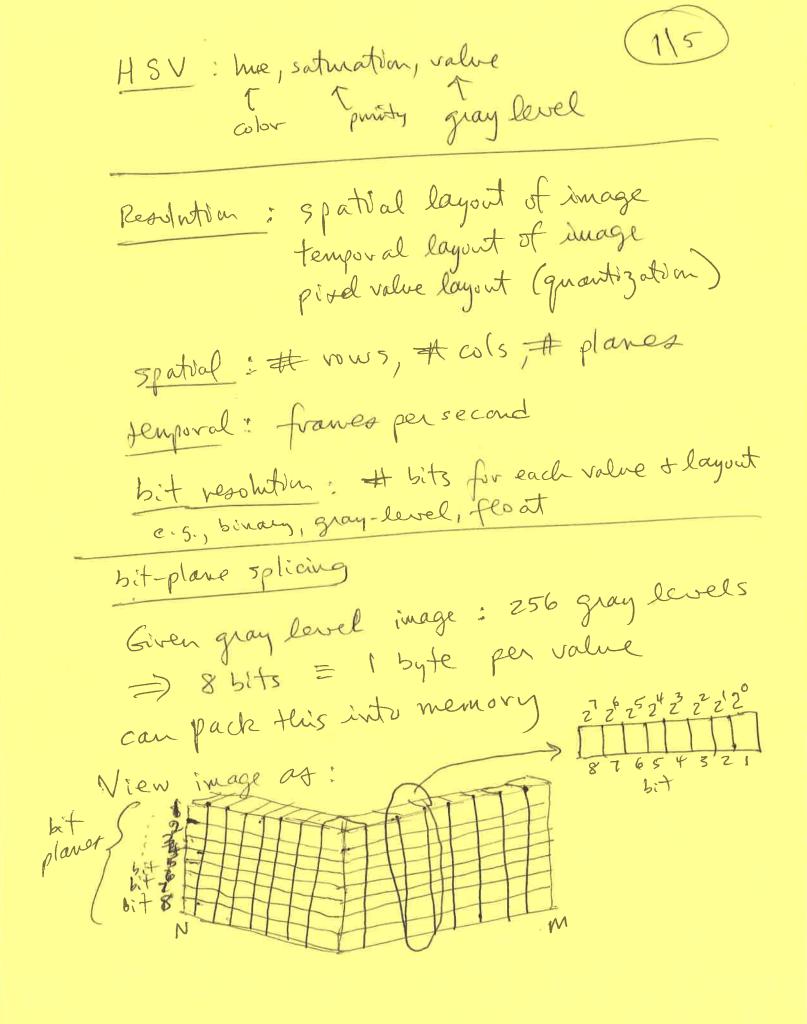
floating point: I(m,n) € floats

e.g., density in CAT scan

Color

folse color map: index gray level into a color map; e.g.


		- 1		-+		
1	1	2	4	5	3	
Ŧ	1	2	4	5	3	
1		2	4	5	3	
0	1	3	u	5	3	
3	-	1	×	*	F	


1000 ved 2100 ved 3010 green 500 util

black

green column bollade red who whate column column alumn column

true color: RGB

Display only I bit plane at a time

CS4640_slices

TIP/P

where is the noise?

Image Formats (see p. 6 of feat) GIF JPEG BMP PNG

Image Congression E.s., only keep bit planes 3 to 8 saves: 2*M*N bits assume M+N are even, then sowes MON bytes

Color revisited

To convert RGB to gray level:

$$g = 2 + \beta g + \gamma b$$

 $\beta = 0.5870$
 $\gamma = 0.1140$

Test this out in natlab

(statements) = (statement); Mottab Basic statements Estatement?; Assignment A = 3; if Leard 7 (statements) end if econd > (s tatements) else (statements) for k= 1:n (statements? end while cound > (statements) end

Mat lab data structures

variables

627 min-dist

vectors

row: e.g., [2,4,6,7,9] is 1x5

col: es.,

 $\begin{bmatrix} 4 \\ 8 \\ 7 \end{bmatrix}$ is 3×1

anays (matrixer)

2D [100] is 3x3 identity

[1874] 15 2X4

[12] is a 2×2×3

[5 6]

(a 10)

functions (examples) goes in . m file function From 1 e.g., hello, m display ('Hello would!'); 3 fun 2. m function fun 2(x) X function y = fun3(x) / -> fun3, m y= X * x +3; function [y1,y2] = fun 4(x) yl= X12; y2= squt(x); end

Matlab Il functivos

imfinto imread imwrite imshow imagesc Colormap subplot (not imview) imtool impladingo rgbzgran mat 2 gray rgh?hsv load

Image Formatilu

image = PSF 0 of + n

noise

convolution

scene

function

describes how imaging system spreads input across image

 $g(x,y) = \iint f(x',y') h(x,y,x',y') dx' dy'$ ps F

want to linearly add influence of each scene point at each image point use Divac delta function $S(x,y) = \infty$ x = 0, y = 0O else S S(xxy) dxdy=1 If f(x(y) f(x-x0)y-y0) dxdy = f(x0, y0) idealized - point $f(x,y) = f(x-x_0,y-y_0)$ vertical live $f(x,y) = f(x-x_0)$ horizontal line flxig) = f(y-y0) arbitray live f(ax+by+c) flxy) = Esuppose [[a]]=1 ax+by+ c=0 Then [3] is unit normal to line if b = 0, then % is slope of line and $(0, -\frac{c}{6})$ is on live

g(x,y)= S[S(x'-x0,y'-y0)h(x,y;x,y')dx'by'

giftly theoren then g(x,q)= h(x,y;x',y')

called impulse verpouse. It is the point spread funder

since imaging is livear: PSF describer process completely.

imaging systems are shift invariant;

h(x,y;x',y') = h(x-x',y-y')

 $g(xyy) = \int f(x',y')h(x-x',y-y')dx'dy'$

definith of convolution

book uses notation f(x,y) ** h(x,y)

P(X) xh(X)

most people use f(x,y) o h(x,y) f(x) v h(x)

Discrete convolution (our view)

1D: suppose f=[12345] h=[54321]

$$g(2) = \frac{00012345}{12345} = 14$$

$$g(3) = \frac{0012345}{12345} = 26$$

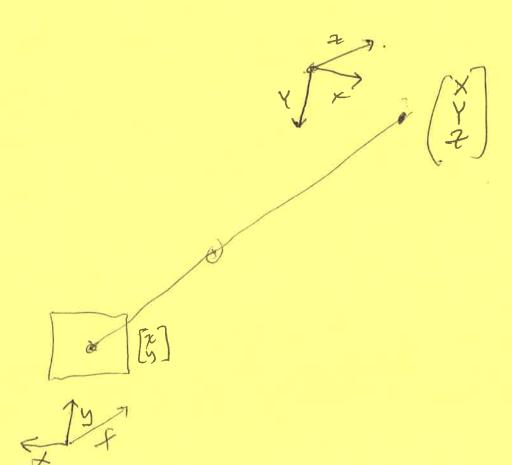
i.e., slide reversed halong 0-padded f wherever there is overlap

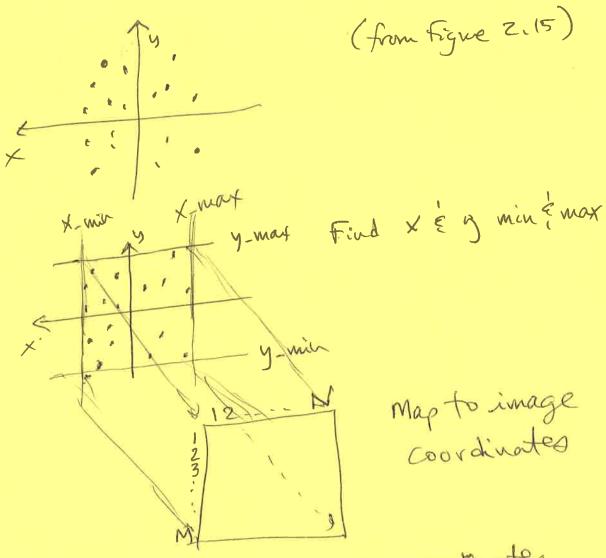
[5,14,26,40,55,40,26,14,5] = foh

$$g(1,1) = \begin{cases} 8.7 & 0 \\ 6.5 & 1 \\ 7.0 + 8.0 + 6.0 + 5.1 = 5 \end{cases}$$

$$g(1,2) = 87$$

$$6,1^{5}2 = 6+10 = 16$$


$$34$$


$$9(113) = 6.5$$
 $12 = 6.2 = 12$
 34

Perspective projection equations

$$\chi = f \frac{\chi}{z}$$

$$y = f \frac{Y}{Z}$$

Issuer: * X, y pts are not integer coordinates

* intensity related to distance

* should apply Gaussian filter

* image inverted

Note:

* X-min × X-max

| C N |

X-max × X-max | C ON X |

X-max X-max | C ON X |

X-max X-max | C ON X |

| X-max X-max | X-max | C ON X |

X-max X-max	X-max	X-max
X-max X-max	X-max	X-max
X-max X-max	X-max	X-max
X-max X-max	X-max	X-max
X-max X-max	X-max	X-max
X-max X-max	X-max	X-max
X-max X-max	X-max	X-max
X-max X-max	X-max	X-max
X-max X-max	X-max	X-max
X-max X-max X-max		
X-max X-max X-max		
X-max X-ma		

Usually: im = foh + w where wn N (m, o2) most probable is m Problem

If you take a bunch of samples, the histogram will be:

Salt & Pepper : pixels timed to 0 or 1 randomly