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Abstract 
 

Simulation of agent-based systems is an inherent 
requirement of the development process which provides 
developers with a powerful means to validate both 
agents’ dynamic behavior and the agent system as a 
whole and investigate the implications of alternative 
architectures and coordination strategies. In this paper, 
we present a discrete-event simulation framework which 
supports the validation activity of agent-based and multi-
agent systems which are modeled and programmed as a 
set of event-driven agents by means of the Distilled 
StateCharts formalism and related programming tools. 
The simulation framework is equipped with a discrete-
event simulation engine which provides support for the 
execution of agents by interleaving their events 
processing, the exchange of events among agents, the 
migration of agents, and the clustering of agents into 
agent servers interconnected by a logical network. Using 
this framework, an agent-based complex system can be 
easily validated and evaluated by defining a simulator 
program along with suitable test cases and performance 
measurements. 
 

1. Introduction 
 

Agent-based and multi-agent systems (MAS), like 
other complex software systems, must be tested and 
evaluated before being deployed [10]. Simulation of 
agent-based systems is an inherent requirement in all 
phases of the development process. Modeling and 
simulation help developers learn more about agents' 
interactive behavior and investigate the implications of 
alternative architectures and coordination strategies. In 
particular, discrete-event simulators are highly required 
for evaluating how complex agent-based systems work on 
scales much larger than those achievable in real testbeds.  

Currently few development processes for agent-based 
systems which explicitly incorporate a simulation phase 
have been proposed. In [13] an integrated development 
environment for the engineering of MAS as Electronic 
Institutions is presented. An Electronic Institution is a 

performative structure of multi agent protocols (or scenes) 
along with a collection of normative rules that can be 
triggered off by agents’ actions. The development 
environment is composed of a set of tools supporting the 
design, validation through simulation, development, 
deployment and the execution of MAS as Electronic 
Institutions. Such a development environment is aimed at 
facilitating the iterated and progressive refinement of the 
development cycle of MAS. In particular, SIMDEI, a 
simulation tool, allows for the animation and analysis of 
the specification of the rules and protocols in an 
Electronic Institution. In [12, 15] a modeling and 
simulation framework (DynDEVS) for supporting the 
development process of MAS from specification to 
implementation is proposed. The authors advocate the use 
of controlled experimentation in order to allow for the 
incremental refinement of agents while providing rigorous 
observation facilities. The benefits of using modeling and 
simulation for the evaluation of cooperative agents is 
illustrated through a simple example based on the 
Contract Net Protocol. The exploited simulation 
framework is JAMES, a Java Based Agent Modeling 
Environment for Simulation, which aims at exploring the 
integration of the agents paradigm within a general 
modeling and simulation formalism for discrete-event 
systems. JAMES follows a formal approach for discrete-
event simulation based on DEVS (Discrete Event Systems 
Specification) which allows to specify (atomic and 
coupled) models and execute them by sending typed 
messages between simulator objects. In [11] a logic based 
prototyping environment  for multi-agent systems, CaseLP 
(Complex Application Specification Environment Based 
on Logic Programming) is presented. CaseLP integrates 
simulation tools for visualizing the prototype execution 
and for collecting the related statistics. The CaseLP 
visualizer tool provides documentation about events that 
happen at the agent level during the MAS execution. 
Developers according to their needs can instrument the 
code of some agents after it has been loaded by adding 
probes to the code of agents. In this way, events related to 
state changes and /or exchanged messages can be 
recorded and collected for on-line and/or off-line 
visualization. It is worth pointing out that from a 

WOA 2005 75



simulation point of view CaseLP is a time-driven 
centralized simulator with a global time known from all 
the agents in the system. 

In this paper, we present a Java-based discrete-event 
simulation framework which supports the validation 
activity of agent-based and multi-agent systems which are 
modeled and programmed as a set of event-driven agents 
by means of the Distilled StateCharts formalism and the 
related programming tools [8]. The simulation framework 
is organized in four layers: (i) low-level simulation 
framework, which provides the basic mechanisms and 
classes to simulate general purpose systems; (ii) agent 
platform, which is built atop the low-level simulation 
framework and provides a distributed infrastructure 
formed by a network of interconnected agent servers; (iii) 
ELA adapter, which allows to map event-driven DSC-
based lightweight agents onto the agent platform layer; 
(iv) user, which provides abstractions representing 
interacting users and users’ behaviors. Using this 
framework, an agent-based complex system can be easily 
validated and evaluated by defining a simulator program 
along with suitable test cases and performance 
measurements.  

The remainder of the paper is structured as follows. 
Section 2 overviews the Distilled StateCharts-based 
approach for the modeling and validation of agent-based 
system which adopts the proposed simulation framework 
as validation tool. In section 3, the simulation framework 
is described in detail whereas section 4 reports some 
results concerning with the performance evaluation of an 
agent-based e-Marketplace by means of the simulation 
framework. Finally conclusions are drawn and directions 
of future work delineated. 
 
2. A Distilled StateCharts-based approach 
for the modeling and validation of agent-
based systems: an overview 

The Distilled StateCharts-based approach [5, 6], which 
aims at supporting the modeling and validation of agent-
based and multi-agent systems, consists of the following 
phases (Fig. 1): High-Level Modeling, Detailed Design, 
Coding and Simulation. 
 

High-Level 
Modeling

AS

Detailed
Design Coding Simulation

Process Phase

Phase Workproduct

ASDSC C(ASDSC) ResultSet

Figure 1. Process schema of the DSC-based approach. 
 

The High-Level Modeling phase can be supported by 
well-established agent-oriented methodologies (such as 
the Gaia methodology [17]) which cover the phases of 
requirements capture, analysis and high-level design. The 
product of this phase is the agent-based system model 
(AS) defined as follows: 
 

AS = <AT, LCL, act, serv, prot>, 
where: 

AT (Agent Types) is the set of types of agents 
embodying activity, offering services and interacting with 
each other; 

LCL (Logical Communication Links) is the set of 
logical communication channels among agent types which 
embody interaction protocols; 

act: AT → activity description is the activity relation 
which associates one or more activities to an agent type; 

serv: AT → service description is the service relation 
which associates one or more services to an agent type; 

prot: LCL → interaction description is the protocol 
relation which associates an interaction protocol to a 
logical communication channel. 

The Detailed Design phase is enabled by a Statecharts-
based formalism, namely the Distilled StateCharts (DSC) 
[8], which supports the specification of the behavior of the 
agent types and the interaction protocols among the agent 
types of AS. In particular DSC allow for the specification 
of the behavior of lightweight agents (see §2.1) which are 
event-driven, single-threaded entities capable of 
transparent migration and executing chains of atomic 
actions. The DSC-based specification of an AS, denoted 
as ASDSC, can be expressed as follows: 
 

ASDSC = {Beh(AT1), …, Beh(ATn)}, 
 

where Beh (ATi) = <SBeh(ATi), EBeh(ATi)> is the DSC-
based specification of the dynamic behavior of the i-th 
agent type. In particular, SBeh(ATi) is a hierarchical state 
machine incorporating the activity and the interaction 
handling of the i-th agent type and EBeh(ATi) is the related 
set of events to be handled triggering state transitions in 
SBeh(ATi). 

The Coding phase is carried out by using the Java-
based Mobile Active Object Framework (MAO 
Framework) [8] and produces the work product C(ASDSC)
representing the code of ASDSC. In particular, Beh(ATi)
can be seamlessly translated into a composite object, 
which is the object-based representation of SBeh(ATi), and 
into a set of related event objects representing EBeh(ATi). 

The Simulation phase is supported by MASSIMO, a 
Java-based discrete-event simulation framework for multi-
agent systems (see §3). On the basis of the framework, a 
simulator program can be implemented and executed to 
obtain a ResultSet containing validation traces and 
performance parameter values. The validation of agent 
behaviors and interactions is carried out on execution 
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traces automatically generated, whereas the performance 
evaluation relies on the specific agent-based system to be 
analyzed; the performance evaluation parameters are 
therefore set ad-hoc. The ResultSet can also be used to 
feed back the High-level Modeling and Detailed Design 
phases. 
 
2.1. The reference agent model 
 

The agent model is based on the abstraction of event-
driven state-based lightweight agent [7] which can be 
represented by the tuple: 
 

<Id, Beh, DS, TC, EQ>, 
where: 
- Id is the unique identifier of the agent; 
- Beh is the DSC-based dynamic agent behavior; 
- DS is the data space hierarchically organized of the 

agent; 
- TC is the single thread of control supporting agent 

execution;  
- EQ is the event queue of the agent containing received 

and to-be-processed events. 
The event-driven state-based lightweight agent is 

programmed by specifying its Beh through the FIPA-
compliant agent behavioral template [2], reported in 
Figure 2, which is a Distilled StateChart [8] consisting of 
a set of basic states (Initiated, Transit, Waiting, 
Suspended, and Active) and transitions labeled by events. 
In particular, the agent performs computations and 
interactions in the Active Distilled StateChart (ADSC) 
composite state, inside the Active state, which is to be 
refined by the agent programmer. The presence of the 
deep history connector (H*) inside the Active state allows 
for a coarse-grained strong mobility-based agent 
migration [9]. An event reaction can produce 
computations, which can affect the DS, and/or the 
generation of one or more events, or a migration. While 
the reception of incoming events (or IN-events) is implicit 
and decoupled by the EQ, the transmission of events is 
explicitly carried out by means of the 
generate(<event>(<parameters>)) primitive which 
allows to asynchronously raise outcoming events (or 
OUT-events). The execution semantics of the event-
driven state-based lightweight agent are defined in terms 
of the Event Processing Cycle (EPC): the next available 
event is cyclically fetched from EQ and is passed to the 
Beh which can handle it so triggering one reaction. OUT- 
and IN-events are classified in: 
- internal events, which can be defined at programming 

level for self-triggering active and/or proactive 
behavior. In the case of internal events, IN and OUT 
events coincide. In fact, an emitted internal event or 

OUT-event is received as IN-event by the emitting 
agent itself. 

- management events, which include requests and 
notifications of services at agent server level such as 
agent lifecycle management, creation, cloning, and 
migration. 

- coordination events, which enable coordination acts 
between agents according to a specific coordination 
model. In this paper the considered coordination model 
is the asynchronous Direct model, even though the 
Tuple-based and the Publish/Subscribe event-based 
models could also be exploited as shown in [7]. 

 
TOP STATE

INITIATED

Invoke 

TRANSIT

Execute 

Move 

Quit Destroy

WAITING

Wake_UP 

Wait 

SUSPENDED

Resume 

Suspend 

ACTIVE 

H*

Active Distilled 
StateChart 

Figure 2. The FIPA-based template of the event-driven 
DSC-based lightweight agent. 

 
In order to exemplify the DSC-based modeling of 

agent behavior, the specification of the ADSC of a mobile 
event-driven state-based lightweight agent is shown in 
Figure 3; Table 1 reports state variables, methods and 
events of the example agent specification. The agent 
overall goal is that of moving across a set of agent servers 
according to a predefined itinerary for monitoring a set of 
remote processes. In order to fulfill its goal, the agent 
alternates the following three phases: 
- Data acquisition, which is performed by generating 

DataRequest coordination events targeting N different 
local agents which are controlling the local process. As 
soon as the monitoring data are collected (after the 
reception of all the DataReply coordination events), the 
internal Reply event is generated. 

- Data processing, which is performed upon reception of 
the Reply event and carried out by means of the 
process method. It can also occur upon reception of the 
Process coordination event sent by another agent (e.g. 
the owner agent) if data are enough (the guard g holds), 
otherwise the agent returns in the substate of request 
which abandoned most recently. 

- Migration, which depends on the data processing 
which, if successful, enables the agent to autonomously 
migrate to another site according to its itinerary; 
otherwise, the monitoring process is re-executed. 
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Action expressions:
ac1:count=0; 
 generate(new Step(0)); 
 generate(new DataRequest(recipients[0], 0)); 
ac2:i=((Step)e).getI(); 
 if (i<N-1) generate(new Step(i+1)) 
generate(new DataRequest(recipients[i+1], i+1));

ac3:i=((DataReply)e).getI(); 
 data[i]=((DataReply)e).getData(); 
 count++;  
 if (count==N) generate(new Reply()); 
ac4:if (process()) { 
 next=(next+1)%itinerary.length; 
 generate(new Move(self(), itinerary[next]));} 
 generate(new Request()); 
ac5:ac4; 
Guards: 
g:enough() 

Figure 3. The Active Distilled StateChart  
of the example agent. 

 
VAR DESCRIPTION 

N Number of requests the agent issues to the local monitoring 
agents 

itinerary List of agent servers to be visited 
recipients List of identifiers of the interacting agents 

data Collector of the data coming from the replying agents 
next Index of the last visited agent server  

count Number of replies received in a monitoring cycle 
i Temporary integer variable 
e Reference to the last received event instance 

METHOD 
process Specific method for processing data which returns true if the 

processing was successful 
enough Specific method for evaluating if there are enough data for 

processing 
self Method which returns the identifier of the agent 

EVENT 
Step Internal event pacing the generation of DataRequest 

DataRequest Coordination event of the asynchronous Direct model sent by the 
agent to the local monitoring agents for requesting data 

DataReply Coordination event of the asynchronous Direct model sent by a 
local monitoring agent for replying to DataRequest 

Reply Internal event indicating data gathering completion 
Process Coordination event enabling a forced processing 
Request Internal event activating a monitoring cycle 

Table 1. State variables, methods and events of the 
example agent. 

 

3. MASSIMO: a discrete-event simulation 
framework for MAS 

The Multi-Agent Systems SIMulation framewOrk 
(MASSIMO) is a Java-based discrete-event simulation 
framework which allows for the validation and evaluation 
of: 
- the dynamic behavior (computations, interactions, and 

migrations) of individual and cooperating agents; 
- the basic mechanisms of the distributed architectures 

supporting agents, namely agent platforms; 
- the functionalities of applications and systems based on 

agents. 
The architecture of MASSIMO (Fig. 4) is composed of 

four basic layers: 
(i) Low-level simulation framework, which provides 

the basic mechanisms and classes to simulate general 
purpose systems; 

(ii) Agent platform, which is built atop the low-level 
simulation framework and provides a distributed 
infrastructure formed by a network of interconnected 
agent servers; 

(iii) ELA adapter, which extends the MAAF (Mobile 
Agent Adaptation Framework) [8] and allows to map 
event-driven DSC-based lightweight agents, provided by 
the MAO Framework, onto the agent platform. 

(iv) User, which provides abstractions representing 
interacting users and users’ behaviors. 

In the subsections 3.1-3.4 the four layers are described 
in detail. In section 3.5, the basic structure of a MAS 
simulator program is exemplified.  
 

SimulationEngine

AgentMetaAgent Message Timer

*

1
*

1
*

1

1..2 * 1 1

VirtualNework AgentServer MSG

(i) Low-level Simulation 
Framework

(ii) Agent Platform

(iii) ELA Adapter

ELA

*

1

1
1

11

(iv) User

UserAgent UserAgentGenerator

*

*

<<interface>>
IMobileAgentAdapter

(from MAAF)

1* Start Reporting

MAOBehavior
(from MAOFramewok)

MAOId
(from MAOFramewok)

Figure 4. The architecture of MASSIMO. 
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3.1. The low-level simulation framework 
The low-level simulation framework is composed of 

the following base Java classes which support agent-based 
programming and simulation of general-purpose systems: 
- Agent, which represents a computational state-based 

agent communicating through asynchronous messages. 
- MetaAgent, which represents a meta-level agent able to 

capture and constrain messages sent by computational 
agents or by other meta-agents. 

- Message, which represents a message sent by an agent 
(source) to another agent (target). 

- Timer, which is an object encapsulating a Message 
instance and a timeout. The message is delivered to its 
target at the timeout expiration. 

The basic components of the simulation engine (Fig. 5) 
are: 
- Global System Message Queue (GSMQ), which stores 

all the messages to be delivered.  
- Global System Timer Queue (GSTQ), which stores all 

the timers ranked by timeout value.  
- Simulation Clock (SC), which represents the simulation 

time. It is incremented every time that a timer expires. 
- Filter (FT), which receives the messages generated by 

the computational agents and insert them into GSMQ if 
they are not subjected to the meta-level agent capture; 
otherwise FT forwards the messages to their associated 
meta-agents. 

- Scheduler (SD), which cyclically extracts a message 
from GSMQ and dispatches it to the target agent. If 
there are not messages in GSMQ, SD forces a timer 
(the one with the lowest timeout) to fire and dispatches 
the associated message to its target. 
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Figure 5. The architecture of the simulation engine. 

 

3.2. The agent platform 
The agent platform layer, which is built atop the low-

level simulation framework, provides two basic 
abstractions: the AgentServer, which represents the 
infrastructure where event-driven lightweight DSC-based 
agents (ELAs) run, and the VirtualNetwork, which 
represents a network of hosts on which AgentServers can 
be mapped. 

The AgentServer, which is an extension of the Agent 
class, provides the following functionalities: 
- agent management lifecycle, which supports 

(de)registration and execution of ELAs; 
- agent migration, which supports the migration of an 

ELA from one AgentServer to another; 
- agent interaction, which supports the event-based 

interaction among ELAs; 
- inter-agent-server service signaling. 
 

PROCESSOR

GENERAT OR

MSG

WHIT E PAGES (WP)

LookUp
Register
UnRegister

ELA SET (ES)

Event

MSG

Event

ELA MSG

ELA1 ELAN

ELAId ELARef

Figure 6. The architecture of the AgentServer. 
 

The architecture of the AgentServer (Fig. 6) consists of 
the following components: 
- White Pages (WP), which keeps archived the ELAs 

running in the AgentServer. It consists of pairs 
<ELAId, ELARef>, where ELAId is the ELA identifier 
and ELARef is either (i) the reference to the ELA 
identified by ELAId and belonging to the set of ELAs 
(ES) running in the AgentServer or (ii) the proxy of the 
ELA identified by ELAId and migrated to another 
AgentServer. A proxy is a triple <AS, MBX, active>, 
where AS is the address of the AgentServer to which 
the ELA migrated, MBX is the ELA mailbox 
containing the events targeting the ELA during the 
ELA migration transitory, and active is a boolean 
variable indicating whether or not the forwarding 
activity of the proxy is on. 

- Processor, which receives and processes incoming 
MSGs, extensions of the Message class, which can 
contain one of the following objects: 
(i) an Event targeting an ELA. The ELA target of the 
Event is looked up and the Event passed to it if the 
ELA is present in the AgentServer; otherwise, the ELA 
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Proxy is returned and the Event is encapsulated in a 
MSG and the resulting MSG redirected to the 
AgentServer address contained in the proxy. 
(ii) a created ELA. The created ELA is registered in 
the WP. 
(iii) an incoming migrating ELA. The incoming ELA is 
registered in the WP. If it is not the first time that the 
ELA is hosted by the AgentServer, the previously left 
proxy is substituted by the incoming ELA. 
(iv) an outcoming migrating ELA. The outcoming ELA 
is encapsulated in a MSG and the resulting MSG is 
transmitted to the target AgentServer. Finally, the 
outcoming ELA is unregistered from the WP and its 
associated Proxy is set. 
(v) an inter-AgentServer service message. The basic 
service messages are those for the management of the 
MBX of the ELA proxy: 
- GetMBX, which is a request issued by a remote 

AgentServer to activate the proxy and obtain the 
MBX of an ELA which migrated from the 
AgentServer to the remote AgentServer. Upon 
reception of GetMBX, the AgentServer first looks 
up the proxy of the ELA whose identifier is 
contained in the GetMBX; then, it retrieves the 
MBX associated to the ELA and, if the MBX is not 
empty, sends an MBX message containing the 
MBX to the remote AgentServer. Finally, the 
proxy forwarding is activated (active=true). 

- MBX, which contains the mailbox of an ELA 
previously requested from a remote AgentServer 
by a GetMBX service request. Upon reception of 
an MBX message, the AgentServer looks up the 
ELA whose identifier is contained in the MBX 
message and, if the ELA is present in the 
AgentServer, encapsulates the events contained in 
the MBX message in Messages targeting the 
AgentServer itself and inserts them in the GSMQ. 
If the ELA is not present in the AgentServer, MBX 
is sent to the AgentServer where the ELA migrated 
if the proxy is on; otherwise, the events contained 
in the MBX message are inserted in the MBX of 
the ELA proxy. 

- Generator, which processes the following events 
generated by the hosted ELAs: 
(i) Internal self-triggering Event. The event is 
encapsulated in a MSG whose target is the AgentServer 
itself to which the MSG is then transmitted. 
(ii) External Event. The event is encapsulated in a 
MSG whose target is the AgentServer hosting the ELA 
target of the event and the MSG is then transmitted to 
the target AgentServer. 
(iii) Creation Event. The event contains the identifier 
and the dynamic behavior of an ELA created in the 
AgentServer. These parameters are used to create a 
new ELA agent which is then encapsulated in a MSG 

whose target is the AgentServer itself to which the 
MSG is then transmitted. 
(iv) Timer Event. The event is encapsulated in a MSG 
whose target is the AgentServer itself and the MSG 
then is encapsulated in a Timer which is set to the 
timeout contained in the timer event. 

The VirtualNetwork, which is an extension of the 
MetaAgent class, is able to set Timers on transmitted 
MSGs. It relies on a graph-based network structure in 
which a network link is completely reliable and based on 
an end-to-end delay model by which the delay of 
event/message transmissions [3] and agent migrations [14] 
can be calculated. The calculated delay is used as timeout 
value of a Timer containing a MSG. 
 
3.3. ELA adapter 

The ELA (Event-drive Lightweight Agent) adapter 
(Fig. 7) allows to plug a MAOBehavior object 
encapsulating the DSC-based behavior of an event-driven 
lightweight agent into the simulation framework. 
 

<<interface>>
IMobileAgentAdapter

+ void generate(MAOEvent)
+ void receive(MAOEvent)
+ MAOId getMAOId()
+ run()
+ onArrival()
+ onDeparture()

ELA

+ mbeh : MAOBehavior
+ mid : MAOId
+ as : AgentServer
+ setAgentServer(AgentServer)

MAOBehavior
(from MAOFramework)

+ mas : MAOActiveState
+ mid : MAOId
+ imaa : IMobileAgentAdapter
+ MAOBehavior(MAOActiveState)
+ generate(MAOEvent)
+ MAOId self()

MAOId
(from MAOFramework)

+ hlname : String
+ homeLocation : String
+ currentLocation : String

+ MAOId(String, String)
+ setCurrLocation(String)

Figure 7. The ELA adapter layer. 
 

The ELA class is an extension of the MAAF (Mobile 
Agent Adaptation Framework) [8] designed to provide the 
basic support for the adaptation of a MAOBehavior to a 
mobile agent class which is made available by a specific 
Java-based mobile agent platform. The ELA class 
implements the IMobileAgentAdapter interface and is 
associated with a MAOBehavior and a MAOId 
encapsulating the high-level agent identifier. 
IMobileAgentAdapter declares the following methods for 
adapting agent interaction, execution and migration: 
- receive, which is invoked to pass MAOEvents to 

agents; 
- generate, which interprets the MAOEvents generated 

within MAOBehavior and translates them into calls of 
platform-dependent methods; 

- run, which is the method supporting agent execution; 
- onDeparture, which is invoked just before the 

migration initiates; 
- onArrival, which is invoked after the migration is 

completed. 
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To completely adapt an ELA to the agent platform layer 
the ELA class needs only to implement the methods 
receive and generate. The method receive is invoked by 
the AgentServer to deliver MAOEvents to ELAs. The 
method generate, which is invoked by the MAOBehavior, 
passes a MAOEvent to the AgentServer. 
 
3.4. User 

The User level makes it available two abstract classes 
UserAgent and UserAgentGenerator which are extensions 
of Agent. UserAgent represents a user directly connected 
to an AgentServer who can create, launch and interact 
with ELAs. UserAgentGenerator models the generation 
process of UserAgents. In particular, the 
UserAgentGenerator is able to create and start UserAgents 
according to a given logic (e.g. statistical distribution). 
Moreover, the Start message allows for the activation of a 
UserAgent or a UserAgentGenerator, whereas the 
Reporting message which targets a UserAgent contains a 
report sent from an ELA owned by the UserAgent. 
 
3.5. Simulator programming  

A MAS simulator can be programmed on the basis of 
the simulation entities described in the previous 
subsections: VirtualNetwork, AgentServer, ELA, 
UserAgent and UserAgentGenerator. A general simulator 
program can be constructed in the following steps: 

1. creation of the VirtualNetwork; 
2. creation of one or more AgentServers; 
3. mapping of the created AgentServers onto distinct 

nodes of the VirtualNetwork; 
4. creation of the ELAs that will not be created, 

directly or undirectly, by a UserAgent; 
5. mapping of the created ELAs onto AgentServers; 
6. creation of one or more UserAgentGenerators 

and/or one or more UserAgents. In the latter case, 
the created UserAgents are to be bounded to one 
or more AgentServers; 

7. generation of the Start messages targeting the 
UserAgentGenerators and/or the UserAgents; 

8. start of the simulation engine. 
Figure 8 sketches the code of the simulator program of an 
example MAS. The MAS is composed of N stationary 
service agents (SA) distributed on N different 
AgentServer, a UserAgent (UA) which creates and 
launches a mobile agent (MA). MA travels along the N 
different AgentServers, interacts with the N SAs and, 
finally, comes back home by reporting to the UA. 
 

//initialize the simulation engine 
SimulationEngine.init(); 

//create an Homogeneous Small Network of N_AS+1 nodes 
VirtualNetwork vn = new VirtualNetwork(N_AS+1, VirtualNetwork.HSN);

//add the VirtualNetwork to the set of MetaAgents
SimulatiomEngine.addMetaAgent(vn, MetaAgent.ALL_MSG); 

//create N_AS agent servers
AgentServer [] ass = new AgentServer[N_AS]; 
String [] ass_url  = new String[N_AS]; 
for (int i=0; i<N_AS; i++){ 
ass_url[i] = "agentserver"+i;
ass[i] = new AgentServer(ass_url[i], "typeX"); 
}

//map agent servers to network nodes
for (int i=0; i<N_AS; i++) 
vn.map(ass[i], i);

//create the service agents and map them to the agent servers
for (int i=0; i<NUM_AS; i++) 
ELA sa = new ELA(new MAOId(ass_url[i]+"#sa", null,  

ass_url[i]), new MAOServiceActiveState(100)); 
Msg msg = new Msg(ass[i], ass_url[i], ass_url[i], 

Msg.AGENT_CREATION, sa );
ass[i].process(msg);
}

//create the user agent and map it to the N_AS node 
UserAgent ua = new UserItineraryAgent("useragentX", ass_url); 
vn.map(ua, N_AS); 

//send the Start message to the UserAgent
Agent.send(new Start(ua)); 

//start the simulation of a duration of 1000000
SimulationEngine.start(1000000);  

Figure 8. An example MAS simulator program. 
 
4. Performance evaluation of a consumer-
driven agent-based e-Marketplace 

An Agent-based e-Marketplace (AEM) is a distributed 
multi-agent system formed by both stationary and mobile 
agents which provide e-Commerce services to end-users 
within a business context. AEMs are distributed large-
scale complex systems which require tools which are able 
to analyze not only the AEM at the micro level, i.e. 
behaviors and interactions of their constituting agents, but 
also the AEM at the macro level, i.e. the overall AEM 
dynamics. Although useful insights about AEM micro and 
macro levels can be acquired by playing e-Commerce 
simulation games and, then, analyzing the obtained 
results, or by evaluating real e-Commerce applications, 
discrete-event simulators are essential for evaluating how 
AEMs work on scales much larger than that achievable in 
games or in applications which involve humans. This 
section shows the application of the proposed discrete-
event simulation framework to the analysis of micro level 
issues of a consumer-driven AEM, i.e. an e-Marketplace 
in which the exchange of goods is driven by the 
consumers that wish to buy a product. 
 
4.1. An Agent-based Consumer Driven e-
Marketplace model 

The modeled AEM, inspired by the systems presented 
in [1] and [16], consists of a set of stationary and mobile 
agents which provides basic services for the searching, 
buying, selling, and payment of goods. 
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The identified types of agents are: 
- User Assistant Agent (UAA), which is associated 

with users and assists them in: (i) looking for a 
specific product that meets their needs; (ii) buying 
the product according to a specific buying policy. 

- Access Point Agent (APA), which represents the 
entry point of the e-Marketplace. It accepts requests 
for buying a product from a registered UUA. 

- Mobile Consumer Agent (MCA), which is an 
autonomous mobile agent dealing with the searching, 
contracting, evaluation, and payment of goods. 

- Vendor Agent (VA), which represents the vendor of 
specific goods. 

- Yellow Pages Agent (YPA), which represents the 
contact point of the distributed Yellow Pages Service 
(YPS) providing the location of agents selling a 
given product. The organization of the YPS can be: 
(i) Centralized (C), each YPA stores a complete list 
of Vendor Agents; (ii) One Neighbor Federated 
(1NF), each YPA stores a list of VAs and keeps a 
reference to only another YPA; (iii) M-Neighbors 
Federated (MNF), each YPA stores a list of VAs 
and keeps a list of at most M YPAs. 

- Bank Agent (BA), which represents a reference bank 
supervising money transactions between MCAs and 
VAs 

The identified types of interactions between the agent 
types are described below by relating them to the system 
workflow triggered by a user’s request: 

1. Request Input (UAA→APA): the UAA sends a 
request to the APA containing a set of parameters 
selected by the user for searching and buying the 
desired product, i.e. the product description 
(Prod_Desc), the maximum product price (PMAX) the 
user is willing to pay, and the type of buying policy 
(BP). 

2. Service Instantiation (APA→MCA): the APA 
creates a specific MCA and provides it with the set 
of user’s parameters, the type of searching policy 
(SP), and the location of the initial YPA to be 
contacted. Upon creation, the MCA moves to the 
initial YPA location. 

3. Searching (MCA↔YPA): the MCA requests a 
list of locations of VAs selling the desired product to 
the YPA. The YPA replies with a list of VA 
locations and, possibly, with a list of linked YPA 
locations. 

4. Contracting & Evaluation (MCA↔VA): the 
MCA interacts with the found VAs to request an 
offer (Poffer) for the desired product, evaluates the 
received offers, and selects an offer, if any, for 
which the price is acceptable (i.e., Poffer<=PMAX)
according to the type of BP.

5. Buying (MCA↔VA↔BA): the MCA moves to 
the location of the selected VA and pays for the 
desired product using a given amount of e-cash (or 
bills) triggering the following money transaction: (i) 
the MCA gives the bills to the VA; (ii) the VA sends 
the bills to a BA; (iii) the BA validates the 
authenticity of the bills, disables them for re-use, 
and, finally, issues an amount of bills equal to that 
previously received to the VA; (iv) the VA notifies 
the MCA. 

6. Result Report (MCA→UAA): the MCA reports 
the buying result to the UUA. 

 
4.2. Agent behaviors 

A model of MCA is defined on the basis of the tuple: 
<SP, BP, TEM>, 

where: 
- SP is a searching policy in {ALL, PA, OS}: 

a. ALL: all YPAs are contacted; 
b. Partial (PA): a subset of YPAs are contacted; 
c. One-Shot (OS): only one YPA is contacted. 

- BP is a buying policy in {MP, FS, FT, RT}: 
a. Minimum Price (MP): the MCA first interacts 

with all the VAs to look for the best price of the 
desired product; then, it buys the product from 
the VA offering the best acceptable price; 

b. First Shot (FS): the MCA interacts with the VAs 
until it obtains an offer for the product at an 
acceptable price; then, it buys the product; 

c. Fixed Trials (FT): the MCA interacts with a 
given number of VAs and buys the product from 
the VA which offers the best acceptable price; 

d. Random Trials (RT): the MCA interacts with a 
random number of VAs and buys the product 
from the VA which offers the best acceptable 
price. 

- TEM is a task execution model in {ITIN, PAR}: 
a. Itinerary (ITIN): the Searching and Contracting 

& Evaluation phases are performed by a single 
MCA which fulfils its task by sequentially 
moving from one location to another; 

b. Parallel (PAR): the Searching and Contracting 
& Evaluation phases are performed by a set of 
mobile agents in a parallel mode. In particular, 
the MCA is able to generate a set of children 
(generically called workers) and to dispatch them 
to different locations; the workers can, in turn, 
spawn other workers. 

Thus, each one of the defined models implements the 
product buying service differently. 

An MCA task execution model is chosen by the Access 
Point Agent (APA) when it accepts a user input request; 
the choice can depend on the <SP, BP> pair selected by 
the user and on the e-Marketplace characteristics. If the 
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chosen task execution model is of the Parallel type then 
the MCA is named PCA (Parallel Consumer Agent)
otherwise if the chosen task execution model is of the 
Itinerary type then the MCA is named ICA (Itinerary 
Consumer Agent). Therefore, a PCA model is defined by 
a triple <SP, BP, PAR> whereas an ICA model is defined 
by a triple <SP, BP, ITIN>. 

The DSC-based behavior of the PCA models is 
reported in [4] whereas the DSC-based behavior of the 
ICA models, that can be seen as a particular case of the 
PCA behaviour, is described in detail in [6]. 
 
4.3. Simulation parameters and results 

The goal for which the simulation phase was 
performed is twofold: 
- to validate the behavior of each type of agent, the 

different models of MCA agents on the basis of the 
different YPS organizations, and the agent interactions. 

- to gain a better understanding of the effectiveness of 
the simulation for evaluating MAS performances. 
In order to analyze and compare the MCA models, the 

Task Completion Time (TTC) parameter was defined as 
follows: TTC=TCREATION-TREPORT where, TCREATION is the 
creation time of the MCA and TREPORT is the reception 
time of the MCA report. The simulation scenario was set 
up as follows: 
- each stationary agent (UAA, APA, YPA, VA, BA) 

executes in a different agent server; 
- agent servers are mapped onto different network nodes 

which are completely connected through links having 
the same characteristics. The communication delay (δ)
on a network link is modeled as a lognormally 
distributed random variable with a mean, µ, and, a 
standard deviation, σ [3]; 

- each UAA is connected to only one APA; 
- the price of a product, which is uniformly distributed 

between a minimum (PPMIN) and a maximum (PPMAX)
price, is set in each VA at initialization time and is 
never changed; thus the VAs adopt a fixed-pricing 
policy to sell products; 

- each YPA manages a list of locations of VAs selling 
available products.  

- an UAA searches for a desired product, which always 
exists in the e-Marketplace, and is willing to pay a 
price PMAX for the desired product which can be any 
value uniformly distributed between PPMAX and 
(PPMAX+PPMIN)/2. 

Simulations were run by varying the organization of the 
Yellow Pages (C, 1NF and 2NF organized as a binary tree 
or 2NFBT), the number of YPA agents in the range 
[10..1000] and the number of VA agents in the range 
[10..10000]. These ranges were chosen for 
accommodating small as well as large e-Marketplaces. 
The duration of the performed simulations were set so as 

to allow for the completion of the buying task carried out 
by the MCA. The results obtained from the simulations 
made it possible to: 

(a) evaluate which task execution model is more 
appropriate with respect to SP and BP policies (see §4.2) 
and for the characteristics of the e-Marketplace; 

(b) validate the analytical model proposed in [16] 
regarding the sequential and parallel dispatching of 
mobile agents. 

With respect to point (a), the ICA performs better than 
the PCA in the following cases: 

- SP ={ALL, PA, OS}, BP =FS, YPS ={C, 1NF}; 
- SP ={PA, OS}, BP =FS, YPS =2NF. 
Thus, the APA can choose the itinerary task execution 

model if such cases occur. 
With respect to point (b), the performance evaluation 

focused on <ALL, MP, TEM> models (see §4.2) as these 
are the only models of MCA which guarantee both a 
successful purchase and the best purchase since they are 
successful at identifying the VA selling the desired 
product at the minimum price. In order to compare the 
performances of PCA and ICA models, the results 
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Figure 10. Performance evaluation of the <ALL, 
MP, TEM > models for an e-Marketplace with 

YPS=2NFBT, NVA ={100, 1000} and variable NYPA.

Figure 9. Performance evaluation of the <ALL, 
MP, TEM> models for an e-Marketplace with 

YPS=2NFBT, NYPA ={10, 100} and variable NVA.
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obtained for the <ALL, MP, TEM> MCA models 
adopting a YPA organization of the 2NFBT type are 
reported in Figures 9 and 10. The results shown in Figure 
9 were obtained with NYPA={10, 100} and varying NVA,
whereas the results shown in Figure 10 were obtained with 
NVA={100, 1000} and varying NYPA. In agreement with 
the analytical model reported in [16], the PCA, due to its 
parallel dispatching mechanism, outperforms the ICA 
when NVA and NYPA are increased. 
 
5. Conclusions 

Validation tools for agent-based and multi-agent 
systems are highly required before such systems get 
completely deployed on distributed execution platforms. 
In order to support the validation phase of agent-based 
systems at different levels of granularity, from agent 
behaviors, protocols and services (micro-level) to global 
system behavior (macro-level), flexible and robust agent-
oriented, discrete-event simulation frameworks should be 
carefully designed and developed. This paper has 
proposed a Java-based discrete-event simulation 
framework (MASSIMO – Multi-Agent Systems 
SIMulation framewOrk) which aims at supporting the 
validation activity of agent-based and multi-agent systems 
modeled and programmed by using an integrated 
approach based on the Distilled StateCharts formalism 
and the related programming tools. In particular, 
MASSIMO allows for the validation and the performance 
evaluation of the dynamic behavior (computations, 
interactions, and migrations) of individual and 
cooperating agents, the basic mechanisms of the 
distributed architectures supporting agents, namely agent 
platforms, and the functionalities of applications and 
systems based on agents. Finally, some results about the 
exploitation of MASSIMO for the validation of a 
consumer-driven agent-based e-Marketplace have been 
reported. Current efforts are being devoted to applying 
MASSIMO for the validation and performance evaluation 
of workflow instances enacted by agent-based enactment 
engines in the context of agent-based workflow 
management systems. 
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