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Abstract— Knowledge representation is a traditional field in
artificial intelligence. Researchers have developed various ways
to represent and share information among intelligent agents.
Agents that share resources, data, information, and knowledge
perform better than agents working alone. However, previous
research also reveals that sharing knowledge among a large
number of entities in an open environment is a problem yet
to be solved. Intelligent robots are designed and produced by
different manufactures. They have various physical attributes,
use different knowledge representations and have different
needs. In this research, we pose robot knowledge sharing as an
activity to be developed in an open environment - the World
Wide Web. Just as search engines like Google provide enormous
power for information exchange and sharing for humans, we
believe a searching mechanism designed for intelligent agents
can provide a robust approach for sharing knowledge among
robots. We have developed knowledge representation for robots
that allows Internet access and a knowledge organization and
search indexing engine that performs knowledge retrieval.

I. INTRODUCTION

In the past when we needed to know something, we
would look it up in an encyclopedia or find a book on
the subject. Nowadays, we turn to web search engines, like
GoogleTM 1 or YahooTM 2, and are given pointers to a large
amount of information, and we usually find what we’re
looking for relatively quickly and easily. In this research,
we develop similar capabilities for physical robots, including
humanoid robots, which act in the world and must know a
great deal about it. This includes robot butlers, surgeons,
drivers, hospital orderlies, homecare nurses, etc. Thus, when
a robot encounters an unfamiliar or unknown object in its
environment, or when it needs to know how to perform a
particular task with or on an object (e.g., clean it), it will
be able to query a Robot Google in order to get pointers to
relevant information available in the world wide web.

Humans achieve knowledge sharing mainly through natu-
ral language: queries are words that are matched to document
content. For robots, it is not clear how to achieve this, and
the question arises as to what representations best facilitate
robot knowledge sharing. It is quite clear though, both
the content of the knowledge representation and its format
impact the effectiveness of this sharing. We would like to
build our framework on solid ground so that knowledge
representations derived from it allow common usage. Our

1GOOGLE is a trademark of Google Inc.
2Yahoo is a trademark of Yahoo Inc.

framework provides a convenient yet unambiguous way to
support the representation. Robots that use our framework
may communicate with each other usefully.
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Fig. 1. The Robot Google Framework.

The developed framework for our solution is shown in
Figure 1. In this figure, each participant robot creates web
accessible knowledge repositories; the Robot Google server
harvests knowledge from each of the participant robots
and then creates and organizes efficient indexes into the
database. Participant robots query the Robot Google server
for knowledge and receive URLs pointing to other robots’
knowledge. Robots, in this view, act as agents [1], [2], [3],
[4], [5], and we assume their ability to generate the necessary
knowledge structures; this is not an issue of investigation
here.

Imagine a scenario like the following. A kitchen robot
works in a kitchen. It is told to clean all kitchenware.
After successfully cleaning a few plates, forks and spoons,
the robot notices that there is a pair of wooden sticks.
The robot is confused by this pair of wooden sticks as it
has never seen this before. It does not know what to do
with them. By asking a nearby human, the robot learns
that this pair of wooden sticks is called “chopsticks.” The
robot then formulates a query and sends it to the Robot
Google server though its on-board Internet connection. It
wants to know if these chopsticks need to be cleaned (as
it is told to clean all kitchenware) and if so, how to clean
them. The Robot Google server processes the query, and
responds with: please go to www.robot chopstick.com/info
to see more information about chopsticks and please go



to www.robot chopstick.com/clean to see how they can be
cleaned. The robot then access these URLs and downloads
the needed information. It then cleans the pair of chopsticks
successfully.

As a general framework, we propose to consider a robot
to be much like its human counterpart sitting at a computer
terminal in the following sense. Two major paradigms have
been established to support people:

1) Java virtual machine
2) Web-based search engines.

The first provides a means for a particular machine to
emulate a universally shared virtual machine, and in ef-
fect, to embody another machine through the execution of
byte-code. An analogous approach for robots requires the
definition and adoption of a universal reference standard
for some abstract mechanism, and the local embodiment of
that abstract machine in the particular instance of a specific
robot (e.g., executing bot-code). There could be a variety of
abstract reference machines; e.g., mobile 3-DOF vehicles, 6-
DOF robot arm mechnisms, or 44-DOF humanoid linkage
mechanisms (e.g., see [6]). Each robot manufacturer would
then provide interpreters for such abstract reference models.

The second paradigm, web-based search engines, ad-
dresses ways to find and share relevant knowledge. We
describe in this paper a specific framework in which all
queries and information gathering flow through the search
engine (see Figure 1). This follows human use of a search
engine and allows knowledge indexing, querying and rel-
evance determination (the latter is possible since requests
for URLs must also be submitted through the Robot Google
search engine).

A large amount of work need to be done to realize the
Robor Google scenario. Questions need to be answered
include: (1) How does a robot communicate with Robot
Google? (2) How does Robot Google process and answer
a query? (3) How does one robot know if information stored
on a website applies to its own environment? These are
interesting questions that point to intensive research. This
work focuses on solving one core problem: build a multi-
format data search engine for robot knowledge sharing.

The next section describes some relevant background
work. Section III presents our view of robot knowledge.
Section IV introduces the Robot Google architecture. We
discuss functions and designs of Robot Google components.
Section V presents experimental results on our sample data
set. We conclude in section VI with future research.

II. RELEVANT WORK

The study of knowledge representation can be traced back
to ancient Greece. Epistemology, the study of the nature of
knowledge and its justification, was established by Plato in
the fifth century B.C. [7]. Since then, the study of knowledge,
including its nature, representation, development, etc. has
been carried on by philosophers, mathematicians, linguists,
and scientists. Most knowledge representation developed
today is rooted in various logics. Recently, some computer
scientists have expressed belief that grounding knowledge

purely in logic, e.g., in symbolic languages, is insufficient
for building intelligent agents, e.g., robots. They propose
to develop sensor grounded and context-aware knowledge
representations for robot [8], [9]. Even though their work is
promising, they are still far from providing a comprehensive
and satisfactory solution.

Although still in its formative stages, several groups
are making progress on sensor-grounded robot knowledge
creation. Cohen et al. [10] describe a natural semantics
approach in which robots learn meanings through their inter-
action with the environment. In natural semantics, meanings
are acquired and maintained by the robot system, and not
specified externally by human programmers or knowledge
engineers. In this work, a robot is provided with a small
number of behaviors (e.g., move, turn, open gripper, etc.),
and the robot records sensor data streams. In this way, the
robot learns a sensor data based ontology through interaction
with the environment, and concepts are related to the sense
data.

The Spatial Semantic Hierarchy, which allows bootstrap
learning from uninterpreted experience [11], the human
developmental theory based robot behavior study [12], the
relational representation for procedural task knowledge [13],
the cognitive robot [14], [15], etc, are some examples of a
group producing sharable robot knowledge.

Another influential work in knowledge sharing in general
is the Knowledge Interchange Format, known as KIF [16].
KIF was defined as an ANSI standard by the NCITS T2
committee on Information Interchange and Interpretation in
1998. KIF is a version of typed predicate logic, which differs
from the sensor data grounded knowledge sharing. The book
by Davies et al. [17] provides a very clear review of methods
and tools developed for the human semantic web, which
set its aim as to create a universal medium for information
exchange by putting documents with computer processable
meaning on the World Wide Web. Using the Semantic Web,
information can be better organized and more accurately
delivered to a human reader.

III. ROBOT KNOWLEDGE

Humans recognize the external world first through sensory
organs. Imagine when we visit a museum, there are a number
of artifacts on display. Suppose there is an object we do not
recognize, but we would like to know what it is. We look at it
to see its shape; we lift it to feel its weight; we may smell it to
determine its odor; we may tap it with our finger to see how
it sounds. With this collected sensory information, we try to
associate this new object to some object we already know. We
believe that humans recognize an object first by collecting
information through sensory organs. Sensory information is
the ground for object recognition.

We believe robots can behave similarly, and that the best
way for a robot to recognize objects is through its sensor
data. Therefore, we position this research towards a sensor
data grounded approach. We restrict the scope of robot
knowledge to be: string representation of sensor data. Strings
give information about the object; this usually includes



physical properties of an object and verbal descriptions. For
a robot to know an object means to have information about
that object stored in its memory.

The problem we need to address is: how do robots
share their knowledge with each other, though a knowledge
server such as Robot Google? We believe two knowledge
transformations can help. The first transformation takes place
in robots, where knowledge is transformed from the robot’s
internal representations, which are probably known only to
themselves, to a form such that they are understandable
to other parties, i.e., Robot Google and other robots. The
second transformation takes place in Robot Google, where
knowledge which is represented in the format produced by
the first transformation, is transformed into a representation,
that can be efficiently indexed. Then, Robot Google is able
to effectively answer queries sent by other robots, hence
knowledge is shared.

A. The First Transformation

The purpose of the first transformation, from a robot’s
internal format to an open standard, is to transform knowl-
edge in a systematic way such that an unambiguous, widely-
adoptable, format is obtained, while maintaining all infor-
mation in a knowledge piece. Two requirements need to be
satisfied. First, the data source, or inputs, of the transfor-
mation need to be collected in a standard way. We propose
the idea of the asymmetric spatial-temporal coherence for
objects. When a robot collects information about an object,
i.e., measures its properties, we assume the robot does this
in a uniform way such that all properties are measured with
the least intervention among them. Once all information is
collected through a robot’s onboard sensors, the robot needs
to package them tightly to maintain data integrity. Therefore,
it is clear to both the robot, and Robot Google, at a later time,
that information about one particular object, or an instance
of an object, is collected, not just information about some
object from a certain class.

Having a clear distinction between an object instance and
an object class is significant to this work for two reasons.
First, Robot Google is deeply rooted in the concept of sensor
data grounded knowledge. Knowing which instance sensor
data refers to is important to all possible higher levels, e.g.,
semantic level, knowledge structure formation at a later time.
Second, it is desirable to support instance-based queries in
addition to the general class-based queries. For example, to
be able to determine that an image represents a human face
is useful (the class-based query), but to be able to detect
whose face it is (instance-based query) can be more useful
for some applications.

We employ the standard Extensible Markup Language
(XML) to represent knowledge as the result of the first
transformation, as XML is widely used and accessible. The
designed format is flexible enough to capture various types
of knowledge while still being parser friendly.

Field Value
IM1:red [1.84e-011 -6.63e-009 4.44e-007 3.07e-005 -4.80e-004]

IM1:green [2.23e-011 -8.72e-009 8.06e-007 8.99e-006 -2.25e-004]
IM1:blue [2.20e-011 -8.55e-009 7.65e-007 1.37e-005 -4.56e-004]
IM2:red [1.45e-012 2.51e-009 -9.89e-007 8.74e-005 -2.45e-004]

IM2:green [3.11e-012 1.82e-009 -9.20e-007 8.84e-005 -3.80e-004]
IM2:blue [4.23e-012 1.34e-009 -8.71e-007 8.94e-005 -5.51e-004]
IM1:edge [-1.24e-010 6.39e-008 -1.07e-005 6.47e-004 -0.0063]
IM2:edge [-1.37e-010 6.99e-008 -1.16e-005 6.97e-004 -0.0070]

LSI: [-0.0509 0.2674 0.2571 0.4403]
Dim: [6.0190 1.6906 11.3570 0.4998]

Weight: 0.4244
Filename: ’knife2a.jpg’

Description: ’Knife with black handle’

TABLE I

AN OBJECT EXAMPLE CONTAINS IMAGES, TEXT DESCRIPTIONS,

DIMENSIONAL DATA AND WEIGHT MEASURE

B. The Second Transformation

The purpose of the second transformation is to convert the
easy-to-communicate XML file into something that is easy
to index. Hence we can build the search engine efficiently.
We take the vector space approach.

Every knowledge piece in our system can be divided into
three parts: text data, sensor data and meta data. Text data are
provided by humans. This includes the name, function, use
and possible other related descriptions of an object. Sensor
data represents physical properties of an object. They are
recorded by numerical values. For instance, the weight mea-
sure of an object is recorded with a single numerical value,
given a standard unit is used; the shape of an object can be
recorded by a histogram of the direction of the object’s edges,
where a histogram is represented by a vector. Meta data is
recorded when the object is measured by sensors. It contains
information about collected sensor data. For instance, the
location of where the object is encountered, the time of when
the object is encountered, the type/band/model of the sensor
used to collect this data, etc.

Knowing the curse of dimensionality[18], we explored
a few methods to reduce lengths of vectors, i.e., convert
a high dimension vector to a lower dimension one, into
especially histograms, including, Fourier coefficient rep-
resentation, polynomial coefficient representation, statistics
representation and moment representations. Our results show
that representing a 256-bin color histogram by coefficients
of a fourth order polynomial provides a reasonable com-
promise between data accuracy and vector length reduc-
tion; hence it is adopted in this research. Text information
is converted into vector space using the latent semantic
indexing (LSI) mechanism [19], [20]. For instance, a de-
scription such as “Small metal bowl” can be represented as
[−0.39,−0.12,−0.21, 0.08]. Meta data can be represented
by numerical values as well. For instance, time can be
unambiguously represented by a UNIX time string; locations
can be represented by GPS coordinates and sensor type
can be represented by an index of the sensor in a sensor
database or Logical Sensor System [21], [22]. Table I shows
an example of an object represented in this vector space.



IV. KNOWLEDGE SEARCH ENGINE

As described by Frieden and Kuntz [23], the three main
tasks of a search engine are to (1) match query keywords
with related material on the web, (2) rank web documents
according to relevance, and (3) provide pointers to the
documents. Essentially, a search engine needs to be able to
gather data from online sources, categorize and store them
into a repository, and provide data access to its users. In the
first generation robot search engine, i.e., Robot Google, we
do not foresee a major role for web crawlers. Even if web
pages exist, the meta data is not available to determine what
pages to download, what is of interest in them (e.g., there
are no words to count and no lexicon to help define any
semantics), no popularity measure, and no standard places
to find things (e.g., specific sites, in homepage, etc.). Thus,
robots must register with the system and provide direct meta
data and links to files. We focus on creating a robot search
engine architecture that is:

• Flexible. Robot Google is not designed for any partic-
ular data type. We emphasize the sensor data grounded
knowledge sharing model, in which virtually all types
of sensor data can be supported.

• Scalable. Robot Google sets no limit on the number of
attributes or properties of its supported data types. Both
query templates and items stored in Robot Google can
contain as many properties as needed.

• Efficient. Robot Google supports indexing on a large
amount of data. The retrieval speed is not determined
by the number of items stored in its database.

To accomplish these three tasks, we divide Robot Google
into four groups of components: a query processor, indexing
structures, a cross analyzer and a response formalizer (see
Fig 2).

Indexing
Structure II

Indexing
Structure I

Structure III
Indexing

Cross
Analyzer Formalizer

Response
XML

Query
Processor XML

Fig. 2. The Robot Google Architecture.

A. Query Processor

Robot Google supports query-by-example [18]. The query
processor is the first component in a Robot Google query
workflow. It takes queries, in the format of XML, and
translates them into arrays of vectors and sends each vector
to a corresponding indexing structure to find matches. The
query processor converts data stored in XML to vectors, and
computes various derived features from raw data stored in
the XML file, such as color and edge histograms and their
low dimension representations from images. It also generates
vector representations from text data.

B. Indexing Structures

The second group of components are indexing structures.
They take inputs from the query processor in the form
of vectors, and produce ordered lists of items. They sort
items using measures between the query template and objects
stored in Robot Google and return the list.

Currently, eleven indexing structures exist in Robot
Google. Six of them are built for color histograms (each ob-
ject contains two images, and there are three color channels
in an image); two of them are built for edge histograms;
one of them is built for text data produced from an LSI
process; one of them is built for dimensional information of
the object, i.e., length, height, width, and the cube root of
the product of the three; the last indexing structure is built
for the weight measure of one object. Currently, k-d trees
have been used to index all fields except the weight measure,
where a binary tree is used. In all k-d trees, branch dimension
is selected in the round-robin fashion, starts from the left
most entry/first dimension in a vector. This is due to the
fact that eight histograms in one object are approximated by
polynomials in which high order terms contribute more to the
shape of the polynomial. Text data are processed by the LSI
process, where at its core is a singular value decomposition
(SVD), which has the same property that high order terms
capture more information than low order ones. All indexing
components return fifteen items for each query, except the
text indexing and dimensional indexing component, in which
thirty items are returned.

There are a few advantages for separating the indexing
structure into distinct subclasses. First, this design allows
Robot Google to support incomplete queries, i.e., queries
with missing attribute fields, quite easily. For instance, if
a query template contains only one image instead of two,
indexing structures built for color and edge histograms for
the missing image would not be used. All other Robot
Google components would work the same as before. Second,
it brings great flexibility to Robot Google as each indexing
structure can be added, removed or modified without chang-
ing other components. New indexing structures can be added
to support new data types and existing indexing structures
can be removed if they are found to be not effective for
retrieval. Different data types may require different types
of indexing structures. If an existing structure is found to
be less than ideal, it can be modified or replaced. Third, it
brings more parallelism into a query process workflow. Each
indexing structure processes one object attribute. Thus there
is no intervention between any two indexing structures. A
parallel process reduces search time for queries.

C. Cross Analyzer

The cross analyzer takes item lists from each indexing
component, and cross analyzes them to produce a single
sorted list. This list is produced based on a weighted summa-
tion of distances between a query template and items stored
in the Robot Google database.

The cross analyzer first creates a list contains all items
generated by indexing structures, without duplication. It then



computes a distance measure from the query template to
every item in the list. The distance measure is a weighted
L1 norm, which can be expressed as, the overall distance
D(A, B) between two objects A and B is equal to:

D(A, B) =
k∑

i=1

|widi(Ai, Bi)|

Where k equals the number of item attributes presented in
the query; wi is the weight coefficient of the ith component;
and di is the distance between ith components in the two
objects. All di(Ai, Bi) are computed using an L1 distance
measure, where

di(Ai, Bi) =
k∑

j=1

|Ai,j − Bi,j |

For all image histograms represented by polynomial coeffi-
cients, k equals 5; for the text data and the dimensional data
fields, k equals 4; and for the singleton weight measure,
k equals 1. We have evaluated a set of distance measures
for this computation, including L2, L∞, Mahalanobis, and
Kullback-Leibler [18], [24]. L1 gives the best compromise
between computation efficiency and accuracy.

The cross analyzer provides Robot Google a simple con-
trol on item rankings through weight coefficients wi. Since
each indexing structure processes one item attribute, if for
some reason, a certain attribute needs to be emphasized over
others, the weight coefficient associated with this attribute
can be adjusted accordingly. If we consider each item as a
point in some high dimensional space, it can be viewed that
weight coefficients can be used to dynamically enlarge or
shrink the space in different dimensions. For instance, if we
want to ignore a certain attribute in a query sample, we put a
small weight coefficient for this attribute. This is equivalent
to shrinking the space in dimensions used to represent this
attribute. When a space is shrunk, the coordination of a point
and the distance between two points no longer matter as all
points are crowded together in this space.

We are at the very beginning stage to develop a systematic
approach for computing weight coefficients wi. Currently, a
static analysis approach is taken. We design experiments for
various data conditions and query types. In each experiment
we evaluate Robot Google performance using the standard
information retrieval measures: precision and recall [25].
We then search for weight coefficients that maximize these
measures. The searching algorithm we have implemented is
an n-dimensional binary search, which is a good compromise
between simplicity and performance.

The cross analyzer controls the number of items returned
by Robot Google. Since the cross analyzer sorts the item
list returned by the indexing structures, two commonly used
search types: k-Nearest-Neighbor search, i.e., using distance
measure D, find k objects that are closest to the query and
within-Distance (α-cut) search, i.e., using distance measure
D, find all objects which are within α to the query template,
are effortlessly supported.

D. Response Formalizer

The response formalizer is the last component in the Robot
Google query workflow. It takes inputs, which are sorted
item lists, from the cross analyzer, transforms them into
a format which can be easily understood by robots, and
then packages them into files. Snapshots of items, which
contains basic information such as dimensional measure, and
URLs which point to sources of items are both included.
Containing snapshots in the returned file help robots to filter
out unwanted results and find interesting information faster.

V. EXPERIMENT

To evaluate the performance of Robot Google, the com-
mon measures of precision and recall are used. Precision in
information retrieval is defined as:

precision =
|relevantdocument

⋂
retrieveddocuments|

|retrieveddocuments|

It is a measure of the percentage of results that are desired
in the total retrieved list. Recall in information retrieval is
defined as:

recall =
|relevantdocument

⋂
retrieveddocuments|

|relevantdocuments|

It is the percentage of desired retrieved results in the entire
database.

A. Object Knowledge

In this section, Robot Google performance on object data
are examined. Sixteen objects, including four bowls, one
cup, two forks, three knives, two plates, and four spoons
are selected as data. Two images are taken of each object:
a top view, and a side view. All images are taken against
a white background and manually segmented. Images are
stored in JPEG format in the size of 640x480 pixels. For
each image, histograms of its color in RGB channels are
computed, respectively, with 256 bins for each channel. The
Sobel edge detection algorithm is applied to compute the
distribution of edge orientations, and a histogram with 256
bins is obtained. To simulate the uncertainty of the real
world, twenty-nine duplications of each object are created
by adding 20% random noise from a Gaussian distribution
to each object. The total sample size reaches 480.

Six groups of performance evaluation are presented. In
tests groups one through three, relevant documents are de-
fined as items which are generated from the same master
copy by adding Gaussian noise. Group one shows the re-
sult where all documents returned from Robot Google are
considered. Group two shows the result where only the top
30 most relevant items are considered. Test three shows the
result where optimal weight coefficients are applied to rank
returned items. Groups four though six use same settings,
except “relevant documents” are defined as items which are
in the same object class, e.g., fork, bowl, etc. Each group
contains four tests. Test one examines Robot Google under
optimal conditions, in which both query templates and ob-
jects stored in Robot Google contain complete information.
Test two tests performance with incomplete queries, in which



one image is missing in query templates. Test three tests
performance with an incomplete data record. One third of
Robot Google records miss one image in their record. Test
four tests performance with both incomplete queries and
incomplete records. Query templates miss one image and
one third of Robot Google records miss the other image.
Each test is composed of 200 runs. In each run, one object
is randomly selected from the database as the query template.
Average precision and recall are computed.

Fig. 3. Performance Test Group 1. All items returned from Robot
Google are taken into consideration. Items derived from the same instance
are relevant. Tests range from complete query & complete database to
incomplete query & incomplete database.

Fig. 4. Performance Test Group 2. Top 30 items returned from Robot
Google are taken into consideration. Items derived from the same instance
are relevant. Tests range from complete query & complete database to
incomplete query & incomplete database.

Many observations have been made during our perfor-
mance evaluation. In terms of precision, Robot Google shows
good performance when the top items from returned list are
considered. (Even though it is not shown here, when the top
10 items are evaluated, precision reaches 100% uniformly
for every test.) In general, performance drops when queries

Fig. 5. Performance Test Group 3. Top 30 items returned from Robot
Google are taken into consideration. Optimal weight coefficients are applied
for ranking. Items derived from the same instance are relevant. Tests
range from complete query & complete database to incomplete query &
incomplete database.

Fig. 6. Performance Test Group 4. All items returned from Robot
Google are taken into consideration. Items belong to the same object class
are relevant. Tests range from complete query & complete database to
incomplete query & incomplete database.

are incomplete or database records are incomplete. However,
we also have discovered that certain features are more useful
than others when retrievals are concerned. For samples from
our dataset, images and text descriptions are better classifiers
than dimensional and weight measures. Hence missing im-
ages or text descriptions in a query shows more negative
impact to retrieval performance than missing dimensional
measures. The weight coefficient adjustment in the cross
analyzer is a very effective tool for improving retrieval
performance. It identifies attributes that have more classi-
fying power, hence prevents or reduces interference from
other attributes. To achieve a uniformly high performance
on precision, a set of weight coefficients should be pre-
computed, based on the type of queries, i.e., attributes that
are missing in a query.



Fig. 7. Performance Test Group 5. Top 30 items returned from Robot
Google are taken into consideration. Items belong to the same object class
are relevant. Tests range from complete query & complete database to
incomplete query & incomplete database.

Fig. 8. Performance Test Group 6. Top 30 items returned from Robot
Google are taken into consideration. Optimal weight coefficients are applied
for ranking. Items belong to the same object class are relevant. Tests
range from complete query & complete database to incomplete query &
incomplete database.

B. Activity Knowledge

In addition to object recognition, human activity recogni-
tion is another field Robot Google can be used. Collaborating
with Prof. Dillmann’s humanoid robot research group at the
University of Karlsruhe, we have obtained data generated by
the VooDoo human motion capture system [6], [26], which
gathers data of the human configuration over time, resulting
in 3D trajectories for every modeled limb and joint angle of
the human body. These data contain 8 activities with each
activity performed multiple times, resulting 120 instances
of activities. Since all instances are performed by a human
experimenter, recorded lengths of instances range from 41
frames to 151 frames. These 120 instances are stored into
an activity database.

Unlike the Feed Forward Neural Network (FFNN) clas-

Activity Correct
Hold Out Hand 91.0%
Hold Out Object 95.5%
Put Object On Table 89.9%
Read Book 73.6%
Sitting 89.9%
Standing 86.3%
Take Object From Table 77.7%
Typing On Laptop 100%

TABLE II

RESULTS FOR ACTIVITY RECOGNITION EXPERIMENTS.

sification model used in [6], Robot Google takes a simpler
approach. In VooDoo, the human body is represented by 19
4-by-4 transformation matrices, where each matrix describes
the state of a limb joint. In each transformation matrix, the
upper left 3-by-3 sub-matrix describes the rotation of the
joint, the right most column describes the movement of the
joint. (See [26] for a complete discussion of the VooDoo
system representation.) We exploit two of these matrices:
one that describes the trunk of the body transformation and
the other that describes the right forearm transformation,
from each activity instance frame. The motion description
is based on six values from each of the two transforms: 3
three diagonal elements of the rotation matrix and the three
translation components. This results in 12 feature vectors.
We then approximate the trajectory of every feature field
across frames of an activity instance by a fourth order
polynomial and index every instance of a trajectory into a
k-d-tree. Therefore, in contrast to the eleven index structures
developed for object knowledge sharing, a twelve index
structure approach is adopted for activity recognition.

We randomly select query templates from the activity
database. Since the purpose of activity recognition is to
identify human activities, Nearest-Neighbor search is more
appropriate than k-Nearest-Neighbor search or α-cut search
described in previous sections. We then limit the number
of returned activities for each search to be 2 (since every
search always returns the query template itself as the first
activity) and define the classification as correct if the second
returned item is the same activity as the query template.
Results are presented in Table II. [6] indicates their FFNS
approach reaches average correctness ranges from 53.1% to
100% for various activities; the Robot Google approach is
comparable.

VI. CONCLUSION

This paper introduces the novel idea of developing robot
virtual machines and robot search engines for robot knowl-
edge sharing and discusses the architecture of the robot
search engine we have developed. As a proof of the con-
cept system, it demonstrates the merit of taking a sensor
data grounded approach and using a flexible architecture.
Robot Google shows promising performance in our object
knowledge sharing experiments, where the search precision
reaches 90+% for the items selected as most relevant. We
have also examined Robot Google’s performance with robot



activity knowledge, in which Robot Google is used as an
activity recognizer. In these experiments, Robot Google
demonstrates comparable results to activity recognizers built
by our colleagues at the University of Karlsruhe, in which a
neural network approach is used.

Future research includes:
• development of virtual reference models for robots
• the study of Robot Google’s performance on imple-

mented, distributed robot systems
• investigation of a relevance feedback based approach

for ranking returned items
• evaluation of the feasibility of porting this framework

to intelligent software agent systems
• engagement of the robotics community into semantic

robot web activity.
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