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Abstract—We describe LEGO, a new approach to optimiz-
ing data movement whereby code is expressed as a layout-
independent computation and composed with layouts for data
and computation. This code generator organization derives com-
plex indexing expressions associated with hierarchical parallel
code and data movement for GPUs. LEGO maps from layout
specification to indexing expressions, and can be integrated into
existing compilers and code templates. It facilitates the explo-
ration of data layouts in combination with other optimizations.
We demonstrate LEGO’s integration with the Triton and MLIR
compilers, and with CUDA templates. We show that LEGO is
capable of deriving performance competitive with Triton, and
shows broad applicability for data and thread layout mapping
optimizations in its integration with CUDA and MLIR.

Index Terms—data layout, MLIR compiler, domain-specific
optimization tools

I. INTRODUCTION

Now that Moore’s Law and Dennard scaling no longer
drive performance improvements, researchers have turned to
architecture specialization and domain-specific programming
systems for further scaling gains [1]. Data movement is now
the dominant cost in execution time and energy [2], and
optimizations to reduce data movement must take center stage.

Most commonly, optimizing data movement involves re-
ordering computation to modify memory access order; this
reordering allows the computation to exploit reuse of data
in nearby fast memory, especially cache and registers using
loop transformations such as tiling [3] and unroll-and-jam [4].
Notably, polyhedral compiler frameworks, dating back to mid
1980s [5] – and more recently Pluto [6], PPCG [7], and
Polygeist [8], among others – represent a dynamic instance
of a statement in a multi-dimensional loop iteration space as
an integer point in the statement’s polyhedron [9]. This math-
ematical representation facilitates the composition of complex
transformation sequences as statement instance reorderings.

As an alternative to statement reordering, a system can
change the layout of data in memory to more closely match
the order in which the computation accesses it. For ex-
ample, the standard layout for a 2-dimensional array in a
C or C++ compiler is row-major order, whereby adjacent
elements in a row are stored contiguously in memory, and
elements in the same column are strided by the length of the
row. But improved spatial reuse and reduced data movement

has been demonstrated by alternatives to row-major order
[10, 11, 12, 13, 14]. Further, controlling data layout helps
achieve performance portability across architectures, matching
layout to size and bandwidth of each architecture’s memory
hierarchy [15, 16, 17, 18, 19].

Recently, a body of work targeting vector and matrix proces-
sors in GPUs uses both data and computation layout as well
as data movement specification to decompose computations
and order data to match the inputs and outputs of these
accelerator units, e.g., Fireiron [20], CuTe [21], Graphene [22]
and Triton [23, 24]. Such systems restrict indexing expressions
to encode linear formulas that are represented in terms of
strides or binary matrices, which makes specification tedious
and error-prone. Despite the availability of implementations of
some of these, integration into other tools and generalization
for other architectural features remain limited.

This paper presents LEGO, a layout abstraction that in-
creases generality and facilitates adoption of this essential
capability by other frameworks. LEGO can express any bijec-
tive mapping between the logical and reordered index space
that are represented as permutations, thus omitting strides.
Permutations can be linear, e.g., of (entire) dimensions, or
irregular, represented by user-defined functions. LEGO’s lack
of explicit strides eliminates low-level index calculations, mak-
ing code simpler and more expressive than frameworks like
Triton. Its high-level building blocks reduce both mathematical
complexity and overall code size, allowing users to modify
computations simply by changing layouts without altering core
logic. Once the layouts and connections are defined, LEGO
automatically generates a bijective mapping for the whole
ensemble, thus serving both as a high-level programming
abstraction and a tool for high-performance code generation.
LEGO’s algebra is also extended beyond this bijective restric-
tion to support partial tiles and common injective mappings.

This paper makes the following contributions:

• a general abstraction for bijective layouts, which can
express both computation and data,

• an implementation reproducible from the paper and ac-
cessible to other frameworks via open-source software,

• a demonstration of lowering to Triton, CUDA, and MLIR
supporting irregular layouts such as an anti-diagonal,
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@triton.jit
def triton_matmul_kernel(a_ptr, b_ptr, c_ptr, M, N, K, 

stride_am, stride_ak, stride_bk, stride_bn, stride_cm, 
stride_cn, BM: tl.constexpr, BN: tl.constexpr, 
BK: tl.constexpr, GM: tl.constexpr):

pid = tl.program_id(axis=0)
nt_m = tl.cdiv(M, BM)
nt_n = tl.cdiv(N, BN)
num_pid_in_group = GM * nt_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GM 
pid_m = first_pid_m + ((pid % num_pid_in_group) % GM) 
pid_n = (pid % num_pid_in_group) // GM

# Pointer setup for blocks of A and B
offs_am = (pid_m * BM + tl.arange(0, BM)
offs_bn = (pid_n * BN + tl.arange(0, BN))
offs_k = tl.arange(0, BK)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am

+ offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk

+ offs_bn[None, :] * stride_bn)

# Compute the block of C matrix
accumulator = tl.zeros((BM, BN), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BK)):

a = tl.load(a_ptrs)
b = tl.load(b_ptrs)
accumulator = tl.dot(a, b, accumulator)
a_ptrs += BK * stride_ak
b_ptrs += BK * stride_bk

c = accumulator.to(tl.float16)
# Write back the block to output matrix C
offs_cm = pid_m * BM + tl.arange(0, BM)
offs_cn = pid_n * BN + tl.arange(0, BN)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] 

+ stride_cn * offs_cn[None, :]
tl.store(c_ptrs, c)

(1) Thread 
Block 

(Computation)
Layout

(2) Data Layout 
Composed w/ 
Computation

Layout

(3) Explicit 
Strides

(4) Data Layout 
Composed w/ 
Computation

Layout

DL_a = TileBy([M//BM, K//BK], [BM, BK]).OrderBy(Row(M, K))
DL_b = TileBy([K//BK, N//BN], [BK, BN]).OrderBy(Row(K, N))
DL_c = TileBy([M//BM, N//BN], [BM, BN]).OrderBy(Row(M, N))

la_optr = DL_a[lpid_m, k, :, :]
lb_optr = DL_b[k, lpid_n, :, :]
lc_optr = DL_c[lpid_m, lpid_n, :, :]

CL = TileBy([nt_m, nt_n]).OrderBy(Col(max(nt_m//GM,1), 1), 
Col(min(nt_m,GM),nt_n)) 

lpid_m, lpid_n = L.inv(pid)

@triton.jit
def matmul_kernel(a_ptr, b_ptr, c_ptr, M, N, K,

BM: tl.constexpr, BN: tl.constexpr, BK: 
tl.constexpr, GM: tl.constexpr):

pid = tl.program_id(axis=0)
nt_m = tl.cdiv(M, BM)
nt_n = tl.cdiv(N, BN)
pid_m = {{ lpid_m }}
pid_n = {{ lpid_n }}
accumulator = tl.zeros((BM, BN), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BK)):

a_ptrs = a_ptr + {{ la_optr }}
b_ptrs = b_ptr + {{ lb_optr }}
a = tl.load(a_ptrs)
b = tl.load(b_ptrs)
accumulator = tl.dot(a, b, accumulator)

c = accumulator.to(tl.float16)
c_ptrs = c_ptr + {{ lc_optr }}
tl.store(c_ptrs, c)

Triton Example Code LEGO Integrated with Triton

Fig. 1: Matrix multiplication expressed in Triton (left) and using LEGO to instantiate Triton (right). The latter version describes
layouts for thread block and data at a high level; LEGO automatically derives the complex indexing expressions. The resulting
code generated by LEGO is shown in Figure 10.

• a demonstration of ease of use and performance compet-
itive with state of the art.

Layout algebras such as LEGO are an important component
of emerging compiler frameworks with data/thread tile abstrac-
tions, and can facilitate layout exploration. To fully exploit
data/thread tiles requires integration with statement reorder-
ing optimizations such as the previously-described polyhedral
compilers – a substantial implementation effort. In this paper,
we demonstrate LEGO’s use as a frontend tool to generate
optimized indexing expressions automatically from data and
thread layout specifications, and rely on backend compiler
frameworks to perform loop iteration space reorderings.

II. MOTIVATION AND OVERVIEW

In this section, we discuss how layout descriptions are being
used in existing tools to simplify the development of high-
performance GPU implementations of matrix multiply, using a
tiled, hierarchical approach to achieve data locality in registers
and shared memory, and leveraging matrix processors. We
motivate LEGO’s generalization of the specification of the
layout and automatic generation of the indexing expressions.

Matrix Multiplication Using Triton: High-performance
implementations of matrix multiply for GPUs can be achieved
with Triton [23] programs, as shown in Figure 1 (left). The
Triton program calculates the memory offsets for the input
and output matrices, loads the necessary elements from A and
B, and subsequently performs the dot product to compute the
matrix multiplication, storing the result in C. In the example,

the code describes 2-D tiles to reuse inputs and produce
output tiles. The compiler detects these tiles and optimizes
the load and store operators to move data through the
GPU memory hierarchy and generates the code for the dot
operator. As a result of the compiler’s careful management
of the memory hierarchy and mapping to Tensor Cores, this
implementation demonstrates competitive performance with
the cuBLAS library.

To derive the Triton program in Figure 1 (left) nevertheless
requires the programmer to write complex code, enclosed in
colored boxes, to express computation and data layout spec-
ifications, specifically: (1) the thread-block-level computation
layout (green); (2) the layout in global memory of the input
matrices A, and B and hints at their 2D tiles, composed with
the computation layout (pink); (3) an explicit stride for A,
and B (blue); and, (4) the layout in global memory of output
matrix C (pink). In particular, the thread block layout in the
green box is non-standard and has been found to perform better
than a 2D row-major order. At the inner level, program IDs
are grouped with a group size of GM , while the outer level
defines the overall ordering of these groups, with both levels
using a column-major order. Not only is a significant portion
of the code dedicated to complex index calculations, but the
implementation is tightly coupled to the program instance
layouts, fixed K iteration space layout, and the data layout
of matrices A, B, and C.

Matrix Multiplication Using Graphene: Graphene [22]
is an intermediate representation for specifying data layout

229



and data movement using the shape algebra of CuTe [21],
a part of NVIDIA’s CUTLASS library. Graphene improves
upon the interface for Triton by: (1) supporting more general
data layouts of strided rectangular regions, as specified using
a shape algebra; and (2) generating the complex index expres-
sions automatically through a mapping from the shape algebra.
A performance engineer writes a template in the Graphene IR
that expresses data and thread layouts, which is instantiated
by the Graphene compiler. A simple Graphene template for
Matrix Multiplication takes 22 lines of specification (see
Figure 8 in reference [22]).

LEGO Improvements: Like Graphene, LEGO derives
index expressions from layout specifications, freeing the pro-
grammer from providing these low-level details. As compared
to Graphene, LEGO eliminates explicit stride specifications
in the layout definition (section III-C) and extends support to
any bijective mapping from multidimensional coordinates to
contiguous linear space, an aspect not supported by previous
work. In Figure 1 (right), at the top, we show LEGO specifi-
cation for thread block layout (2D column major order shown
in green box). Next, the data tiles and their composition with
the thread-block layout in row major for the input and output
matrices are specified (pink box). The Triton kernel is now
much simpler; LEGO instantiates the thread-block code and
computes data addresses, reducing the number of arithmetic
operations the user must specify from 31 to just 9.

Moreover, LEGO is a building block for compilers or code
generators that applies to computations beyond tensors or
specific tensor cores. This point is demonstrated with CUDA
code, the Triton and MLIR compilers (sections IV and V).

III. LEGO SPECIFICATION

The discussion is organized as follows: section III-A
presents in an intuitive fashion how the LEGO pieces are
composed, section III-B shows the LEGO grammar and uses
it to define the semantics of a LEGO ensemble from the
semantics of individual pieces, and section III-C compares the
expression of CuTe/Graphene and LEGO layouts.

A. LEGO by Example & Mathematical Intuition

LEGO elevates data layout to a first-class design con-
sideration. The user defines a logical view of the index
space together with reordering transformations, which can be
(de)composed hierarchically and chained horizontally.

Figure 2 demonstrates a simple use case that defines a
LEGO layout for a flat buffer consisting of N = 24 elements.
The user specifies the logical view of a multi-dimensional
array as part of expressing the target algorithm. This is shown
in the left column as an array A of shape 6×4, whose elements
correspond to the flat index space of the logical view, e.g.,
A[4, 1] = 4 · 4 + 1 = 17.

Next, the user would like to reorder in memory the elements
of the logical view. The first step in this process is to define
a hierarchy of some q levels of tiles, each of the same
dimensionality d:

N = (n1
1 × . . .× n1

d)× . . .× (nq
1 × . . .× nq

d) (1)

23222120

19181716

15141312

11108 9

7654

3210 7610

9832

11104 5

19181312

21201514

23221716

(2x2)x(3x2)

22231011

16175 4

14153 2

13 121 0

20219 8

18197 6

(2x2)x(3x2)

Step 2: OrderByStep 1: GroupBy

6 x 4

Fig. 2: Logical view – reshape – permute, hierarchically.

The middle column of Figure 2 demonstrates this step for
q = 2 and d = 2, creating a 4D array whose outer and inner
tiles have shapes 2× 2 and 3× 2, respectively:

N = (n1
1 × n1

2)× (n2
1 × n2

2) = (2× 2)× (3× 2)

Note that this step is just a reshape operation applied to the
logical layout that does not change yet the physical layout,
i.e., laying down the elements of the array in the middle
column in increasing order of inner dimensions still results
in [0, 1, . . . , 22, 23].

The second step reorders the elements of tiles by defining
permutations (possibly) at each of the q levels of the hierarchy:
The general case is covered by a pair of user-defined functions
implementing a bijection between the index space of the
corresponding tile and its flat space. For example, the right
column of the figure shows that elements of each innermost
tile are reordered according to the user-defined permutation
pn2

1,n
2
2
(i, j) = (n2

1-1-i) · n2
2 + (n2

2-1-j), which reverses the
elements on each of the two dimensions.

For ease of use, LEGO also supports a specialized case that
interchanges the dimensions of a tile by some statically known
permutation σ of [1, . . . , d]. The right column of Figure 2
uses σ = [2, 1] on the outermost tile level to transpose the
locations of the inner tiles. Such a reordering allows the user to
bypass the hassle of writing functions, and may enable further
simplifications of index computation and analyses. The layout
transformation of Figure 2 is expressed as:

GroupBy([6, 4],OrderBy(RegP([2, 2], [2, 1]),GenP([3, 2], p, p−1))))

where [6, 4] specifies the shape of the logical view. The
OrderBy construct specifies that the outer tile level, of shape
[2, 2], is reordered by transposing its dimensions, hence σ =
[2, 1], and the elements of the inner tiles, of shape [3, 2], are
reordered by the user-defined permutation p (whose inverse
p−1 is not shown).

The user interface with the layout consists of two functions:
(1) apply, which maps a logical-view index to its flat
physical position; and, (2) inv that performs the reverse.
For example, apply([4, 1]) = 6 and inv(6) = [4, 1]. The
rationale is that element 17 at index [4, 1] in the logical view
is ultimately placed in memory at position 6, corresponding
to index [0, 1, 0, 0] of the 4D array shown on the right:

230



σd ::= [k
d
] Ct. Perm. of [1 . . . d]

Tiled ::= [ed] Sizes of a d-dim tile

Prmd ::= RegP(Tiled, σd) Regular Perm

| GenP(Tiled, f, f
inv) Irregular Perm

OrderBy ::= OrderBy(Prmd
q2 )

GroupBy ::= GroupBy(Tiled′
q1 , OrderBy

q3 )

e ::= k Ct.∈ Z
| x Var.
| e + e Add
| e ∗ e Mul.
| . . . Other

Notation:
q, d sequence size
h, k seq. iterators
i, j indices
n,m int expressions

Notation: oq is a sequence o1, . . . , oq of q objects of some kind.
d′ and d denote the dimensionality of a tiling hierarchy.

Fig. 3: Grammar: GroupBy gives the logical view of an index
space whose elements are reordered by a chain of OrderBy.

• 17 belonged to tile [1, 0] of the array in the middle column
and transposition has brought its tile to position [0, 1]

• within its tile, 17 was placed as the last index of both
dimensions, and reverting them brings it in position [0, 0].
Mathematical Intuition: The mathematical glue that

binds the multi-layered components are the well known canon-
ical bijections, denoted B and B−1, that connect a multi-
dimensional index space to its corresponding flat space. For
example, the index transformation between the logical view
and the reshaped tile hierarchy—i.e., between the left and
middle columns of Figure 2—is obtained by (1) flattening the
logical-view index by applying B, and then by (2) unflattening
the resulted index in the tiled space by applying B−1.

LEGO enables the user to express piece-wise bijections that
document the reordering performed at each level of the tile
hierarchy, and provides an automatic procedure that combines
these into one bijection B that covers the whole index space.
This essentially allows the user to work in a suitable logical
space, say of shape n′

1× . . .×n′
d′ , while LEGO transparently

performs the mapping to the reordered flat (physical) space by
means of the apply bijection:

B ◦ B−1
(n1

1·...·n1
d) · ... · (nq

1·...·n
q
d)
◦ Bn′

1,...,n
′
d′

with n1
1 . . . n

q
d defined in Equation Eq. (1). As well, since

bijections are reversible, one can find the logical multi-
dimensional index corresponding to a physical one by using
the inv bijection, inferred as:

B−1
n′
1,...,n

′
d′
◦ B(n1

1·...·n1
d) · ... · (nq

1·...·n
q
d)
◦B−1

Finally, LEGO allows to chain reordering OrderBy transfor-
mations, by similarly gluing them with canonical bijections.
The next section III-B presents the LEGO grammar and details
its implementation.

B. Building Blocks & Lowering Algorithm

Figure 3 presents the LEGO grammar: A GroupBy consists
of (1) a hierarchical tile decomposition on some arbitrary but
fixed number q1 of levels, such that each tile has the same
dimensionality d′, together with (2) a chain of reordering
OrderBy transformations.

Notation: ok denotes kth object from sequence oq = o1, . . . , oq and
oh=q1...q2 creates a new sequence from objects oq1 , . . . , oq2 .

σ−1
d is obtained by scattering [1, . . . , d] at the positions of σd.

Bnq (i
q
) = i1 ·

∏q
k=2 nk + . . . + iq−1 · nq + iq

B−1
nq ( i ) = if q = 1 then i else (B−1

nh=1...q−1(i/nq), i % nq)

GenP([nd], fnd , f inv
nd )::apply(i

d
) = fnd(i

d
)

GenP([nd], fnd , f inv
nd )::inv( iflat ) = f inv

nd ( iflat )
GenP([nd], fnd , f inv

nd )::dims() = nd

RegP([nd], σd)::apply(i
d
) = Bσd(n

d)( σd(i
d
) )

RegP([nd], σd)::inv( iflat ) = σ−1
d ( B−1

σd(n
d)
( iflat) )

RegP([nd], σd)::dims() = nd

OrderBy(Permd
q
)::apply( i

d·q
) =

iflat ← 0
for Perm ∈ Permd

q and k ∈ 0 . . . q − 1 do

nd ← Perm.dims(); icur
d ← i

h=k·d+1...k·d+d

icurflat ← Perm.apply(icur
d
)

iflat ← icurflat + iflat ·
∏d

h=1(nh)
return iflat

OrderBy(Permd
q
)::inv( iflat ) =

i ← empty sequence
for Perm ∈ reverse(Permd

q
) do

nd ← Perm.dims(); p←
∏d

h=1(nh)
icurflat ← iflat%p; iflat ← iflat/p
i ← Perm.inv(icurflat), i

return i
OrderBy(Permd

q
)::dims( ) = n← empty sequence

for Perm ∈ Permd
q
do n← n, Perm.dims()

return n

Fig. 4: Semantics of apply and inv of OrderBy Blocks.

An OrderBy defines its own d-dimensional tile hierarchy
on some q2 levels by means of a sequence of permutations
Prmd. Prmd has two constructors: GenP denotes a general
permutation of the elements of a tile, by a user-defined function
f , whose inverse is f inv . RegP denotes a regular (constant)
permutation σ of the dimensions of a tile, i.e., if the logical
shape of the tile is nd then the reordered shape is σ(nd).
Finally, a tile is represented by its shape, as a list of dimension
sizes, which are expressions.

Of course, the total number of elements of the hierarchical
tiling defined by GroupBy must equal that of each of the
chained OrderBys. In practice, tiles within an OrderBy or
GroupBy do not have to share the same dimensionality, e.g.,
one may use a 1-D grid of 3-D blocks; we use this restriction
to simplify the presentation.

LEGO’s interface to the user consists of an apply and
inv functions that can be called on a GroupBy block: apply
receives as argument a multi-dimensional index corresponding
to the logical shape of GroupBy, and results in the correspond-
ing flat index in the (reordered) physical layout, while inv
does the opposite. We define this functionality by a syntax-
directed translation [25], detailed in Figures 4 and 5, which
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GroupBy( ([n1
d
], . . . , [nqg

d
]), O

v
)::apply( i

d·qg ) =

iflat = B(n1
1·...·n

qg
d

)
( i

d·qg )

for O ∈ reverse(O
v
) do

n′1d
′
, . . . , n′qod′ ← O.dims();

i′
d′·qo ← B−1

n′1
1 ·...·n′qo

d′
( iflat )

iflat ← O.apply( i′
d′·qo )

return iflat

GroupBy( ([n1
d
], . . . , [nqg

d
]), O

v
)::inv( iflat ) =

for O ∈ O
v
do

n′1d
′
, . . . , n′qod′ ← O.dims();

i′
d′·qo ← O.inv( iflat )

iflat ← Bn′1
1 ·...·n′qo

d′
( i′

d′·qo )

return B−1

(n1
1·...·n

qg
d

)
( iflat )

GroupBy( ([n1
d
], . . . , [nqg

d
]), O

v
)::dims( ) = n1

d
, . . . , nqg

d

Fig. 5: Semantics of apply and inv of GroupBy Blocks

implements the apply, inv and dims functions for each
syntactic category of the LEGO language by combining the
functionality of its syntactic constituents (where dims is used
to track the dimension sizes of a space).

GenP simply applies the provided user-defined functions
f , f inv . RegP’s apply flattens the index by applying the
canonical bijection B in the physical (permuted) layout, hence
the dimensions and index are permuted by σd. Its inv
unflattens the index by B−1 using the physical (permuted)
dimensions and recovers the logical-space index by permuting
back the physical index by the inverse of σd, which is obtained
by scattering [1, . . . , d] at the positions of σd.

OrderBy’s apply traverses the tiling space from outer-
most inwards, and at each steps flattens and accumulates the
corresponding part of the index; inv unflattens the index
from innermost outwards.

Finally, Figure 5 shows the lowering algorithm of GroupBy:
its apply first flattens its index in its logical space, and
then traverses the chain of reordering transformations O

v
in

reverse order, and for each one, denoted O, it remaps the flat
index to O’s logical space by B−1, and applies the reordering.
GroupBy’s inv traverses O

v
forward, and for each reorder

O, it applies its inverse, and then flattens it according to O’s
logical space. Ultimately, the resulting index is unflattened in
GroupBy’s space.

Figure 6 demonstrates a more complex example that uses a
6×6 logical view, depicted in the left column, whose elements
correspond for convenience to the flat index space [0, . . . , 35].

The middle column shows a reordering transformation O2

that tiles the logical view into a 2 × 2 grid of 3 × 3 blocks.
This is achieved by a RegP permutation that first stripmines
each of the logical-view dimensions of size 6 into two smaller
dimensions of sizes 2 × 3, and then interchanges the middle
(second and third) dimensions, i.e.,

O2 = OrderBy(RegP([2,3,2,3], σ=[1,3,2,4]))

(3x3)x(2x2) (3x3)x(2x2)

O1=O1 ,O2 O2=

2  7 12 20 25 30

11 16 17 29 34 35

0  1  6 18 19 24

30 31 32 33 34 35

24 25 26 27 28 29

18 19 20 21 22 23

6  7  8  9 10 11

0  1  2  3  4  5

12 13 14 15 16 17

30 31 32 33 34 35

24 25 26 27 28 29

18 19 20 21 22 23

6  7  8  9 10 11

0  1  2  3  4  5

12 13 14 15 16 17

5 10 15 23 28 33

3  4  9 21 22 27

8 13 14 26 31 32

B: C:6 x 6A:

)G = GroupBy([6,6], 

GenP([3,3], antidiag,...)))

OrderBy(RegP([2,2],[2,1]),OrderBy(
RegP([2,3,2,3],[1,3,2,4]))

Flat index 26 Flat index 23 Flat index 15

Fig. 6: 2× 2× 3× 3 tiling followed by transposing the outer
dimensions and applying anti-diagonal permutation in the
inner 3× 3 blocks. The logical view is a 6× 6 matrix.

def antidiag(n, i, j):
antidg = i + j + 1
if(antidg <= n):
return i + (antidg*(

antidg-1))/2
else:
antidg = 2*n - antidg
gauss = (antidg * (

antidg-1))/2
return n*n - n + i -

gauss

def antidiaginv(n, x0):
S = n*(n+1) / 2
x = x0 if x0 < S else n*n-1 -

x0
antidg = ⌊

√
2 ∗ x⌋

antidg += ( x >= (antidg*(
antidg+1))/2 )

i = x - antidg*(antidg-1)/2
j = antidg - i - 1
return (i,j) if x0 < S else (n

-1-i, n-1-j)

Fig. 7: Anti-Diagonal Permutation of an n×n Logical Space

The right column of Figure 6 applies another reordering
O1 that similarly uses a hierarchical space of a 2× 2 grid of
3× 3 blocks, in which the grid is transposed (RegP) and the
elements of each block are permuted (GenP) such that they
are laid out in the order in which they appear on the block’s
2 · 3 − 1 antidiagonals. In practice, the dimensions d and q
are omitted, being implicitly inferred from the shape of the
arguments:

O1 = OrderBy(RegP([2,2],σ=[2,1]), GenP([3,3], antidiag,..))

Finally, the pseudocode of the user-defined antidiagonal per-
mutation of a n× n logical space, and its inverse, are shown
in Figure 7. One can verify that the element at index [4, 2]
in the 6 × 6 logical view (left column), i.e., representing 26,
is reordered by O2 in the middle column to flat index 23
(i.e., multi-dimensional index [1,0,1,2]), and then by O1 in the
right column to physical index 15 (i.e., [0,1,2,0]). Conversely,
one can use inv to compute that the flat physical index 15
corresponds to the logical-view index [4, 2].

Correctness: The algorithm presented in Figures 4 and 5
provably implements a bijection, i.e., is correct by construc-
tion, if two assumptions hold: First, the user-defined func-
tion(s) f inv (and f inv

nd ) of GenP([nd], fnd , f inv
nd ) actually

implement a bijection (and its inverse) from the multidimen-
sional space Zn1

×. . .×Znd
to the flat space Zn1·...·nd

. This is
currently left as user’s responsibility. Second, the total number
of elements of the multidimensional spaces defined by the
GroupBy and each of its contained OrderBy constructs is
the same. This can be cheaply verified dynamically and even
hoisted outside recurrences that do not affect these sizes.

Classification of Bijective Layouts: A single OrderBy
construct using only regular permutations (RegP) implements
an affine layout in the apply direction—i.e., a formula such
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as i! · s1+ . . .+ iq · sq , where i1,...,q are the target indices and
s1,...,q are constant strides (a product of dimension sizes).

Sequencing two or more OrderBy constructs using only
regular permutations does not necessarily result in an affine
layout because the canonical bijections (B and B−1) applied
at the borders introduce division and modulo operations that
are not guaranteed to simplify away. Finally, user-defined
permutations (GenP) allow fully arbitrary (bijective) layouts,
e.g., using indirect arrays [12], and quadratic (polynomial)
indexing as in the anti-diagonal permutation of Figure 7.

Notation and Syntactic Sugar: For convenience of pre-
sentation, this section has used the grammar in Figure 3. The
rest of the paper uses a notation that chains reordering and the
final grouping transformations by means of dots:

GroupBy([6, 6]).
OrderBy(RegP([2, 3, 2, 3], [1, 3, 2, 4])).
OrderBy(RegP([2, 2], [2, 1]),

GenP([3, 3], antidiag, antidiaginv))

(2)

As well, we define syntactic sugar for common operations:

Row([n1, . . . , nd]) ≡ RegP([n1, . . . , nd], [1, 2, . . . , d])

Col([n1, . . . , nd]) ≡ RegP([nd, . . . , n1], [d, . . . , 2, 1])

TileByq×d ( ≡ GroupBy([n1
d
, . . . , nqd]).

[n1
d
], . . . , [nqd]) OrderBy(RegP([n1

d
, . . . , nqd], σd×q))

TileOrderByq×d ≡ GroupBy(P 1
d , . . . , P

q
d ).

(P 1
d , . . . , P

q
d ) OrderBy( RegP(

σd×q(P
1
d .dims, .., P q

d .dims, σ−1
d×q))

where σd×q = flatten(A),with A : [d][q]int, Ak,h = k + 1 + d · h

Row and Col define row- and column-major layouts, cor-
responding to permuting dimensions by identity and by
[d, . . . , 1]. TileByq×d denotes hierarchical tiling of d dimen-
sions on q levels, e.g., TileBy3×2 and TileBy2×3 have per-
mutations σ2×3 = [1, 3, 5, 2, 4, 6] and σ3×2 = [1, 4, 2, 5, 3, 6],
respectively, and applying these permutations to their logical
dimensions results, as expected, in the physical spaces (n1

1 ×
n2
1×n3

1)×(n1
2×n2

2×n3
2), and (n1

1×n2
1)×(n1

2×n2
2)×(n1

3×n2
3).

TileOrderBy similarly defines a hierarchical-tiling reordering.

C. Comparison with CuTe/Graphene Algebra

We identify two primary distinctions between the LEGO
and CuTe/Graphene shape algebra representations.

Elimination of Explicit Strides: LEGO supports all of the
strided, rectangular layouts that can be expressed in the shape
algebra for CuTe and Graphene. A significant difference in the
shape specification is that the CuTe/Graphene shape algebra
requires the performance programmer to provide the strides
for the layout, whereas LEGO derives the strides internally
from the hierarchical tiling specification. Table I compares the
LEGO and CuTE/Graphene layout specification for some of
the various layouts used in the figures in this paper. The simple
tiled layout for the input matrices of Figure 1 describes a
4D tiled data layout; the CuTe/Graphene layout in the third
column linearizes the four dimensions to derive a stride. The

tiled representation for CuTe/Graphene describing G ◦ O2 in
Figure 6 expresses the original layout A of 6×6 on the top
row. On the second row, the stride is specified: 6 between rows
and 1 between columns within a row. The resulting layout B
is (2×2) × (3×3), with a stride of 18 between block rows,
and 3 between block columns. The stride is 6 elements across
tiles in the row dimension, and 1 in the column dimension.

Even with this relatively simple tiled example, the need
to specify strides already muddies the layout description.
However, the specification becomes more complex with the
example of Figure 8, which matches Figure 4d in the Graphene
paper [22]. In this case, as depicted in the figure, the goal is to
create tiles (denoted by locations with the same color) that are
not contiguous in either dimension. In LEGO’s formulation,
this layout is simply a permutation of the five dimensions
resulting from the tiling. In contrast, Graphene expresses the
layout with complex multi-dimensional strides.

0 4 8 12 16 20 24 28

1 5 9 13 17 21 25 29

2 6 10 14 18 22 26 30

3 7 11 15 19 23 27 31

Fig. 8: Example layout that is non-contiguous in 2 dimensions:
LEGO and Graphene layout specifications shown in Table I.

Extended Layout Support: LEGO is not limited to strided
layouts; it also accommodates additional layouts that require
complex indexing expressions beyond rectangular, strided lay-
outs. For example, the antidiagonal layout for O1 in Figure 6,
whose implementation is described in Figure 7 and Equation 2,
cannot be supported by the CuTe/Graphene shape algebra.
Because LEGO can represent any bijective mapping between
physical and logical layout, it can represent this antidiagonal,
and, as discussed in Section VII, provides a foundation for
other commonly-used bijective layouts.

D. Beyond Bijective Layouts

In some cases, LEGO primitives can be composed to
support certain layouts that are not bijective. Importantly,
we support partial tiles where the tile size does not evenly
divide the problem size, adopting a similar approach to the
oversampling method in CuTe [21] as follows. A new con-
structor ExpandBy, as illustrated in Figure 9, performs the
necessary widening/narrowing conversions between a physical
d-dimensional space n d whose sizes do not evenly divide the
tiles, and an extended one n′ d that does, such that the bijective
layout G is safely applied in the expanded space. Specifically,
apply projects a logical index through G to a flat index in
the expanded layout, unfolds it via the canonical bijection
B, accepts it only if the coordinates fall within the original
physical extents, and reports the corresponding flat position in
the original space (otherwise −1). Conversely, inv lifts to an
original flat index, re-flattens it in the expanded space via the
canonical bijections, and then inverts through G.
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TABLE I: Comparison of LEGO and CuTe/Graphene layouts for examples in figures and performance results.

Fig. LEGO CuTe/Graphene

1 TileBy([M/BM,K/BK], [BM,BK]).OrderBy(Row(M,K)) (

[
M/BM K/BK BM BK
K ∗ BM BK K 1

]
)

6mid GroupBy([6, 6]).OrderBy(RegP([2, 3, 2, 3], [1, 3, 2, 4])) (

[
2, 2
18, 3

]
) · (

[
3, 3
6, 1

]
)

8 GroupBy([2, 2, 2, 2, 2]).OrderBy(RegP([2, 2, 2, 2, 2], [5, 2, 4, 3, 1])) (

[
2, 2
1, 8

]
) · (

[
2, (2, 2)
2, (4, 16)

]
)

12b GroupBy([R,R], [T, T ]).OrderBy(Row(R ∗ T,R ∗ T )) (

[
R R T T

RT 2 T 2 T 1

]
)

12c TileBy([N/B,N/B,N/B], [B,B,B]).OrderBy(Row(N/B,N/B,N/B), Row(B,B,B)) (

[
N/B N/B N/B B B B
N2B NB2 B3 B2 B 1

]
)

ExpandBy ::= ExpandBy(Tiled, T iled, GroupBy)

ExpandBy([n d], [n′ d], G)::apply( s q ) =
iflat ← G::apply( s q )

i′
d ← B−1

n′
1·...·n′

d
( iflat )

if (i′1 < n1) ∧ · · · ∧ (i′d < nd) then

return B n1·...·nd
( i′

d
)

else return − 1

ExpandBy([n d], [n′ d], G)::inv( iflat ) =

i
d ← B−1

n1·...·nd
( iflat )

i′flat ← B n′
1·...·n′

d
( i

d
)

return G::inv( i′flat )

Fig. 9: Grammar and (apply/inv) semantics of ExpandBy.

To accommodate injective layouts such as broadcasting
(i, j) 7→ i or (i, j) 7→ j and even-mapping i 7→ 2i, we
restrict the language to exporting only apply (not inv) and
to using exactly one GroupBy followed by an OrderBy of
the same shape, where that OrderBy contains a single GenP
that may be injective. For the remainder of the paper, we focus
on bijective layouts (i.e., GenP being bijective).

IV. INTEGRATING LEGO INTO ECOSYSTEMS

As demonstrated in previous sections, LEGO establishes an
algebraic framework independent of any compilation system.
We see it as an important tool that can be integrated into a
compiler or code generator, particularly to support data/thread
tile abstractions for GPUs, but also applicable to threaded
CPU code generation and future heterogeneous hardware. To
demonstrate the power of the LEGO indexing mapping from
layout specification to code generation, it was essential to
integrate LEGO into mature ecosystems and rely on these to
optimize code resulting from the layout mapping.

In this section, we describe the integration of LEGO
into Triton, CUDA, and MLIR. The integration with Triton
and CUDA illustrates a straightforward implementation using
Python. The incorporation within MLIR underscores the tool’s
versatility.

A. Code Generation via Instantiating Templates

Our implementation for generating Triton and CUDA code
utilizes an approach in which the user supplies code containing
placeholders, and separately-defined layouts. The placehold-
ers, marked using the Jinja2 [26] syntax {{ }}, are intended
to represent index expressions or layout-specific logic. LEGO
then generates appropriate symbolic expressions based on the
user-defined layout and replaces the corresponding placehold-
ers within the template. This process offloads the complexity
of constructing low-level index calculations from the user. An
example of this specification was shown in Figure 1 (right).

For this purpose, the LEGO algebra is integrated into the
SymPy framework [27], a Python library for symbolic mathe-
matics. This integration enables advanced symbolic reasoning
and high-level manipulation of index expressions, including
algebraic simplification. However, SymPy does not have all
the necessary information to generate the optimized index
expression. In particular, it lacks details about the range of
variables used to index into the layout. We propagate this range
information through the layout and develop a custom SymPy
expression traversal that leverages these range constraints to
simplify the index expressions. Moreover, since our algebra
involves modulo and floor-division operations, we apply seven
custom simplifications summarized in Table II. Each rule’s
side-conditions (e.g. non-negativity and upper-bound checks)
are proved by the Z3 SMT solver [28] using the index ranges
derived from the layout specification. In addition, users can
provide their own constraints to the system to further simplify
the expression. The indexing code is then generated by the
Python and C printers provided by SymPy.

For integration with Triton, we have introduced specialized
slicing syntax analogous to NumPy’s slice notation [29].
Specifically, when a user employs a colon (:) to denote
the entire dimension—specified through TileBy—the system
generates a corresponding tl.arange, whose bounds are
derived from the layout specifications. Furthermore, Triton
mandates that the upper and lower bounds of this range
be known at the time of compilation. We show the final
Triton code generated by this process in Figure 10, starting
with the input from Figure 1 (right). We also evaluated
whether pre-expanding terms in index expressions before
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invoking SymPy’s simplification routines (including our range-
simplification pass) improves performance compared with
simplifying the unexpanded expressions, since expansion can
reveal additional optimization opportunities. In the NW bench-
mark, skipping pre-expansion produced better performance
by minimizing the total number of operations. In the LUD
benchmark, pre-expansion helped by exposing simplifications
that lowered the operation count and improved runtime. To
accommodate both cases, we use a simple cost model that
counts operations in the generated expression and selects the
variant with the lowest count, choosing the unexpanded form
for NW and the expanded form for LUD.

TABLE II: Integer division and modulo simplification rules.

Pattern Result Condition
(d*q + r) % d r % d d ̸= 0
(d*q + r) / d q

q + r / d
d ̸= 0, 0 ≤ r < d
otherwise

(x % d) / d 0 d > 0
x / a 0 a > 0, 0 ≤ x < a
x % a x a > 0, 0 ≤ x < a
(n + y) / 1 n + (y / 1) n ∈ Z
a*(x / a) + x % a x a ̸= 0

@triton.jit
def matmul_kernel(

a_ptr, b_ptr, c_ptr,
M, N, K,
BM: tl.constexpr, BN: tl.constexpr, BK: tl.constexpr, 
GM: tl.constexpr,
ACTIVATION: tl.constexpr

):
pid = tl.program_id(axis=0)
nt_m = tl.cdiv(M, BM)
nt_n = tl.cdiv(N, BN)
pid_m = pid % min(GM, nt_m) + (((pid)//(nt_n*min(GM, nt_m))) % max(1, 
((nt_m)//(GM))))*min(GM, nt_m)
pid_n = ((pid % (nt_n*min(GM, nt_m)))//(min(GM, nt_m)))
accumulator = tl.zeros((BM, BN), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BK)):

a_ptrs = a_ptr + BK*k + K*(BM*pid_m + ((tl.arange(0, BM))[:, None])) + 
((tl.arange(0, BK))[None, :])
b_ptrs = b_ptr + BN*pid_n + N*(BK*k + ((tl.arange(0, BK))[:, None])) + 
((tl.arange(0, BN))[None, :])
a = tl.load(a_ptrs)
b = tl.load(b_ptrs)
accumulator = tl.dot(a, b, accumulator)

c = accumulator.to(tl.float16)
c_ptrs = c_ptr + BN*pid_n + N*(BM*pid_m + ((tl.arange(0, BM))[:, None])) + 
((tl.arange(0, BN))[None, :])
tl.store(c_ptrs, c)

Fig. 10: LEGO layouts instantiated into Triton template of
Figure 1 (right).

B. End-to-end Code Generation in MLIR

MLIR facilitates end-to-end code generation through its
robust dialect system. We integrate LEGO into MLIR by us-
ing the previously-described SymPy expression simplification,
creating a custom SymPy printer using the MLIR Python bind-
ings. In this framework, the layout algebra is implemented with
the arith and affine dialects for arithmetic and control
flow operations, the memref and vector dialects for manag-
ing memory operations, and the gpu dialect providing GPU
code generation primitives. This approach leverages Python
bindings to ensure compatibility with both standard MLIR
dialects and custom user dialects, which can take advantage of
LEGO layout algebra for their specialized implementations. A
single MLIR file is then generated, encapsulating both layout
information and compute code.

By integrating LEGO into MLIR, there is the potential for
broader adoption in domain-specific frameworks, including but
not limited to tensor computations. We demonstrate this im-
plementation here, but such an integration with other dialects
will be the subject of future work.

V. EVALUATION

The goal of the performance evaluation is to demonstrate
LEGO data and thread-block layouts support code generation
in a variety of contexts, and integrated with various state-of-
the-art frameworks.

1) Triton to demonstrate integration in state-of-the-art DSLs,
e.g., targeting tensor-core utilization. We match Triton’s
performance while simplifying the input specification.

2) CUDA to demonstrate integration in a mainstream GPU
programming language, and the benefits of a richer set
of data and thread-block layouts.

3) MLIR to demonstrate integration in mainstream compiler
frameworks.

LEGO data layouts used in the experiments include 2D tiles
that are in row-major or column-major order. We also employ
a novel 3D brick data layout in the CUDA experiments.
For thread layouts, 2D thread blocks in row major order are
common, but we also use 3D thread blocks for bricks, an
antidiagonal for NW, and a thread coarsening pattern for LUD
(please refer to Table I).

Table III summarizes the one-time code-generation and
simplification latency for each application on a personal laptop
(Apple M2 Max). The generation and simplification time of
the per-application code ranges from sub-second to several
seconds. This overhead is limited to index-generation time and
does not affect steady-state execution.

TABLE III: Per-application code generation and simplification.

Benchmark Generation time
Layernorm FWD + BWD 0.33 s
Grouped GEMM 0.65 s
Softmax 0.05 s
Matmul (each variant) 1.11 s
LUD 0.87 s
NW 0.46 s
Bricks (Cube/Star) 5.95 / 18.07 s
Transpose (Naive/SMEM) 1.07 / 1.15 s

In this study, the experiments were executed using an
NVIDIA Ampere A100 80GB GPU, deployed on an AMD
EPYC 7513 processor with 32 cores under a CentOS operating
system. The experimental framework was configured with
LLVM (commit 556ec4a), Triton 3.2.0, PyTorch 2.5.1, and
CUDA 12.4. Each benchmark was executed 25 times for
warm-up, followed by 100 repetitions for data collection, and
the mean performance value from these repetitions is reported.

A. Triton Benchmarks

In this study, we evaluated the LEGO framework using
five benchmarks obtained from the official Triton repository:
group GEMM, LayerNorm Fwd, LayerNorm Bwd, softmax,
and matrix multiplication in FP16. These benchmarks were
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TABLE IV: Arithmetic ops before and after optimization.

Operator Original Ops Optimized Ops
LayerNorm (FWD) 6 1
LayerNorm (BWD) 4 0
Softmax 4 0
Grouped GEMM 20 6
Matmul 31 9

selected due to their computational heterogeneity and their
frequent application in machine learning workloads. Perfor-
mance of LEGO versions was measured for three problem
sizes against reference implementations from the Triton repos-
itory, as shown in Figure 11. We use Triton as our baseline.
PyTorch’s CUDA backend dispatches matrix multiplications
to cuBLAS, resulting in vendor-optimized kernels.

Overall performance is nearly identical between the LEGO
and Triton benchmarks. PyTorch/cuBLAS outperforms both
for most benchmarks at 2k size, but as the problem size gets
larger, the LEGO-generated code is able to fully utilize the
tensor cores. For matrix multiplication experiments, we used
power-of-two square matrices. We selected configurations that
avoided partial tiling in the inputs, thereby eliminating the
need for load/store masking in the Triton kernel, ensuring
a fair comparison. Four variations of matrix multiplication
were generated using the generic kernel template discussed
in the previous section, with the only modification being
the data layout for matrices A and B. The transposed ver-
sion employs a column-major layout (Col), while the non-
transposed version utilizes a row-major layout (Row); for
example, in the case of ABT , where A is Row(M,K) and
B is Col(K,N). This highlights the flexibility of LEGO
code generation, demonstrating that by merely altering the
data layout, different implementations of matrix multiplication
can be achieved. As illustrated in Figure 11, LEGO achieves
performance on matrix multiplication comparable to that of
Triton and PyTorch/cuBLAS.

For the remaining benchmarks, LEGO and Triton outper-
form PyTorch/cuBLAS in some cases, although the difference
is small with softmax. LEGO also outperforms Triton on
the LayerNorm Fwd benchmark because the example in the
original repository uses a for loop with an explicit step,
which Triton’s codegen handles less efficiently than loops
with a manually incremented step. For LayerNorm Bwd, we
benchmark only the backward pass and skip the forward pass.

For program specification, arithmetic operations in user-
defined code were reduced across evaluated components (Ta-
ble IV), demonstrating LEGO’s ability to generate high-
performance Triton kernels with simpler expressions

B. CUDA Benchmarks

To illustrate layouts not supported by the other frameworks
and the efficacy of exploring different data or thread-block
layouts, we present three examples in Figure 12.

The first is the NW benchmark from the Rodinia benchmark
suite [30]. Its CUDA implementation consists of two kernels
that are called in a loop executed on the host. The kernels

utilize a (b + 1) × (b+ 1) buffer buff that is maintained in
shared memory, and whose elements on each anti-diagonal are
updated in parallel. Since Rodinia requires b to be a multiple
of 16 and b is also the size of the CUDA block, it follows that
the read and write accesses of the original code exhibit stride
b, resulting in expensive bank conflicts.

We optimize buff’s layout by applying the anti-diagonal
reordering (permutation) shown in Figure 7, which uses the
indexing expressions generated by LEGO, and by overloading
the [] operator to redirect logical accesses from the original
code. This requires the definition of a small wrapper class for
arrays and the modification of only two lines of the original
code. LEGO’s layout description is shown in Equation 2 of
Section III-B. As demonstrated in Figure 12a, this layout
transformation improves performance from 1.4× up to 2.1×
by reducing shared memory bank conflict and warp stalls.

The second CUDA example is LUD, also from the Rodinia
benchmark suite. For this example, we apply a common
optimization called thread coarsening, whereby the amount
of work performed by each thread is increased [31, 32]. But
what distinguishes our approach is that thread coarsening is
re-imagined as a layout optimization. LEGO’s thread-block
layout optimization binds values to both the total number of
threads in each dimension and the bounds on the outer loop in
the thread. The layout description is provided in Table I, and
the resulting performance and roofline are shown in Figure 12b
and Figure 13a. Although the baseline code uses a logical LUD
block size of 16× 16 and a one-to-one correspondence to the
CUDA block size, the best performance is obtained with an
LUD block size of 64×64 and a coarsening factor of 4, which
keeps the CUDA block size at 16×16 yet executes more work
per thread block and achieves best block-level parallelism.

The final example illustrates a modified data layout for
3D stencil computations. The benchmark is based on the
array and brick data layout code in Zhou et al. [33]. Bricks
are 3D subdomains stored in contiguous memory, so that
spatially adjacent data related to a block of computation are
also physically adjacent, thus eliminating unnecessary data
movement over strided data when a conventional row-major
layout is used [12]. The brick layout – in the last row of
Table I – is a 6D object; the CuTe/Graphene layout expresses
a stride for each dimension. The experiment compares a row-
major layout to a brick layout for 3D cube-shaped (27-pt and
125-pt) and star-shaped (7-pt, 13-pt, 19-pt, and 27-pt) stencils.
As shown in Figures 12c and 13b, we observe speedups
of 3.4×–3.9× across all stencil types solely from changing
the data layout, even without integration with vector code
generation described in Zhou et al. [12].

C. MLIR Benchmark

To demonstrate an integration into a compiler framework,
we evaluate LEGO’s MLIR GPU code with a 2D transpose
operation, a simple example to showcase optimization of data
movement. Table V shows a comparison between the LEGO-
MLIR implementation, compiled from MLIR, and the baseline
code from the NVIDIA CUDA, compiled with nvcc. In the
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(a) N = 2048 (b) N = 4096 (c) N = 8192

Fig. 11: Performance comparison of Triton and PyTorch against the generated code using LEGO.

(a) NW (b) LUD (c) Stencil

Fig. 12: Performance comparison of CUDA benchmarks against Rodinia benchmark for NW and LUD. We compare brick vs.
array layout for stencil examples.

(a) LUD (b) Stencil

Fig. 13: Roofline performance for LUD & Stencil benchmarks.

Naive code, the input and output matrices are read/written
from global memory, resulting in uncoalesced global memory
accesses. Smem+Coalesced stages data in shared memory
(another layout in LEGO) so that all global memory accesses
are coalesced. Results are listed as throughput (GB/s). In
spite of using different compilation frameworks, performance
results are comparable, with a slight advantage to LEGO for
generating linearized array accesses.

VI. RELATED WORK

Deriving high-performance implementations of tensor com-
putations is a fertile area of active research. We will focus
this section on a narrow set of prior work that integrates data
layout and/or data movement into code generation.

Data movement specifications: Historically, data copy
was applied in compilers to reorganize submatrices, especially
to avoid conflict misses in cache or stage data in explicitly
managed storage [34, 35]. CUDA-CHiLL incorporated data-
copy into its scheduling language to copy data to/from global

TABLE V: Comparison of LEGO performance on 2D trans-
pose with CUDA SDK baseline using MLIR. Performance is
reported in GB/s throughput, so higher numbers are better.

Naive Smem+Coalesced
Size 2048 4096 8192 2048 4096 8192
CUDA-SDK 212.0 175.8 175.4 670.0 718.2 735.7
LEGO-MLIR 206.8 178.0 190.7 681.7 741.2 759.4

memory, shared memory, and texture memory in GPUs [36].
More recently, Fireiron and MDH enrich these data movement
specifications for GPUs [37, 38].

Data layout for sparse tensors: Specifying data layout is
central to optimizing sparse matrix and tensor computations,
where the representation of only nonzero elements varies to
better exploit their structure. Moreover, loop optimizations
must be reformulated whenever loop indices iterate over a
sparse dimension of a tensor [39, 40, 41, 42]. TACO [43] intro-
duced an approach to co-iteration over multiple sparse tensors,
where the intersection (for multiply) or the union (for addition)
of the nonzero locations must be identified. The user specifies
the layout along with the computation in Einstein notation, and
the compiler generates the code for the input with the specified
layout. To improve the performance and take advantage of
the optimized data layouts, code transformations were later
enabled in TACO through a scheduling language [44]. Where
logical indices may not have corresponding physical entries,
the inverse mapping from physical to logical indices can be
used to find corresponding elements in other tensors during
co-iteration, as done in dlcomp [45].
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Data layout for performance portability: Data layouts
such as Kokkos View [15], and std::mdspan in C++ 2023,
abstract away the underlying data organization in memory for
performance portability. Their underlying data layouts exploit
the hierarchical nature of GPUs and CPU/GPU systems.
In structured grid computations, fine-grained data blocking,
where logically adjacent three-dimensional subdomains are
stored in contiguous memory, have been shown to significantly
reduce data movement [13, 12, 14]. TiDA [16, 46] uses coarse-
grained data blocking, where the entire grid is tiled into sub-
grids, each with its own ghost zone.

Data layout and thread layout applied to tensors: As
previously noted, LEGO is most closely connected to the
approaches of Graphene [22] and Triton [23, 24], which are
focused on utilizing tensor cores. Graphene uses the same
layout specification for data layout/movement and thread/block
layout, representing general strided rectangular regions, as in
Figure 8. As shown in Figure 1, Triton’s layout specification
provides a slice of each tensor, but requires explicit stride cal-
culations. Very recently, linear layouts have been introduced;
these are internal to the Triton compiler and not exposed at
the source code level [24]. The layout description eliminates
the need for explicit strides, but instead uses a linear algebra
formulation where a layout is described with a binary matrix.
Moreover, linear layout does not support user-defined bijective
layouts that are nonlinear. At the application level, a tensor
library called einops [47] exposes a tensor notation to describe
tensor structure, facilitating the integration of tensor libraries.

Distributed Data Layouts: Common array layouts, such
as tiled, row- and column-major, have been supported for
a long time as directives in languages for distributed pro-
gramming, such as High-Performance Fortran [48]. ZPL [49]
separates the definition of the hardware abstraction from
the manner in which data is mapped to the hardware, and
Sequoia [50] and Legion [18] build on this idea to support,
for example, (1) hierarchical definition of the hardware, (2)
efficient data movement through memory hierarchy, (3) over-
lapped partitioning of data, (4) control over placement of
data and computation, (5) support for accelerators, and (6)
overlapping communication and computation. Finally, various
DSLs, such as DISTAL [17] and SpDISTAL [51], use the
Legion runtime system to implement sparse and dense tensor
algebras, which allow user specification of communication
patterns and of the data layout at per-node and across-nodes
level, by means of scheduling languages.

Array Dependence Analyses: A rich body of work has
used layouts of some sort or another in the quest of optimizing
affine and non-affine programs. For non-affine programs, such
as molecular-dynamics simulations, inspector-executor tech-
niques have been devised to reorder the data and iteration
space at runtime [52, 53], in a way that optimizes temporal and
spatial locality. For example, the inspector code computes a
permutation of the data/iterations that is used by the statically-
generated executor code.

Work on automatic parallelization of non-affine loops [54,
55] tests at runtime sufficient conditions for statically irre-

ducible queries that model loop independence. These can
be represented as predicated extensions of polyhedral sys-
tems [6, 56] or as languages [57, 58] that build on linear-
memory access descriptors (LMADs).

LMADs [59, 60] generalize Python-like slicing by allowing
a global-memory offset together with a list that pairs up the
length of each logical dimension with its total stride—i.e., the
number of memory elements that are jumped to advance to
the next element in that dimension, similar to Graphene.

LMADs have also been used in Futhark [61] to support
various optimizations that are not expressible in a pure IR,
and more relevant, to allow change-of-layout transformations
to be applied on arrays at O(1) cost, i.e., without manifestation
in memory. While Figure 3 of [61] hints that any (straight-line)
reordering sequence can be modeled by a chain of LMADs,
subsequent work [62], presenting the memory lowering, clar-
ifies that Futhark supports at O(1) cost only reorderings that
are expressible by one LMAD.

In comparison, LEGO supports reordering chains that may
require several LMADs, such as B (O2) in Figure 6, and non-
linear (user-defined) patterns, e.g., C (O1).

VII. CONCLUSION

This paper has described LEGO, a layout algebra to support
tiled, hierarchical high-performance code generation. The key
advance in LEGO is that it eliminates the need to specify
strides in hierarchical layouts, thus simplifying layout specifi-
cation. It is also a standalone Python code that can provide a
bijective mapping of computation and data layout to/from pro-
gram index space, thus eliminating the need for programmers
to derive complex indices manually. It facilitates exploration
of layouts in combination with other optimizations. We have
demonstrated LEGO’s integration with CUDA templates, the
Triton and MLIR compilers, and its role in generating high-
performance implementations.

LEGO’s support extends beyond the strided, rectangular lay-
outs of the CuTe/Graphene shape algebra, enabling arbitrary
permutations of elements, such as the anti-diagonal example
and the brick data layout presented in this paper. Layout
composition can be used to express data movement to and from
GPU shared memory, while also supporting optimizations such
as thread coarsening and the reduction of shared memory bank
conflicts. As future work, we plan to further explore the full
range of layouts and integration with other systems. Related
supplementary materials are available in the repository [63].
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APPENDIX

A. Abstract

This artifact contains the source code of the LEGO frame-
work and the scripts used to execute and evaluate all bench-
marks in the paper. LEGO provides an algebraic, compiler-
agnostic framework for specifying and transforming memory
layouts. Through integrations with Triton, CUDA, and MLIR,
we compare LEGO-generated kernels with existing implemen-
tations and demonstrate that careful data layout reorganization
can achieve state-of-the-art performance or significantly im-
prove performance.

B. Artifact check-list (meta-information)
• Data set: provided as an artifact
• Hardware: NVIDIA A100 80GB GPU and AMD EPYC 7513

CPU
• Output: Benchmark figures and throughput table
• How much disk space required (approximately)?: 40GB
• How much time is needed to prepare workflow (approxi-

mately)?: 2 hours
• How much time is needed to complete experiments (approx-

imately)?: 1.5 hours
• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT
• Archived (provide DOI)?: 10.5281/zenodo.17633994

C. Description
1) How delivered: 10.5281/zenodo.17633994
2) Hardware dependencies: NVIDIA A100 80GB GPU
3) Software dependencies: LLVM (commit 556ec4a), Triton

3.2.0, PyTorch 2.5.1, CUDA 12.4, Python 3.12.4, Ninja 1.12.1,
CMake 3.26.5, GCC 11.2.0

D. Installation
1) Clone the LLVM

$ git clone https://github.com/llvm/llvm-project.git
$ cd llvm-project && git checkout 556ec4a

2) Build and install LLVM/MLIR at the required commit
$ mkdir build && cd build
$ cmake -G Ninja ../llvm -DCMAKE_BUILD_TYPE=Release \

-DLLVM_ENABLE_PROJECTS="mlir" \
-DLLVM_TARGETS_TO_BUILD="X86;NVPTX" \
-DMLIR_ENABLE_CUDA_RUNNER=ON \
-DMLIR_ENABLE_BINDINGS_PYTHON=ON \
-DPython3_EXECUTABLE="$(which python)" \
-DLLVM_BUILD_EXAMPLES=OFF && ninja

3) Set the path to LLVM/MLIR build path
$ export MLIR_BUILD_FOLDER="$(pwd)"

E. Experiment workflow
From the root of the artifact repository, the experiments can be

reproduced with the following steps:
1) Create the virtual environment and install Python packages:

$ bash ./setup.sh && source venv/bin/activate

2) Generate all kernel source code:
$ bash ./gen_all_kernel.sh

3) Run all benchmarks and produce figures and tables:
$ bash ./run_all_kernels.sh

This will execute all benchmarks and generate the figures and
tables reported in the paper.

F. Evaluation and expected result
The generated figures for the evaluation section (11, 12, 13) and

Table V are located in the ./figures folder in the root of the
artifact directory.

REFERENCES

[1] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C.
Kuszmaul, B. W. Lampson, D. Sanchez, and T. B. Schardl,
“There’s plenty of room at the top: What will drive
computer performance after moore’s law?” Science, vol.
368, no. 6495, p. eaam9744, 2020. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.aam9744

[2] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting
to the ”new normal”’ for computer architecture,” Computing in
Science & Engineering, vol. 15, no. 6, pp. 16–26, 2013.

[3] M. Wolfe, “More iteration space tiling,” in Proceedings of
the 1989 ACM/IEEE Conference on Supercomputing, ser.
Supercomputing ’89. New York, NY, USA: Association for
Computing Machinery, 1989, p. 655–664. [Online]. Available:
https://doi.org/10.1145/76263.76337

[4] S. Carr and K. Kennedy, “Improving the ratio of memory
operations to floating-point operations in loops,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 6, p. 1768–1810, Nov. 1994.
[Online]. Available: https://doi.org/10.1145/197320.197366

[5] P. Feautrier, “Some efficient solutions to the affine scheduling
problem. part ii. multidimensional time,” Int J Parallel Prog,
vol. 21, p. 389–420, 1992.

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan,
“A practical automatic polyhedral parallelizer and locality
optimizer,” SIGPLAN Not., vol. 43, no. 6, p. 101–113, Jun.
2008. [Online]. Available: https://doi.org/10.1145/1379022.
1375595

[7] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez,
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