
Artificial Inteligence - Resolution for

propositional calculus

Lila Kari

The University of Western Ontario

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 1 / 28

Artificial Intelligence

• The major interest of computer scientists in
propositional and predicate calculus has been to exploit
its expressive power to prove theorems:

Theorem:Premise 1,Premise 2, ...,Premise n ` Conclusion

• In the field of Artificial Intelligence, there have been
many attempts to construct programs that could prove
theorems automatically.

• Given a set of axioms and a technique for deriving new
theorems from old theorems and axioms, would such a
program be able to prove a particular theorem?

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 2 / 28

Automated theorem proving

• Early attempts faltered because there seemed to be no
efficient technique for deriving new theorems.

• 1965: J.A.Robinson at Syracuse University discovered
the technique called resolution.

John Allan Robinson, born 1928

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 3 / 28

Resolution

Resolution theorem proving is a method of formal derivation
(deduction) that has the following features:

• The only formulas allowed in resolution theorem proving
are disjunctions of literals.

• A disjunction of literals is called a clause. Hence, all
formulas involved in resolution theorem proving must be
clauses.

• Resolution follows the refutation principle; that is, it
shows that the negation of the conclusion is inconsistent
with the premises.

• There is essentially only one rule of formal deduction,
resolution.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 4 / 28

Resolution

Resolution theorem proving is a method of formal derivation
(deduction) that has the following features:

• The only formulas allowed in resolution theorem proving
are disjunctions of literals.

• A disjunction of literals is called a clause. Hence, all
formulas involved in resolution theorem proving must be
clauses.

• Resolution follows the refutation principle; that is, it
shows that the negation of the conclusion is inconsistent
with the premises.

• There is essentially only one rule of formal deduction,
resolution.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 4 / 28

Resolution

Resolution theorem proving is a method of formal derivation
(deduction) that has the following features:

• The only formulas allowed in resolution theorem proving
are disjunctions of literals.

• A disjunction of literals is called a clause. Hence, all
formulas involved in resolution theorem proving must be
clauses.

• Resolution follows the refutation principle; that is, it
shows that the negation of the conclusion is inconsistent
with the premises.

• There is essentially only one rule of formal deduction,
resolution.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 4 / 28

Resolution

Resolution theorem proving is a method of formal derivation
(deduction) that has the following features:

• The only formulas allowed in resolution theorem proving
are disjunctions of literals.

• A disjunction of literals is called a clause. Hence, all
formulas involved in resolution theorem proving must be
clauses.

• Resolution follows the refutation principle; that is, it
shows that the negation of the conclusion is inconsistent
with the premises.

• There is essentially only one rule of formal deduction,
resolution.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 4 / 28

Resolution

Resolution theorem proving is a method of formal derivation
(deduction) that has the following features:

• The only formulas allowed in resolution theorem proving
are disjunctions of literals.

• A disjunction of literals is called a clause. Hence, all
formulas involved in resolution theorem proving must be
clauses.

• Resolution follows the refutation principle; that is, it
shows that the negation of the conclusion is inconsistent
with the premises.

• There is essentially only one rule of formal deduction,
resolution.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 4 / 28

• In a refutation system one proves that the argument
A1,A2, . . . ,An ` ¬C is valid by showing that
A1,A2, . . . ,An and ¬C cannot all be true.

• In other words one shows that the formulas

A1,A2, . . . ,An,¬C

are inconsistent.

• This is shown by proving that for some formula P , both
P and ¬P can be derived.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 5 / 28

Input for resolution algorithms - clauses

• In general, one can convert any formula into one or more
clauses.

• To do this, one first converts the formula into a
conjunction of disjunctions; that is, one converts the
formula into conjunctive normal form.

• Each term of the conjunction is then made into a clause
of its own.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 6 / 28

Input for resolution algorithms - clauses

• In general, one can convert any formula into one or more
clauses.

• To do this, one first converts the formula into a
conjunction of disjunctions; that is, one converts the
formula into conjunctive normal form.

• Each term of the conjunction is then made into a clause
of its own.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 6 / 28

Input for resolution algorithms - clauses

• In general, one can convert any formula into one or more
clauses.

• To do this, one first converts the formula into a
conjunction of disjunctions; that is, one converts the
formula into conjunctive normal form.

• Each term of the conjunction is then made into a clause
of its own.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 6 / 28

Clauses

Example: Convert P → (Q ∧ R) into clauses.

Solution.
We first eliminate the → by writing ¬P ∨ (Q ∧ R).

We then apply the distributive law to obtain

P → (Q ∧ R) |=|(¬P ∨ Q) ∧ (¬P ∨ R).

This yields the two clauses ¬P ∨ Q and ¬P ∨ R .

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 7 / 28

Clauses

Example: Convert P → (Q ∧ R) into clauses.

Solution.

We first eliminate the → by writing ¬P ∨ (Q ∧ R).

We then apply the distributive law to obtain

P → (Q ∧ R) |=|(¬P ∨ Q) ∧ (¬P ∨ R).

This yields the two clauses ¬P ∨ Q and ¬P ∨ R .

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 7 / 28

Clauses

Example: Convert P → (Q ∧ R) into clauses.

Solution.
We first eliminate the → by writing ¬P ∨ (Q ∧ R).

We then apply the distributive law to obtain

P → (Q ∧ R) |=|(¬P ∨ Q) ∧ (¬P ∨ R).

This yields the two clauses ¬P ∨ Q and ¬P ∨ R .

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 7 / 28

Clauses

Example: Convert P → (Q ∧ R) into clauses.

Solution.
We first eliminate the → by writing ¬P ∨ (Q ∧ R).

We then apply the distributive law to obtain

P → (Q ∧ R) |=|(¬P ∨ Q) ∧ (¬P ∨ R).

This yields the two clauses ¬P ∨ Q and ¬P ∨ R .

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 7 / 28

Clauses

Example: Convert P → (Q ∧ R) into clauses.

Solution.
We first eliminate the → by writing ¬P ∨ (Q ∧ R).

We then apply the distributive law to obtain

P → (Q ∧ R) |=|(¬P ∨ Q) ∧ (¬P ∨ R).

This yields the two clauses ¬P ∨ Q and ¬P ∨ R .

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 7 / 28

Only one rule of formal deduction: resolution

Resolution

• Two clauses can be resolved if and only if they contain
two complementary literals.

• In this case, they give rise to a new clause, called the
resolvent.

• If the complementary literals are P and ¬P , one says the
resolution in on P (or over P).

• The clauses giving rise to the resolvent are called parent
clauses.

• The resolvent on P is the disjunction of all literals of the
parent clauses, except that P and ¬P are omitted from
the resolvent.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 8 / 28

Only one rule of formal deduction: resolution

Resolution

• Two clauses can be resolved if and only if they contain
two complementary literals.

• In this case, they give rise to a new clause, called the
resolvent.

• If the complementary literals are P and ¬P , one says the
resolution in on P (or over P).

• The clauses giving rise to the resolvent are called parent
clauses.

• The resolvent on P is the disjunction of all literals of the
parent clauses, except that P and ¬P are omitted from
the resolvent.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 8 / 28

Only one rule of formal deduction: resolution

Resolution

• Two clauses can be resolved if and only if they contain
two complementary literals.

• In this case, they give rise to a new clause, called the
resolvent.

• If the complementary literals are P and ¬P , one says the
resolution in on P (or over P).

• The clauses giving rise to the resolvent are called parent
clauses.

• The resolvent on P is the disjunction of all literals of the
parent clauses, except that P and ¬P are omitted from
the resolvent.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 8 / 28

Only one rule of formal deduction: resolution

Resolution

• Two clauses can be resolved if and only if they contain
two complementary literals.

• In this case, they give rise to a new clause, called the
resolvent.

• If the complementary literals are P and ¬P , one says the
resolution in on P (or over P).

• The clauses giving rise to the resolvent are called parent
clauses.

• The resolvent on P is the disjunction of all literals of the
parent clauses, except that P and ¬P are omitted from
the resolvent.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 8 / 28

Only one rule of formal deduction: resolution

Resolution

• Two clauses can be resolved if and only if they contain
two complementary literals.

• In this case, they give rise to a new clause, called the
resolvent.

• If the complementary literals are P and ¬P , one says the
resolution in on P (or over P).

• The clauses giving rise to the resolvent are called parent
clauses.

• The resolvent on P is the disjunction of all literals of the
parent clauses, except that P and ¬P are omitted from
the resolvent.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 8 / 28

Only one rule of formal deduction: resolution

Resolution

• Two clauses can be resolved if and only if they contain
two complementary literals.

• In this case, they give rise to a new clause, called the
resolvent.

• If the complementary literals are P and ¬P , one says the
resolution in on P (or over P).

• The clauses giving rise to the resolvent are called parent
clauses.

• The resolvent on P is the disjunction of all literals of the
parent clauses, except that P and ¬P are omitted from
the resolvent.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 8 / 28

Example

Find the resolvent of P ∨ ¬Q ∨ R and ¬S ∨ Q.

Solution.
The two clauses P ∨ ¬Q ∨ R and ¬S ∨ Q can be resolved over Q
because Q is negative in the first clause and positive in the second.

The resolvent is the disjunction of P ∨ R with ¬S , which yields
P ∨ R ∨ ¬S .

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 9 / 28

Example

Find the resolvent of P ∨ ¬Q ∨ R and ¬S ∨ Q.

Solution.
The two clauses P ∨ ¬Q ∨ R and ¬S ∨ Q can be resolved over Q
because Q is negative in the first clause and positive in the second.

The resolvent is the disjunction of P ∨ R with ¬S , which yields
P ∨ R ∨ ¬S .

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 9 / 28

Example

Find the resolvent of P ∨ ¬Q ∨ R and ¬S ∨ Q.

Solution.
The two clauses P ∨ ¬Q ∨ R and ¬S ∨ Q can be resolved over Q
because Q is negative in the first clause and positive in the second.

The resolvent is the disjunction of P ∨ R with ¬S , which yields
P ∨ R ∨ ¬S .

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 9 / 28

Soundness of resolution-based formal deduction

The resolvent is logically implied by its parent clauses, which makes
resolution a sound rule of formal deduction.

To see this, let P be a propositional variable, and let A and B be
(possibly empty) clauses.
One has

P ∨ A,¬P ∨ B |= A ∨ B

This is valid for the following reasons.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 10 / 28

Soundness of resolution-based formal deduction

The resolvent is logically implied by its parent clauses, which makes
resolution a sound rule of formal deduction.

To see this, let P be a propositional variable, and let A and B be
(possibly empty) clauses.

One has

P ∨ A,¬P ∨ B |= A ∨ B

This is valid for the following reasons.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 10 / 28

Soundness of resolution-based formal deduction

The resolvent is logically implied by its parent clauses, which makes
resolution a sound rule of formal deduction.

To see this, let P be a propositional variable, and let A and B be
(possibly empty) clauses.
One has

P ∨ A,¬P ∨ B |= A ∨ B

This is valid for the following reasons.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 10 / 28

Soundness of resolution

• If P is false, then A must be true, because otherwise
P ∨ A is false.

• Similarly, if P is true, then B must be true, because
otherwise ¬P ∨ B is false.

• Since P must be true or false, either A or B must be
true, and the result follows.

• Of course, A ∨ B is the resolvent of the parent clauses
P ∨ A and ¬P ∨ B on P , which proves the soundness of
resolution.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 11 / 28

Soundness of resolution

• If P is false, then A must be true, because otherwise
P ∨ A is false.

• Similarly, if P is true, then B must be true, because
otherwise ¬P ∨ B is false.

• Since P must be true or false, either A or B must be
true, and the result follows.

• Of course, A ∨ B is the resolvent of the parent clauses
P ∨ A and ¬P ∨ B on P , which proves the soundness of
resolution.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 11 / 28

Soundness of resolution

• If P is false, then A must be true, because otherwise
P ∨ A is false.

• Similarly, if P is true, then B must be true, because
otherwise ¬P ∨ B is false.

• Since P must be true or false, either A or B must be
true, and the result follows.

• Of course, A ∨ B is the resolvent of the parent clauses
P ∨ A and ¬P ∨ B on P , which proves the soundness of
resolution.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 11 / 28

Soundness of resolution

• If P is false, then A must be true, because otherwise
P ∨ A is false.

• Similarly, if P is true, then B must be true, because
otherwise ¬P ∨ B is false.

• Since P must be true or false, either A or B must be
true, and the result follows.

• Of course, A ∨ B is the resolvent of the parent clauses
P ∨ A and ¬P ∨ B on P , which proves the soundness of
resolution.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 11 / 28

Unit clauses

Resolution is particularly effective when one of the parent clause is a
unit clause, that is, a clause that contains only one literal.

Example: The resolution of ¬P ∨ Q ∨ R and ¬R . The resolvent is
¬P ∨ Q.

Example: The resolution of P ∨ Q with ¬P yields Q, which agrees
with the disjunctive syllogism.

Example: The two clauses ¬P and P have the empty clause as a
resolvent, which is correct, since P and ¬P are contradictory and
therefore false like the empty clause.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 12 / 28

Unit clauses

Resolution is particularly effective when one of the parent clause is a
unit clause, that is, a clause that contains only one literal.

Example: The resolution of ¬P ∨ Q ∨ R and ¬R . The resolvent is
¬P ∨ Q.

Example: The resolution of P ∨ Q with ¬P yields Q, which agrees
with the disjunctive syllogism.

Example: The two clauses ¬P and P have the empty clause as a
resolvent, which is correct, since P and ¬P are contradictory and
therefore false like the empty clause.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 12 / 28

Unit clauses

Resolution is particularly effective when one of the parent clause is a
unit clause, that is, a clause that contains only one literal.

Example: The resolution of ¬P ∨ Q ∨ R and ¬R . The resolvent is
¬P ∨ Q.

Example: The resolution of P ∨ Q with ¬P yields Q, which agrees
with the disjunctive syllogism.

Example: The two clauses ¬P and P have the empty clause as a
resolvent, which is correct, since P and ¬P are contradictory and
therefore false like the empty clause.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 12 / 28

Unit clauses

Resolution is particularly effective when one of the parent clause is a
unit clause, that is, a clause that contains only one literal.

Example: The resolution of ¬P ∨ Q ∨ R and ¬R . The resolvent is
¬P ∨ Q.

Example: The resolution of P ∨ Q with ¬P yields Q, which agrees
with the disjunctive syllogism.

Example: The two clauses ¬P and P have the empty clause as a
resolvent, which is correct, since P and ¬P are contradictory and
therefore false like the empty clause.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 12 / 28

Prove Modus Ponens by resolution

P ,P → Q ` Q

1. P Premise
2. ¬P ∨ Q Premise
3. ¬Q Negation of conclusion
4. Q Resolvent of 1, 2
5. 0 Resolvent of 3, 4

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 13 / 28

Prove Modus Ponens by resolution

P ,P → Q ` Q

1. P Premise
2. ¬P ∨ Q Premise
3. ¬Q Negation of conclusion
4. Q Resolvent of 1, 2
5. 0 Resolvent of 3, 4

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 13 / 28

Prove Hypothetical Syllogism by resolution

P → Q,Q → R ` P → R

1. ¬P ∨ Q Premise
2. ¬Q ∨ R Premise
3. P Derived from negation of conclusion
4. ¬R Derived from the negation of conclusion
5. Q Resolvent of 1, 3
6. ¬Q Resolvent of 2, 4
7. 0 Resolvent of 5, 6

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 14 / 28

Prove Hypothetical Syllogism by resolution

P → Q,Q → R ` P → R

1. ¬P ∨ Q Premise
2. ¬Q ∨ R Premise
3. P Derived from negation of conclusion
4. ¬R Derived from the negation of conclusion
5. Q Resolvent of 1, 3
6. ¬Q Resolvent of 2, 4
7. 0 Resolvent of 5, 6

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 14 / 28

Resolution strategies

When doing resolution automatically, one has to decide in which
order to resolve the clauses. This order can greatly affect the time
needed to find a contradiction. Strategies include:

• Unit resolution: all resolutions involve at least one unit
clause. Moreover, preference is given to clauses that
have not been used yet.

• Set of support strategy

• Davis Putnam procedure

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 15 / 28

Example of unit resolution

Prove P4 from P1 → P2,¬P2,¬P1 → P3 ∨ P4, P3 → P5, P6 → ¬P5

and P6.

1. ¬P1 ∨ P2 Premise
2. ¬P2 Premise
3. P1 ∨ P3 ∨ P4 Premise
4. ¬P3 ∨ P5 Premise
5. ¬P6 ∨ ¬P5 Premise
6. P6 Premise
7. ¬P4 Negation of conclusion
8. ¬P1 Resolvent of 1, 2
9. ¬P5 Resolvent of 5, 6
10. P1 ∨ P3 Resolvent of 3, 7
11. ¬P3 Resolvent of 4, 9
12. P3 Resolvent of 8, 10
13. 0 Resolvent of 11, 12

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 16 / 28

Example of unit resolution

Prove P4 from P1 → P2,¬P2,¬P1 → P3 ∨ P4, P3 → P5, P6 → ¬P5

and P6.

1. ¬P1 ∨ P2 Premise
2. ¬P2 Premise
3. P1 ∨ P3 ∨ P4 Premise
4. ¬P3 ∨ P5 Premise
5. ¬P6 ∨ ¬P5 Premise
6. P6 Premise
7. ¬P4 Negation of conclusion
8. ¬P1 Resolvent of 1, 2
9. ¬P5 Resolvent of 5, 6
10. P1 ∨ P3 Resolvent of 3, 7
11. ¬P3 Resolvent of 4, 9
12. P3 Resolvent of 8, 10
13. 0 Resolvent of 11, 12

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 16 / 28

Unit resolution is not complete

• The unit resolution is not complete.

• This is demonstrated by the following example.

• The premises are Q ∨ R , Q ∨ ¬R , and ¬Q ∨ R , and the
conclusion is Q ∧ R .

• In this case there is no unit clause, which makes unit
resolution impossible.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 17 / 28

Unit resolution is not complete

• The unit resolution is not complete.

• This is demonstrated by the following example.

• The premises are Q ∨ R , Q ∨ ¬R , and ¬Q ∨ R , and the
conclusion is Q ∧ R .

• In this case there is no unit clause, which makes unit
resolution impossible.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 17 / 28

Unit resolution is not complete

• The unit resolution is not complete.

• This is demonstrated by the following example.

• The premises are Q ∨ R , Q ∨ ¬R , and ¬Q ∨ R , and the
conclusion is Q ∧ R .

• In this case there is no unit clause, which makes unit
resolution impossible.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 17 / 28

Unit resolution is not complete

• The unit resolution is not complete.

• This is demonstrated by the following example.

• The premises are Q ∨ R , Q ∨ ¬R , and ¬Q ∨ R , and the
conclusion is Q ∧ R .

• In this case there is no unit clause, which makes unit
resolution impossible.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 17 / 28

Set of support strategy

• One partitions all clauses into two sets, the set of
support and the auxiliary set.

• The auxiliary set is formed in such a way that the
formulas in it are not contradictory.

• For instance, the premises are usually not inconsistent
(not contradictory). The inconsistency only arises after
one adds the negation of the conclusion.

• One often uses the premises as the initial auxiliary set
and the negation of the conclusion as the initial set of
support.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 18 / 28

Set of support strategy

• One partitions all clauses into two sets, the set of
support and the auxiliary set.

• The auxiliary set is formed in such a way that the
formulas in it are not contradictory.

• For instance, the premises are usually not inconsistent
(not contradictory). The inconsistency only arises after
one adds the negation of the conclusion.

• One often uses the premises as the initial auxiliary set
and the negation of the conclusion as the initial set of
support.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 18 / 28

Set of support strategy

• One partitions all clauses into two sets, the set of
support and the auxiliary set.

• The auxiliary set is formed in such a way that the
formulas in it are not contradictory.

• For instance, the premises are usually not inconsistent
(not contradictory). The inconsistency only arises after
one adds the negation of the conclusion.

• One often uses the premises as the initial auxiliary set
and the negation of the conclusion as the initial set of
support.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 18 / 28

Set of support strategy

• One partitions all clauses into two sets, the set of
support and the auxiliary set.

• The auxiliary set is formed in such a way that the
formulas in it are not contradictory.

• For instance, the premises are usually not inconsistent
(not contradictory). The inconsistency only arises after
one adds the negation of the conclusion.

• One often uses the premises as the initial auxiliary set
and the negation of the conclusion as the initial set of
support.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 18 / 28

Set of support styrategy

• Since one cannot derive any contradiction by resolving
clauses within the auxiliary set, one avoids such
resolutions.

• Stated positively, each resolution takes at least one
clause from the set of support.

• The resolvent is then added to the set of support.

• Resolution with the set of support strategy is complete.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 19 / 28

Set of support styrategy

• Since one cannot derive any contradiction by resolving
clauses within the auxiliary set, one avoids such
resolutions.

• Stated positively, each resolution takes at least one
clause from the set of support.

• The resolvent is then added to the set of support.

• Resolution with the set of support strategy is complete.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 19 / 28

Set of support styrategy

• Since one cannot derive any contradiction by resolving
clauses within the auxiliary set, one avoids such
resolutions.

• Stated positively, each resolution takes at least one
clause from the set of support.

• The resolvent is then added to the set of support.

• Resolution with the set of support strategy is complete.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 19 / 28

Set of support styrategy

• Since one cannot derive any contradiction by resolving
clauses within the auxiliary set, one avoids such
resolutions.

• Stated positively, each resolution takes at least one
clause from the set of support.

• The resolvent is then added to the set of support.

• Resolution with the set of support strategy is complete.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 19 / 28

Example

Prove P4 from P1 → P2,¬P2,¬P1 → P3 ∨ P4, P3 → P5, P6 → ¬P5

and P6, by using the set of support strategy.

Initially the set of support is given by ¬P4, the negation of the
conclusion.

One then does all the possible resolutions involving ¬P4, then all
possible resolutions involving the resulting resolvents, and so on.

If the initial 7 clauses are omitted, this yields the following derivation:

8. P1 ∨ P3 Resolvent of 7, 3
9. P2 ∨ P3 Resolvent of 1, 8
10. P3 Resolvent of 2, 9
11. P5 Resolvent of 4, 10
12. ¬P6 Resolvent of 5, 11
13. 0 Resolvent of 6, 12

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 20 / 28

Example

Prove P4 from P1 → P2,¬P2,¬P1 → P3 ∨ P4, P3 → P5, P6 → ¬P5

and P6, by using the set of support strategy.

Initially the set of support is given by ¬P4, the negation of the
conclusion.

One then does all the possible resolutions involving ¬P4, then all
possible resolutions involving the resulting resolvents, and so on.

If the initial 7 clauses are omitted, this yields the following derivation:

8. P1 ∨ P3 Resolvent of 7, 3
9. P2 ∨ P3 Resolvent of 1, 8
10. P3 Resolvent of 2, 9
11. P5 Resolvent of 4, 10
12. ¬P6 Resolvent of 5, 11
13. 0 Resolvent of 6, 12

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 20 / 28

Example

Prove P4 from P1 → P2,¬P2,¬P1 → P3 ∨ P4, P3 → P5, P6 → ¬P5

and P6, by using the set of support strategy.

Initially the set of support is given by ¬P4, the negation of the
conclusion.

One then does all the possible resolutions involving ¬P4, then all
possible resolutions involving the resulting resolvents, and so on.

If the initial 7 clauses are omitted, this yields the following derivation:

8. P1 ∨ P3 Resolvent of 7, 3
9. P2 ∨ P3 Resolvent of 1, 8
10. P3 Resolvent of 2, 9
11. P5 Resolvent of 4, 10
12. ¬P6 Resolvent of 5, 11
13. 0 Resolvent of 6, 12

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 20 / 28

Example

Prove P4 from P1 → P2,¬P2,¬P1 → P3 ∨ P4, P3 → P5, P6 → ¬P5

and P6, by using the set of support strategy.

Initially the set of support is given by ¬P4, the negation of the
conclusion.

One then does all the possible resolutions involving ¬P4, then all
possible resolutions involving the resulting resolvents, and so on.

If the initial 7 clauses are omitted, this yields the following derivation:

8. P1 ∨ P3 Resolvent of 7, 3
9. P2 ∨ P3 Resolvent of 1, 8
10. P3 Resolvent of 2, 9
11. P5 Resolvent of 4, 10
12. ¬P6 Resolvent of 5, 11
13. 0 Resolvent of 6, 12

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 20 / 28

Davis Putnam Procedure - Inputs

• Any clause corresponds to a set of literals, that is, the
literals contained within the clause.

• For instance, the clause P ∨ ¬Q ∨ R corresponds to the
set {P ,¬Q,R} and ¬S ∨ Q corresponds to the set
{¬S ,Q}.
• Since the order of the literals in a disjunction is

irrelevant, and since the same is true for the multiplicity
in which the terms occur, the set associated with the
clause completely determines the clause.

• For this reason, one frequently treats clauses as sets,
which allows one to speak of the union of two clauses.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 21 / 28

Davis Putnam Procedure - Inputs

• Any clause corresponds to a set of literals, that is, the
literals contained within the clause.

• For instance, the clause P ∨ ¬Q ∨ R corresponds to the
set {P ,¬Q,R} and ¬S ∨ Q corresponds to the set
{¬S ,Q}.

• Since the order of the literals in a disjunction is
irrelevant, and since the same is true for the multiplicity
in which the terms occur, the set associated with the
clause completely determines the clause.

• For this reason, one frequently treats clauses as sets,
which allows one to speak of the union of two clauses.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 21 / 28

Davis Putnam Procedure - Inputs

• Any clause corresponds to a set of literals, that is, the
literals contained within the clause.

• For instance, the clause P ∨ ¬Q ∨ R corresponds to the
set {P ,¬Q,R} and ¬S ∨ Q corresponds to the set
{¬S ,Q}.
• Since the order of the literals in a disjunction is

irrelevant, and since the same is true for the multiplicity
in which the terms occur, the set associated with the
clause completely determines the clause.

• For this reason, one frequently treats clauses as sets,
which allows one to speak of the union of two clauses.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 21 / 28

Davis Putnam Procedure - Inputs

• Any clause corresponds to a set of literals, that is, the
literals contained within the clause.

• For instance, the clause P ∨ ¬Q ∨ R corresponds to the
set {P ,¬Q,R} and ¬S ∨ Q corresponds to the set
{¬S ,Q}.
• Since the order of the literals in a disjunction is

irrelevant, and since the same is true for the multiplicity
in which the terms occur, the set associated with the
clause completely determines the clause.

• For this reason, one frequently treats clauses as sets,
which allows one to speak of the union of two clauses.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 21 / 28

Resolution as operation between sets

• If clauses are represented as sets, one can write the
resolvent of two clauses A and B on P as follows:

C = (A ∪ B) \ {P ,¬P}.

• In words, the resolvent is the union of all literals of A and
B except that the two literals involving P are omitted.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 22 / 28

Resolution as operation between sets

• If clauses are represented as sets, one can write the
resolvent of two clauses A and B on P as follows:

C = (A ∪ B) \ {P ,¬P}.

• In words, the resolvent is the union of all literals of A and
B except that the two literals involving P are omitted.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 22 / 28

The Davis-Putnam procedure

Given as input a nonempty set of clauses in the propositional
variables P1,P2, . . .Pn, the Davis Putnam Procedure (DPP) repeats
the following steps until there are no variables left:

• Discard all clauses that have both a literal L and its
complement ¬L in them.

• Choose a variable P appearing in one of the clauses.

• Add all possible resolvents using resolution on P to the
set of clauses.

• Discard all clauses with P or ¬P in them.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 23 / 28

The Davis-Putnam procedure

Given as input a nonempty set of clauses in the propositional
variables P1,P2, . . .Pn, the Davis Putnam Procedure (DPP) repeats
the following steps until there are no variables left:

• Discard all clauses that have both a literal L and its
complement ¬L in them.

• Choose a variable P appearing in one of the clauses.

• Add all possible resolvents using resolution on P to the
set of clauses.

• Discard all clauses with P or ¬P in them.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 23 / 28

The Davis-Putnam procedure

Given as input a nonempty set of clauses in the propositional
variables P1,P2, . . .Pn, the Davis Putnam Procedure (DPP) repeats
the following steps until there are no variables left:

• Discard all clauses that have both a literal L and its
complement ¬L in them.

• Choose a variable P appearing in one of the clauses.

• Add all possible resolvents using resolution on P to the
set of clauses.

• Discard all clauses with P or ¬P in them.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 23 / 28

The Davis-Putnam procedure

Given as input a nonempty set of clauses in the propositional
variables P1,P2, . . .Pn, the Davis Putnam Procedure (DPP) repeats
the following steps until there are no variables left:

• Discard all clauses that have both a literal L and its
complement ¬L in them.

• Choose a variable P appearing in one of the clauses.

• Add all possible resolvents using resolution on P to the
set of clauses.

• Discard all clauses with P or ¬P in them.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 23 / 28

The Davis-Putnam procedure

Given as input a nonempty set of clauses in the propositional
variables P1,P2, . . .Pn, the Davis Putnam Procedure (DPP) repeats
the following steps until there are no variables left:

• Discard all clauses that have both a literal L and its
complement ¬L in them.

• Choose a variable P appearing in one of the clauses.

• Add all possible resolvents using resolution on P to the
set of clauses.

• Discard all clauses with P or ¬P in them.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 23 / 28

DPP - Eliminating a variable

• We refer to the preceding sequence as eliminating the
variable P .

• If in some step one resolves {P} and {¬P} then one has
the empty clause, and it will be the only clause at the
end of the procedure.

• If one never has a pair {P} and {¬P} to resolve, then
all the clauses will be thrown out and the output will be
no clauses.

• So the output of DPP either the empty clause or no
clauses.

• This may seem rather subtle but just think of the
difference between arriving in the library with (1) an
empty backpack and (2) no backpack.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 24 / 28

DPP - Eliminating a variable

• We refer to the preceding sequence as eliminating the
variable P .

• If in some step one resolves {P} and {¬P} then one has
the empty clause, and it will be the only clause at the
end of the procedure.

• If one never has a pair {P} and {¬P} to resolve, then
all the clauses will be thrown out and the output will be
no clauses.

• So the output of DPP either the empty clause or no
clauses.

• This may seem rather subtle but just think of the
difference between arriving in the library with (1) an
empty backpack and (2) no backpack.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 24 / 28

DPP - Eliminating a variable

• We refer to the preceding sequence as eliminating the
variable P .

• If in some step one resolves {P} and {¬P} then one has
the empty clause, and it will be the only clause at the
end of the procedure.

• If one never has a pair {P} and {¬P} to resolve, then
all the clauses will be thrown out and the output will be
no clauses.

• So the output of DPP either the empty clause or no
clauses.

• This may seem rather subtle but just think of the
difference between arriving in the library with (1) an
empty backpack and (2) no backpack.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 24 / 28

DPP - Eliminating a variable

• We refer to the preceding sequence as eliminating the
variable P .

• If in some step one resolves {P} and {¬P} then one has
the empty clause, and it will be the only clause at the
end of the procedure.

• If one never has a pair {P} and {¬P} to resolve, then
all the clauses will be thrown out and the output will be
no clauses.

• So the output of DPP either the empty clause or no
clauses.

• This may seem rather subtle but just think of the
difference between arriving in the library with (1) an
empty backpack and (2) no backpack.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 24 / 28

DPP - Eliminating a variable

• We refer to the preceding sequence as eliminating the
variable P .

• If in some step one resolves {P} and {¬P} then one has
the empty clause, and it will be the only clause at the
end of the procedure.

• If one never has a pair {P} and {¬P} to resolve, then
all the clauses will be thrown out and the output will be
no clauses.

• So the output of DPP either the empty clause or no
clauses.

• This may seem rather subtle but just think of the
difference between arriving in the library with (1) an
empty backpack and (2) no backpack.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 24 / 28

Davis-Putnam algorithm

• Let S1 = S .

• Let i = 1.

• LOOP until i = n + 1.

• Discard members of Si in which a literal and its
complement appear, to obtain S ′

i .

• Let Ti be the set of parent clauses in S ′
i in which Pi or

¬Pi appears.

• Let Ui be the set of resolvent clauses obtained by
resolving (over Pi) every pair of clauses C ∪ {Pi} and
D ∪ {¬Pi} in Ti .

• Set Si+1 equal to (S ′
i \ Ti) ∪ Ui . (Eliminate Pi).

• Let i be increased by 1.

• ENDLOOP.

• Output Sn+1.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 25 / 28

Davis-Putnam algorithm

• Let S1 = S .

• Let i = 1.

• LOOP until i = n + 1.

• Discard members of Si in which a literal and its
complement appear, to obtain S ′

i .

• Let Ti be the set of parent clauses in S ′
i in which Pi or

¬Pi appears.

• Let Ui be the set of resolvent clauses obtained by
resolving (over Pi) every pair of clauses C ∪ {Pi} and
D ∪ {¬Pi} in Ti .

• Set Si+1 equal to (S ′
i \ Ti) ∪ Ui . (Eliminate Pi).

• Let i be increased by 1.

• ENDLOOP.

• Output Sn+1.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 25 / 28

Davis-Putnam algorithm

• Let S1 = S .

• Let i = 1.

• LOOP until i = n + 1.

• Discard members of Si in which a literal and its
complement appear, to obtain S ′

i .

• Let Ti be the set of parent clauses in S ′
i in which Pi or

¬Pi appears.

• Let Ui be the set of resolvent clauses obtained by
resolving (over Pi) every pair of clauses C ∪ {Pi} and
D ∪ {¬Pi} in Ti .

• Set Si+1 equal to (S ′
i \ Ti) ∪ Ui . (Eliminate Pi).

• Let i be increased by 1.

• ENDLOOP.

• Output Sn+1.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 25 / 28

Davis-Putnam algorithm

• Let S1 = S .

• Let i = 1.

• LOOP until i = n + 1.

• Discard members of Si in which a literal and its
complement appear, to obtain S ′

i .

• Let Ti be the set of parent clauses in S ′
i in which Pi or

¬Pi appears.

• Let Ui be the set of resolvent clauses obtained by
resolving (over Pi) every pair of clauses C ∪ {Pi} and
D ∪ {¬Pi} in Ti .

• Set Si+1 equal to (S ′
i \ Ti) ∪ Ui . (Eliminate Pi).

• Let i be increased by 1.

• ENDLOOP.

• Output Sn+1.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 25 / 28

Davis-Putnam algorithm

• Let S1 = S .

• Let i = 1.

• LOOP until i = n + 1.

• Discard members of Si in which a literal and its
complement appear, to obtain S ′

i .

• Let Ti be the set of parent clauses in S ′
i in which Pi or

¬Pi appears.

• Let Ui be the set of resolvent clauses obtained by
resolving (over Pi) every pair of clauses C ∪ {Pi} and
D ∪ {¬Pi} in Ti .

• Set Si+1 equal to (S ′
i \ Ti) ∪ Ui . (Eliminate Pi).

• Let i be increased by 1.

• ENDLOOP.

• Output Sn+1.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 25 / 28

Davis-Putnam algorithm

• Let S1 = S .

• Let i = 1.

• LOOP until i = n + 1.

• Discard members of Si in which a literal and its
complement appear, to obtain S ′

i .

• Let Ti be the set of parent clauses in S ′
i in which Pi or

¬Pi appears.

• Let Ui be the set of resolvent clauses obtained by
resolving (over Pi) every pair of clauses C ∪ {Pi} and
D ∪ {¬Pi} in Ti .

• Set Si+1 equal to (S ′
i \ Ti) ∪ Ui . (Eliminate Pi).

• Let i be increased by 1.

• ENDLOOP.

• Output Sn+1.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 25 / 28

Example

Let us apply the Davis-Putnam procedure to the clauses

{¬P ,Q}, {¬Q,¬R , S}, {P}, {R}, {¬S}

• Eliminating P gives {Q}, {¬Q,¬R , S}, {R}, {¬S} (This
is S2 and S ′

2).

• Eliminating Q gives {¬R , S}, {R}, {¬S}. (This is S3

and S ′
3.)

• Eliminating R gives {S}, {¬S}. (This is S4 and S ′
4.)

• Eliminating S gives {}. (This is S5.)

So the output is the empty clause.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 26 / 28

Example

Let us apply the Davis-Putnam procedure to the clauses

{¬P ,Q}, {¬Q,¬R , S}, {P}, {R}, {¬S}

• Eliminating P gives {Q}, {¬Q,¬R , S}, {R}, {¬S} (This
is S2 and S ′

2).

• Eliminating Q gives {¬R , S}, {R}, {¬S}. (This is S3

and S ′
3.)

• Eliminating R gives {S}, {¬S}. (This is S4 and S ′
4.)

• Eliminating S gives {}. (This is S5.)

So the output is the empty clause.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 26 / 28

Comments

• If the set of clauses is more complicated, before each
phase of applying resolution we number the clauses (the
Ti steps) and in the next phase (the Ui steps) we
provide two numbers with each clause, to describe the
two clauses used to provide that resolvent.

• If the output of DPP is the empty clause, this indicates
that both P and ¬P were produced, that is, the clauses
that originated from the premises and negation of the
conclusion are inconsistent, that is, the original
argument (theorem) is valid.

• If the output of DPP is no clause, no contradiction can
be found, and the original argument (theorem) is not
valid.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 27 / 28

Comments

• If the set of clauses is more complicated, before each
phase of applying resolution we number the clauses (the
Ti steps) and in the next phase (the Ui steps) we
provide two numbers with each clause, to describe the
two clauses used to provide that resolvent.

• If the output of DPP is the empty clause, this indicates
that both P and ¬P were produced, that is, the clauses
that originated from the premises and negation of the
conclusion are inconsistent, that is, the original
argument (theorem) is valid.

• If the output of DPP is no clause, no contradiction can
be found, and the original argument (theorem) is not
valid.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 27 / 28

Comments

• If the set of clauses is more complicated, before each
phase of applying resolution we number the clauses (the
Ti steps) and in the next phase (the Ui steps) we
provide two numbers with each clause, to describe the
two clauses used to provide that resolvent.

• If the output of DPP is the empty clause, this indicates
that both P and ¬P were produced, that is, the clauses
that originated from the premises and negation of the
conclusion are inconsistent, that is, the original
argument (theorem) is valid.

• If the output of DPP is no clause, no contradiction can
be found, and the original argument (theorem) is not
valid.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 27 / 28

Soundness and Completeness of DPP

Theorem [The DPP is sound and complete].

Let S be a finite set of clauses. Then S is not satisfiable iff the
output of the Davis-Putnam procedure is the empty clause.

Artificial Inteligence - Resolution for propositional calculus CS2209, Applied Logic for Computer Science 28 / 28

